Order Instituting Investigation on the Commission's Own Motion into the Operations and Practices of Southern California Gas Company with Respect to the Aliso Canyon storage facility and the release of natural gas, and Order to Show Cause Why Southern California Gas Company Should Not Be Sanctioned for Allowing the Uncontrolled Release of Natural Gas from Its Aliso Canyon Storage Facility. (U904G).

I.19-06-016 (Filed June 27, 2019)

CHAPTER I

PREPARED SUPPLEMENTAL REBUTTAL TESTIMONY OF GLENN LA FEVERS ON BEHALF OF SOUTHERN CALIFORNIA GAS COMPANY (U 904 G)

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	SUMMARY OF SED ALLEGED VIOLATION	2
III.	THE RELEASE WAS AN UNAVOIDABLE BYPRODUCT OF THE WELL KILL ATTEMPT ON NOVEMBER 13, 2015	2
IV.	THE MESSAGE CENTER REPORT FAILS TO SUPPORT SED'S ALLEGATION THAT THE RELEASE WAS PURPOSEFUL	4
V.	SOCALGAS NOTIFIED THE COMMUNITY AND THE RELEVANT AGENCIES, AND THERE WAS NO OFFSITE IMPACT	5
VI.	SED MISCHARACTERIZES THE DOCUMENTS REFERENCED IN ITS SUR-REPLY TESTIMONY	8
VII.	CONCLUSION	10
WITN	VESS QUALIFICATIONS	11

1

2 3 4

5

5

6

7

9

8

10

11

12

13

14 15

16

17

18

19

20

CHAPTER I

PREPARED SUPPLEMENTAL REBUTTAL TESTIMONY OF GLENN LA FEVERS ON BEHALF OF SOUTHERN CALIFORNIA GAS COMPANY (U 904 G)

I. INTRODUCTION

The purpose of my prepared supplemental rebuttal testimony on behalf of Southern California Gas Company (SoCalGas) is to address Violation 331 alleged in Chapter Eight of the Prepared Sur-Reply Testimony of Margaret Felts on behalf of the California Public Utilities Commission's (Commission) Safety and Enforcement Division (SED). Ms. Felts alleges SoCalGas violated California Public Utilities Code Section 451 (Section 451) in two different ways.² First, Ms. Felts alleges SoCalGas "purposely extracted and vented oil into the atmosphere during the SS-25 incident on November 13 2015, which is a 451 violation because it exposed people near the well and the public, to hazardous substances." Subsequently, Ms. Felts alleges "records suggest that a purposeful release of oil and gas occurred and that SoCalGas subsequently attempted to cover up the facts surrounding this release in violation of 451." As further discussed below and evidenced in the attached materials, as well as the attachments referenced in Ms. Felts' sur-reply testimony, there is no merit to this alleged violation because the release was an unavoidable byproduct of the well kill attempt, SoCalGas notified the relevant agencies and community, the release was documented, and no offsite impact occurred as a result of the release.

¹ On September 4, 2020, ALJ Poirier granted SoCalGas leave to submit supplemental rebuttal testimony regarding Violation No. 331. In an October 15, 2020 Ruling of ALJs Poirier and Hecht further provided that the "supplemental rebuttal testimony previously due on September 29, 2020, shall be served not later than October 26, 2020. The scope of this testimony remains limited to the issues identified in the September 4, 2020, Administrative Law Judge Ruling."

² Ms. Felts states she recently discovered evidence in support of Violation No. 331; however, the exhibits cited in support of SED's alleged violation were produced by SoCalGas to SED in 2018.

³ SED Sur-Reply Testimony, Chapter 8 at 1-2.

⁴ *Id*. at 4.

II. SUMMARY OF SED ALLEGED VIOLATION

Ms. Felts' sur-reply testimony includes a number of unsupported "facts" and postulations based on misreadings of documents in an effort to assert a violation of Section 451. Ms. Felts' sur-reply testimony alleges that SoCalGas purposely extracted and vented oil into the atmosphere during the SS-25 incident on November 13, 2015, which exposed "people near the well and the public, to hazardous substances," but she does not elaborate on (or support with evidence) the latter assertion (that the release of oil exposed people near the well and the public to hazardous substances); she merely summarily writes it in a heading. Ms. Felts further alleges, in the concluding sentence of Chapter Eight, that SoCalGas subsequently attempted to cover up facts surrounding the release, in violation of Section 451. This allegation is based on speculation and misinterpretation of documents that have been in SED's possession since 2018. I offer this testimony based on my knowledge of and involvement in the events on November 13, 2015 and related activities as well as my review of the relevant documents referenced herein.

III. THE RELEASE WAS AN UNAVOIDABLE BYPRODUCT OF THE WELL KILL ATTEMPT ON NOVEMBER 13, 2015

SoCalGas' efforts with regard to the well kill operations are detailed in SoCalGas' Opening Testimony Chapter II (Schwecke). Boots & Coots performed a number of well kill attempts on SS-25 from November 13, 2015 through December 22, 2015. On November 13, 2015, Boots & Coots executed its first well kill (the second kill attempt overall); however, the operation did not stop the flow of gas up the well, and well kill fluid pumped into the well came

⁵ *Id*. at 1-2.

⁶ Ms. Felts states her "review of records provided in response to SED DRs suggests there may have been additional well kill attempts." (SED Sur-Reply Testimony, Chapter 8 at 4, fn. 16.) Blade, who had access to SoCalGas' and Boots and Coots' daily reports, concluded that seven kill operations, including a second kill attempt on November 13, 2015, were attempted to bring the well under control and to stop the leak. (Blade Main Report at 144-146; Supplementary Report, Volume 3, SS-25 Transient Well Kill Analysis.)

out to surface instead of staying in the wellbore. Because Aliso Canyon is a depleted oil field there is some residual oil within the field. As further described in SoCalGas' Supplemental Rebuttal Testimony Chapter II (Abel), the release of oil, which was entrained in the resurfaced fluids, was an ancillary and unavoidable byproduct of the well kill attempt and to the achievement of SoCalGas' main objective, i.e., to safely control the well. As such, Ms. Felts' contention that SoCalGas purposely extracted and vented oil into the atmosphere in violation of Section 451 is unsupported.

Moreover, there was no attempt to "cover up" the release. Representatives from the Division of Oil, Gas and Geothermal Resources (DOGGR, presently known as the California Geologic Energy Management or CalGEM) were present at Aliso Canyon during the well kill attempt on November 13, 2015. A DOGGR field engineer who witnessed the SS-25 pumping operations summarized the day's events in writing, noting that "the well began to blowout to surface;" "[a] large column of gas, aerated mud, and rock formed a geyser around the well head;" and "[m]ud brine also began to flow from around the well head fissures." Further, the DOGGR engineer noted that, "[a]fter speaking with Bret Lane and Danny Clayton with Boots and Coots, it was agreed that the operator should continue to pump the well despite the surface gas leakage as this may be the best opportunity to kill the well." Thus, not only did SoCalGas not "cover up" the release, but the event was also *considered* by DOGGR, SoCalGas, and Boots and Coots, and the decision was made that the well control operation should continue.

⁷ Since the gas storage reservoir is a depleted oil-bearing zone, storage wells produce some residual oil when gas flows out from the reservoir.

⁸ See Ex. I-3 at 1 ("During well kill a mist is releasing due to pressure, material is flowing directly into the atmosphere and pooling at the base of the well on soil ...").

⁹ See Ex. I-1.

¹⁰ Ex. I-1 at 1.

¹¹ *Id.* at 2 (emphasis added).

IV. THE MESSAGE CENTER REPORT FAILS TO SUPPORT SED'S ALLEGATION THAT THE RELEASE WAS PURPOSEFUL

Ms. Felts' sole support for Violation 331 is her interpretation of what she characterizes as a text message. Her testimony suggests, without explanation or support, that the release was "purposeful." In explaining how the text message supported her theory, in a response to SoCalGas' data request, Ms. Felts states, "[g]rammatically, this is a purposeful statement and cannot be construed otherwise." 13

The text message to which Ms. Felts refers is a Message Center Report (MCR) issued on November 13, 2015 at 3:00 p.m. which states: "[d]uring the repair process to mitigate the Leak at the well head in Aliso Canyon, oil was extracted and was vented into the atmosphere." SoCalGas' Message Center Reporting acts as the central point for receiving information on incidents, emergencies, and natural disasters affecting the company. Messages are received by dispatch directly from the field or from relevant operating organizations. Dispatch is responsible for receiving the information and creating the MCR, and then issuing the MCR to relay information to selected personnel so that further action can be taken as necessary.

On November 13, 2015, I reported the release to Dispatch. Dispatch took the information provided and developed the MCR. Note that dispatch does not have technical expertise, and certainly not with respect to well control operations. The MCR does not state that SoCalGas "purposely" extracted and vented oil to the atmosphere. Ms. Felts' hypothesis that the grammar used by dispatch plainly evidences that SoCalGas intentionally extracted and vented oil is simply wrong.

¹² SED Sur-Reply Testimony, Chapter 8 at 2.

¹³ Ex. I-2 at 1.

¹⁴ SED Sur-Reply Testimony, Chapter 8 at 2.

Ms. Felts also attempts to support her testimony based on her recollection of an oral comment purportedly made in "a non-related meeting around the time of the incident," but this "evidence" is so lacking in detail that it is simply not credible. When asked to identify details regarding the referenced meeting, Ms. Felts responded, "I have not been able to definitively recall when I heard the comment or who made it. Since I was not on contract yet, I know the meeting was not associated with this case. I only know that when I came into the project, I had in mind to look for evidence of the event as I worked through the evidence." This does not support her testimony.

V. SOCALGAS NOTIFIED THE COMMUNITY AND THE RELEVANT AGENCIES, AND THERE WAS NO OFFSITE IMPACT

Contrary to Ms. Felts' contentions, SoCalGas did not attempt to cover up the release. In fact, SoCalGas provided notice of the event to both the public and to relevant agencies. On November 13, 2015 at 1:34 PM, SoCalGas notified the Governor's Office of Emergency Services (CalOES) of the release and included in its report that the substance was "Oil – Crude Type." SoCalGas reported that, "[d]uring well kill a mist is releasing **due to pressure**, material is flowing directly into the atmosphere and pooling at the base of the well on soil, mist is traveling Southwest in the air from the well head, no estimate of containment at this time, RP is handling containment and clean up." At 1:56 PM, SoCalGas provided an update to CalOES to report the wind speed and receipt of the National Response Center (NRC) Report. At 3:14

¹⁵ *Id*.

¹⁶ Ex. I-2 at 2.

¹⁷ And still, this issue was not raised in the first nor second rounds of Ms. Felts' testimony.

¹⁸ Ex. I-3 at 1.

¹⁹ *Id.* (emphasis added).

²⁰ See Ex. I-3.

²¹ See https://nrc.uscg.mil/FOIAFiles/CY15.xlsx. The relevant excerpt of the NRC Report is attached hereto as Ex. I-9.

1 PM, SoCalGas provided its final status update to CalOES, reporting that, "[t]he mist flow has 2 reduced and no off site impact has occurred."22 3 Ms. Felts' suggestion that SoCalGas attempted to cover up facts surrounding this release 4 is simply false. The CalOES report is publicly available and accessible online.²³ Further, 5 CalOES' notification list includes the following agencies: the Administering Agency/Certified 6 Unified Program Agency (AA/CUPA), California Department of Fish and Wildlife Office of 7 Spill Prevention (DFG-OSPR), California Department of Toxic Substances Control (DTSC), 8 Regional Water Quality Control Board (RWQCB), United States Environmental Protection 9 Agency (US EPA), United States Department of Fish and Wildlife Services (USFWS), 10 California Air Resources Board (AIR RESOURCES BD), the California Department of Public 11 Health District Office (CDPH-D.O.), the Division of Oil, Gas and Geothermal Resources 12 (DOGGR), the Bureau of Safety and Environmental Enforcement (BSEE), Los Angeles County

SoCalGas' notification to the NRC notes that, "during well kill activities an oily mist was being released into the air as well as oily liquid being released to the ground in the area of the

Department of Public Health (Co/Hlth), and Los Angeles County Department of Environmental

Health (Co/E-Hlth).²⁴

13

14

15

²² Ex. I-3 at 4 (emphasis added).

²³ The CalOES Report and updates (Ex. I-3) are available via the following links: https://w3.calema.ca.gov/operational/malhaz.nsf/f1841a103c102734882563e200760c4a/5cfe9195945842 e088257efc00767af3?OpenDocument&Highlight=0,15-6708;

https://w3.calema.ca.gov/operational/malhaz.nsf/f1841a103c102734882563e200760c4a/e6583981879f9ea688257efc0078913e?OpenDocument&Highlight=0,15-6708;

 $[\]frac{https://w3.calema.ca.gov/operational/malhaz.nsf/f1841a103c102734882563e200760c4a/c09f3e9554f5afda88257efc007fae44?OpenDocument\&Highlight=0,15-6708.$

²⁴ See Ex. I-3.

well."²⁵ The NRC report also notes that the material was crude oil and DOGGR was on site during the release.²⁶ This NRC report is publicly available and accessible online.²⁷

Similarly, SoCalGas provided notifications related to the release to the community and the public. On November 13, 2015, SoCalGas issued automated telephone notifications to the community – an "Outbound Dial Message – Stay Indoor Notification" and "Outbound Message All Clear Notice"—notifying residents of the release. Also, on November 14, 2015, SoCalGas posted an update on its website related to the release, on the release, on the release of the release, on the release of the release, on November 14, 2015, SoCalGas posted an update on its website related to the release, on the release of the rel

On Friday [November 13, 2015], some of the brine solution did come back up, and it created a mist in the air over the facility. Out of an abundance of caution, we assumed the mist could contain oily residues (The storage field is depleted oil field.) and could travel beyond the facility. As a result, we immediately alerted the residents in nearby communities to stay indoors. As soon as we recognized the mist would not travel beyond the facility, we advised residents there was no reason to stay indoors.

We conferred with the Health Department, the LA County Department of Health and HazMat and the SCAQMD. Our initial observations later in the day led us to believe the contents of the mist were likely mostly a mixture of mud and the brine solution; however, we have sent samples for analysis to be certain of its contents. When we receive the final report from the laboratory, we will make this information available.³⁰

SoCalGas sent samples to an outside laboratory for analysis, and its website update noted the analysis determined the liquid was non-hazardous.³¹ SoCalGas produced the laboratory reports to SED on November 17, 2015.³² Moreover, it was determined that no offsite impact had occurred.³³

²⁵ Ex. I-9, NRC Report/Incident Commons at 1.

²⁶ Ex. I-9, NRC Report/Incident Details at 8; NRC Report/Material Involved at 1.

²⁷ The NRC Report is available via the following link: https://nrc.uscg.mil/FOIAFiles/CY15.xlsx.

²⁸ Ex. I-4 at 4.

²⁹ Ex. I-4 at 4; see Ex. I-5.

³⁰ Ex. I-5 at 1.

³¹ See Ex. I-6; Ex. I-7.

³² See Ex. I-7.

³³ See Ex. I-3; Ex. I-5.

SoCalGas provided SED information regarding the agency reports and community notifications almost five years ago.³⁴ Ms. Felts now states that "SoCalGas provided no evidence to support the statements regarding reporting the incident or notifying the residents."³⁵ However, Ms. Felts fails to note that, despite the fact that the relevant information was in fact in SED's possession, SED never sent SoCalGas any data requests seeking documents related to these notifications. In response to SoCalGas' request to identify all data requests in which SED requested that SoCalGas provide such "evidence" or "supporting documents,"³⁶ Ms. Felts responded that she was not aware of any specific SED data request asking SoCalGas to provide such evidence or supporting documents.³⁷ Ms. Felts further notes that since she "came to this project in the fall of 2019," she is "also not aware of any conversations, discussions, or other communications that may have occurred regarding evidence in this case prior to fall of 2019." Ms. Felts' suggestion that SoCalGas failed to report the release to the agencies or notify the community, or subsequently tried to cover it up, is false.

VI. SED MISCHARACTERIZES THE DOCUMENTS REFERENCED IN ITS SUR-REPLY TESTIMONY

Ms. Felts seems to misrepresent several documents referenced in her sur-reply testimony. Ms. Felts claims that "[a] review of emails and documents provided by SoCalGas in response to SED data requests did not turn up a description of this event" and "there is no mention in either the SoCalGas daily report or the Boots & Coots daily report for November 13, 2015.³⁹ However, this is false. The Boots and Coots report dated November 13, 2015 specifically notes that

³⁴ See Ex. I-7.

³⁵ SED Sur-Reply Testimony, Chapter 8 at 4.

³⁶ Ex. I-2 at 3.

³⁷ *Id*.

³⁸ *Id*.

³⁹ SED Sur-Reply Testimony, Chapter 8 at 2-3.

"[b]rine, oil, and gas flowing from fissures on pad."⁴⁰ Further, SoCalGas' daily well work report from that date states, "[a]fter 693 bbls pumpd, brine, oil and gas flowing from surface cracks."⁴¹ Also, as noted above, the CalOES and NRC reports, which were publicly available, both note oil. The event was also noted in the Blade Report.⁴² As such, Ms. Felts' suggestion that the release was not documented is inaccurate and contradicted by reference to a number of different sources.

Ms. Felts also incorrectly states that the document titled "Standard Sesnon 25 Chronology of Events" was sent by SoCalGas to DOGGR. The materials referenced in Ms. Felts' sur-reply testimony clearly show that this document was generated by DOGGR and was sent by email to SoCalGas.⁴³ Ms. Felts postulates, without any other support, that since the body of the DOGGR's email providing the document to SoCalGas says "Thanks," SoCalGas created this document.⁴⁴ Again, this is both incorrect and unsupported.

Ms. Felts also incorrectly states that SoCalGas provided the Draft Timeline of Events in response to SED Data Request 33 dated October 23, 2018.⁴⁵ SoCalGas provided SED the Draft Timeline of Events in response to an SED request on November 15, 2015, i.e., while the leak was still ongoing. Almost three years later, SED Data Request 33 asked SoCalGas to reference the prior Draft Timeline of Events in order to answer a series of questions related to the timeline (which only related to the tubing perforation activities that day). Ms. Felts also states in her testimony that SoCalGas' Draft Timeline of Events conflicts with the MCR issued on November

⁴⁰ SED Sur-Reply Testimony, Chapter 8 Exhibits (SED SUR REPLY 002188) (emphasis added).

⁴¹ Ex. I-8 at 1 (emphasis added).

⁴² See Blade Main Report at 145.

⁴³ SED Sur-Reply Testimony, Chapter 8 Exhibits (SED SUR REPLY 002192).

⁴⁴ SED Sur-Reply Testimony, Chapter 8 at 3, fn. 14.

⁴⁵ *Id*. at 4.

13, 2015, 46 but in response to SoCalGas' discovery, Ms. Felts was not able to specifically identify any conflicting facts.⁴⁷ 2

CONCLUSION VII.

3

4

5

6

7

8

As demonstrated herein, Violation 331, that SoCalGas purposefully extracted and vented oil into the atmosphere on November 13, 2015, and subsequently attempted to cover up facts surrounding the release, is without factual support and is demonstrably inaccurate.

This concludes my prepared supplemental rebuttal testimony.

⁴⁶ *Id*.
⁴⁷ Ex. I-2 at 3-4.

WITNESS QUALIFICATIONS

My name is Glenn D. La Fevers. I am employed by SoCalGas as the Director of Storage. My business address is 9400 Oakdale Avenue, Chatsworth, California 913111. In my current position, my responsibilities include overseeing aboveground storage operations and related functions for the SoCalGas gas storage facilities.

I joined SoCalGas in 1983 as a Station Assistant at the Pacific Offshore Pipeline

Company (POPCO) natural gas treatment facility. While at POPCO, I held numerous positions

with increasing levels of responsibility including Operator, Laboratory Technician, Shift

Supervisor, Safety Training Supervisor and Environmental Coordinator. While working directly

at SoCalGas the positions I have held include Field Safety Advisor, Operations Supervisor,

Principal Environmental Specialist and Storage Operations Manager. In addition, I have held the

position of Principal Auditor in the compliance group at Sempra.

Prior to joining SoCalGas, I worked for Petrolog in Ventura, California as a Geologist.

I received a bachelor's degree in Geological Sciences from the University of California at Santa Barbara (UCSB) in 1980, and a Bachelor's degree in Environmental Studies from UCSB in 1991.

I have previously testified before the Commission.

Ex. I-1

From:

Turner, Benjamin@DOC

To:

Lauren.Wolman@mail.house.gov

Subject:

Fwd: Aliso update

Date:

Friday, November 13, 2015 11:09:09 PM

Update from DOGGR field staff:

Sent from my iPhone (pleeze esckooze tiepoes and occasional inadvertent brusqueness)

Ben Turner

Assistant Director, Governmental and Environmental Relations Department of Conservation

801 K Street, MS 24-02

Sacramento, CA

Office: 916-445-8733

Begin forwarded message:

Subject: Aliso update

Here is an update from a field engineer:

Today was an extremely eventful day at the SS 25 site. Bruce Hesson and I arrived at the command post at 0630 this morning. We were quickly briefed by Todd Van De Putte with SoCalGas on the day's operations. The well conditions were unchanged from the previous day. The composite bridge plug set at 8412' was holding and no meaningful pressure had been added or subtracted from the 27/8" tubing. The operator then ran wireline and punched holes in the 27/8" tubing in preparation for the kill job. After the tubing shots were fired, the tubing began to return to the original pressure of ±1600 psi as expected.

I was then called to the SS 25 site to witness the pumping operations. I did not have a time piece with me as all electronics were removed from the site. Therefore, times are estimated here. The winds were blowing to the SW at 15-20mph. At around 1100 hours pumping began with a 5 bbl polymer pill followed by 9.4 ppg CaCl2 mud. The rate of pumping was 8 bbls/min and the operator was bullheading through the 2 7/8" tubing. The CT rig was not used and the BOPE stack and riser had been removed.

After 45 bbls of 9.4 ppg mud was pumped, the tubing pressure began to increase and there was a ±100 psi drop in the 7" annulus. The choke was then opened full and a small amount of fluid and gas was coming to the return tanks. It appeared the well had turned the corner on the 2 7/8" tubing. At about 100 bbls away or so, the well began to blowout to surface despite having the choke at 100% open. A large column of gas, aerated mud, and rock formed a geyser around the well head. Mud brine also began to flow from around the well head fissures. The pumping rate was kept at 8 bbls/min and the tubing was keeping pressure. The

pump was able to chase the fluid. At the recommendation of Boots and Coots, Bret Lane w/ SCG, Mike Dozier also w/ SCG and myself retreated from the choke controls and remained at the SS 25 command bunker. A significant amount of gas and mud continued to blow around the well head and also floated downwind to the SW. The well continued to blow around the wellhead for the next 300 bbls of pumping which should have been about 40 minutes of time elapsed. At this point the site began to run out of kill fluid as the theoretical wellbore volume of 318 bbls had been pumped. More fluid was pumped into the well and the well continued to blow into the return tank and around the well head. The dust column reached an estimated 60' in height.

At around 420 bbls away, Scott McGurk, Scott Walker, and Bruce Hesson came up to the SS 25 site after monitoring conditions by computer at an adjacent lower location. I met the three half way down the road and we quickly tested the east side of the hill where gas had been leaking out of the hillside. The gas monitor did not detect any gas. The leak points that I had previously noted were nearly dead.

We then walked back to the SS 25 site. After speaking with Bret Lane and Danny Clayton with Boots and Coots, it was agreed that the operator should continue to pump the well despite the surface gas leakage as this may be the best opportunity to kill the well. At around 550 bbls away the surfaced mud began to flow off of the well pad and down the road. A vacuum truck was called and the mud flowed into a concrete catch basin. This basin was plugged and the mud sucked out with the vacuum truck before it could break containment. The leaking kill mud did not breach the hot zone. The operator continued to pump at about 1 bbl/min. The well continued to blow but the rate was reduced. After 800 bbls of mud away, a 10 bbl polymer pill was spotted into the tubing. It was allowed to gravity feed down the tubing. Pumping was stopped at ± 1445 hours. There was no more mud to pump on site after 2.5 wellbore volumes were pumped. The well continued to blow, but fluid stopped coming from the wellbore. After about 10 minutes the dust began to abate and we were able to approach the wellbore. We observed the well from the choke manifold controls upwind of the blow. The well was blowing a small amount of gas from the well cellar. Most of the gas however, was blowing from a large fissure about 20' north of the wellhead. This gas was a significant blow and it was decided that it should be left alone for the night. There was no more mud to pump and the fluid stopped emanating from the wellbore. The tubing was on a vacuum. The 7" casing had 185 psi on it and the 11^{3} % had $\pm 65^{\circ}$ psi on it. We decided to leave the site after this inspection and walked down to the command area. We arrived at command at ± 1500 .

Phone calls to HQ ensued and Division management was updated on the day's activities.

<u>Tomorrow</u> will likely consist of a wireline run to collect data. There are several possibilities as to a course of action. The tubing pressure will determine whether or not a cement job is feasible. The well head did appear intact and it may be possible to pump cement. However, if the tubing returns to significant pressure, a cement job may not be possible at this time. This means that insufficient fluid reached the storage zone and a cement plug will likely only agitate the well.

If the tubing pressure is reasonably low, a noise log will likely be run to determine if and where gas is migrating. A fluid shot in the 7" annulus may also be possible, or a capacitor wireline tool may be of use as well. If the tubing is dead, then the storage zone is dead. This means that the gas blow actually came from a shallower zone behind the 7" casing and likely below the shoe of the 11 3/4" casing. It is possible that when the kill fluid was pumped into the well an ice plug that had built up around the 11 3/4" x 16" wellbore annulus broke down allowing the gas to vent. This hypothetical ice plug may have resulted in choking back the gas release and forcing the gas to migrate to the surrounding hillsides. Once this ice was broken, the most convenient path of flow was through the open choke and around the 11 3/4" casing. This could explain why the hillside gas leaks stopped.

I shall return to the SS 25 site at 0630 hours tomorrow. If you have any questions please don't hesitate to text or email.

Sent from my iPhone (pleeze esckooze tiepoes and occasional inadvertent brusqueness)

Ben Turner
Assistant Director, Governmental and Environmental Relations
Department of Conservation
801 K Street, MS 24-02
Sacramento, CA
Office: 916-445-8733

Ex. I-1, page 3 of 3

Ex. I-2

Safety and Enforcement Division's (SED) Response to Southern California Gas Company Data Request 12:

Date Provided by SED to SoCalGas: October 2, 2020

1. Identify all facts supporting YOUR allegation that SoCalGas "purposefully" extracted and vented oil into the atmosphere on November 13, 2015.

SED objects to Question 1 to the extent that it mischaracterizes Ms. Felts' testimony. Taking one term out of context does not properly characterize a portion of testimony and the conclusion must be read in its entirety. Namely, the entire quote on page 4 of Ms. Felts' surreply testimony, Chapter 8, lines 23-25, is: "In conclusion, records suggest that a purposeful release of oil and gas occurred and that SoCalGas subsequently attempted to cover up the facts surrounding this release in violation of 451." Notwithstanding this conclusion, Ms. Felts answers as follows:

Response: All facts supporting the allegation were presented with testimony. See response to Question 8 below.

2. Produce all DOCUMENTS supporting YOUR allegation that SoCalGas "purposefully" extracted and vented oil into the atmosphere on November 13, 2015.

SED objects to this question as mischaracterizing Ms. Felts' testimony. The precise quote from Ms. Felts' testimony page 1, lines 16 to 17 is, "However, I have recently discovered evidence that shows SoCalGas purposely extracted oil and vented it into the atmosphere during the SS-25 incident." Notwithstanding this objection, Ms. Felts answers as follows.

Response: The Nov 13, 2015 text message sent from "777200585003" reported "oil was extracted and was vented into the atmosphere." Grammatically, this is a purposeful statement and cannot be construed otherwise. This text message is quoted in its entirety in Chapter eight of testimony, page 2, lines 4 through 10.

3. Please reference Chapter Eight, page 2, lines 16-19, and footnote 7, which states:

Apparently, during the day, and before 5:26 PM, which is the time stamp for the text message that went out, there was a release of gas, oil and brine that shot feet into the atmosphere and covered the surroundings with oil.⁷

- a) Identify the individual or individuals who made the "oral comment" referenced in the excerpted passage above.
- b) Identify the time and date of the "non-related meeting" referenced in the excerpted passage above.
- c) Identify the subject of the "non-related meeting" referenced in the excerpted passage above.
- d) Identify all individuals who attended the "non-related meeting" referenced in the excerpted passage above.

⁷ Based on oral comment that I recall hearing in a non-related meeting around the time of the incident. I have not been able to confirm this fact with SoCalGas documentation.

Response:

- 3.a. After considerable research into past records, I have not been able to definitively recall when I heard the comment or who made it. Since I was not on contract yet, I know the meeting was not associated with this case. I only know that when I came into the project, I had in mind to look for evidence of the event as I worked through the evidence.
- 3.b. See the response to 3.a.
- 3.c. See the response to 3.a.
- 3.d. See the response to 3.a.
- 4. Identify all facts supporting your allegation that "another [kill] attempt was tried by SoCalGas or Boots and Coots" that is not described the Blade Report.

SED objects to this question as vague in that it does not reference the portion of testimony to which the quote refers. SED understands the question to be asking about Ms. Felts' sur-reply testimony, page 3 line 21 to page 4 line 2 and is instructing Ms. Felts to answer with that understanding. Based upon that understanding, SED further objects to the question as a mischaracterization of Ms. Felts' testimony. Ms. Felts' testimony did not state that another kill attempt *was* tried by SoCalGas or Boots and Coots, as the partial and out of context quote in the question would suggest. Quoted in its entirety, that passage states,

"In addition, based on dates of kill events identified by Blade, [Footnote omitted], the kill attempt on November 13, 2015 was the second kill attempt, so, based on this memo, *it is possible that another attempt was tried by SoCalGas or Boots and Coots*. [Footnote 16 states, "My review of records provided in response to SED DRs suggests that there *may* have been additional well kill attempts."] (Emphasis added.)

5. Produce all DOCUMENTS supporting your allegation that "another [kill] attempt was tried by SoCalGas or Boots and Coots" that is not described the Blade Report.

SED incorporates all of its objections in response to question 4 by reference here.

6. Please reference Chapter Eight, page 4, lines 3-19, which states: Finally, in a response to SED's data request DR 33, SoCalGas provided a Draft Timeline of Events. The entry for November 13, 2015 states:

November 13 - Tubing perforation activities performed and attempted stop the flow of gas by putting fluids down the well. During this operation, there was a release of a mist into the air. Based on the information at this time, it is not believed that these materials pose a threat to public health. Out of an abundance of caution, residents were notified to stay inside. Once determined that the mist was contained to our facility, residents were again notified that there was no reason to remain inside.

Office of Emergency Services and National Response Center were notified of the release. They were updated at 3:14 pm that flow was reduced.

SoCalGas provided no evidence to support the statements regarding reporting the incident or notifying the residents. This response was provided in the text of a supplemental response to the data request and is therefore not stamped with a SoCalGas bates number. No supporting documents were provided with the response.

- a) Identify all data requests in which SED requested that SoCalGas provide "evidence" or "supporting documents" to the support the draft entry for November 13, 2015, as excerpted above.
- b) Identify each question in which SED requested that SoCalGas provide "evidence" or "supporting documents" to the support the draft entry for November 13, 2015, as excerpted above.
- c) Identify the specific document to which "[t]his response" refers.
- d) Identify the question for which "[t]his response" was provided.

SED objects to this question as unduly burdensome because it is asking SED to produce documents that SoCalGas already has in its possession, and SoCalGas has the ability to access, read and understand the data that it requests. Notwithstanding this objection, Ms. Felts answers as follows.

Response to 6 a-d. I am not aware of any specific SED data request for the evidence or supporting documents. Since I came to this project in the fall of 2019, I am also not aware of any conversations, discussions, or other communications that may have occurred regarding evidence in this case prior to fall of 2019. My statement in Chapter Eight, page 4, lines 3-19 generally covers the entire collection of all data that was provided by SoCalGas to SED in this case and which I had reviewed at the time testimony was written.

- 7. Please reference Chapter Eight, page 4, lines 19-22, which states: The Draft Timeline of Events provided to SED conflicts with the internal text message sent to SoCalGas personnel on November 13, 2015 and states facts that were not included in the Standard Sesnon 25 Chronology of Events that appears within SoCalGas documents.
- a) Identify with specificity all facts that conflict between the Draft Timeline of Events and the "internal text message sent to SoCalGas personnel on November 13, 2015."
- b) In which "SoCalGas documents" are the "facts that were not included in the Standard Sesnon 25 Chronology of Events?"

Response to Questions 7 a and b: As mentioned in SED testimony, page 4, footnote 17, the draft timeline of events was provided in SoCalGas response to DR33. The full reference is DR33.01 SCG memo-Q12f amend 7-Dec-18.

Compare this statement in the Nov 13, 2015 Text message:

"During the repair process to mitigate the leak at the well head in Aliso Canyon oil was extracted and was vented into the atmosphere. There is an oily mist that may potentially be moving into the Porter Ranch area. Customer Service Field Distribution and Meter Reading employees who are or may be headed to work in the area have been given instructions to avoid the Porter

Ranch area until further notice. The Customer Contact Center has been notified, If an A-1 is issued in the area CSF employees are to take extreme caution when working the order."

To the Draft Timeline statement SoCalGas provided in the actual response to DR 33:

"November 13 - Tubing perforation activities performed and attempted stop the flow of gas by putting fluids down the well. During this operation, there was a release of a mist into the air. Based on the information at this time, it is not believed that these materials pose a threat to public health. Out of an abundance of caution, residents were notified to stay inside. Once determined that the mist was contained to our facility, residents were again notified that there was no reason to remain inside. Office of Emergency Services and National Response Center were notified of the release. They were updated at 3:14 pm that flow was reduced."

- 8. Please reference Chapter Eight, page 4, lines 23-25, which states: In conclusion, records suggest that a purposeful release of oil and gas occurred and that SoCalGas subsequently attempted to cover up the facts surrounding this release in violation of 451.
- a) Identify all "records" that "suggest" an attempt "to cover up the facts surrounding this release."
- b) Identify all facts that "suggest" an attempt "to cover up the facts surrounding this release."
- c) Identify all facts that support the alleged "violation of Section 451" referenced in the quote.

Response:

SED objects to Question 8 to the extent that subparts a, b, and c mischaracterize Ms. Felts' conclusion. The conclusion must be read in its entirety to be properly understood. Notwithstanding that objection, the following answers are provided.

a. A search of Boots & Coots, SoCalGas, and Haliburton daily reports, event records and emails and text messages on and after November 2015, as well as the CalGem data base regarding the Aliso 2015 SS-25 event, and reports to various regulatory agencies, turned up no records of the event as described in the Nov 13, 2015 text message sent from "777200585003" that reported "oil was extracted and was vented into the atmosphere." The consistent absence of this statement or anything similar to it in all other SoCalGas records suggests purposeful intent to avoid recording the incident.

Chapter Eight Violation 331 further discusses such records. For example, see Chapter Eight, page 2 line 20 to page 3 line 6, which states, "A review of emails and documents provided by SoCalGas in response to SED data requests did not turn up a description of this event. Specifically, there is no mention in either the SoCalGas daily report or the Boot(s) & Coots daily report for November 13, 2015. [Footnote 8, referencing Page 32 from AC_CPUC_SED_DR_16_0000649-1026.Incident.Day and Report #20 from Boots&Coots.Daily Reports.] A search of the California Geologic Energy Management Division (CalGEM) [Footnote omitted] web site records for underground storage and the SS-25 well failure event turned up no mention or report on the incident even though it appears that a representative may have been present that day. [Footnote 10 referencing

AC CPUC SED DR 17 0002068.shallow.gas.recovery – this memo discusses other issues related to the SS-25 situation, but puts a representative at the well site on 11/13/2015.] There is another email message from C. Brandy to Bret Lane asking about the text message quoted above, but there are no email responses from Bret Lane regarding the subject. [Footnote 11, referencing AC CPUC SED DR 17 0002072].

- b. See response to 8.a and Chapter Eight, Violation 331.
- c. The facts supporting the safety violation of Public Utilities Code Section 451 include the purposeful extraction of oil and venting it into the atmosphere without pre-notice to the public and without further notice to the public that some exposure to oil might have occurred, as described in more detail in Chapter 8, violation 331.

Ex. I-3

Governor's Office Emergency Services Hazardous Materials Spill Report

DATE: 11/13/2015 TIME: 1334		RECEIVED BY	Y:	CONTRO Cal OES - 1 NRC -		
1.a. PERSON NOT 1. NAME:	IFYING Cal (2. AGENCY S CA Gas		3. PHONE#:	4. Ext:	5. PA	AG/CELL:
1.b. PERSON REP		LL (If different f	rom above):			
1. NAME:	2. AGENCY		3. PHONE#:	4. Ext:	5. P	AG/CELL:
2. SUBSTANCE TY						
2. a. b.QT' SUBSTANCE:	Y:>= <amount< th=""><th>Measure</th><th>c. TYPE:</th><th>d. OTHER:</th><th>e. PIPELI</th><th>NE f. VESSEL >= 300 Tons</th></amount<>	Measure	c. TYPE:	d. OTHER:	e. PIPELI	NE f. VESSEL >= 300 Tons
1. Oil - Crude =	Unk	Gal(s)	PETROLEU	M	No	No
Type =					No	No
3. =					No	No
g. DESCRIPTION:	ir tr at	to the atmosphere aveling Southwes this time, RP is h	nist is releasing due e and pooling at the t in the air from the andling the contain	base of the v well head, n ment and cle	vell on soi o estimate ean up.	l, mist is e of containment
h.		WATER	j. WATERWAY:			WATER
STOPPAGE/CONT				IMP	ACTED	
No	N N					
1. KNOWN IMPAC 3. a. INCIDENT LO b. CITY:	OCATION: 12	one 801 Tampa Ave, A COUNTY:	Aliso Canyon Stora	ge Facility, V	Well #SS25	5
Northridge	L	os Angeles Count	y 91326	SOU'	TH COAS	T AQMD
4. INCIDENT DES						
a. DATE:		TIME (Military):	c. SITE:			O CAUSE
11/13/2015	1.	317	Other	Unkn	iown	
			Description for (Similar to Tank F			
e. INJURIES	£	FATALITY	g. EVACUATIO		LEANUP	DV.
No No	N. N		No		rting Party	
6. NOTIFICATION			110	Керо	rung rarty	,
a. ON SCENE: Other		b. OTHER ON	N SCENE:	c. OTHE	R NOTIF	TED:
d. ADMIN. AGEN	CY: Los Angeles	City Fire	e. SEC.	AGENCY:	LACoFD He	ealth Haz-Mat
Department	S					
f. ADDITIONAL C h. NOTIFICATION			g. ADM	IIN. AGENO	CY:	
DOG Unit: 2	LIST.	i. R	WQCB Unit:			
AA/CUPA, DFG-OSPR,	DTSC, RWQCB,	US EPA, USFWS, AI	4 IR RESOURCES BD, C Hlth DOG	DPH-D.O., DO	G, BSEE, C	o/WP, Co/Hlth, Co/E

||Photo Attachment: ****** Control No: 15-6708 *******

Created by: Warning Center on: 11/13/2015 01:34:07 PM Last Modified by: Warning Center on: 11/13/2015 01:51:43 PM

PrevDoc NextDoc

ADMINISTERING

Governor's Office of Emergency Services Hazardous Material Spill Update

		CONTR	ROL#: 15-6708 N	NRC# 1133370	
NOTIFY DATE/TIME: 11 1334	/13/2015 /	RECEIVED BY: OCCURENCE D 11/13/2015/1317	ATE/TIME:	CITY/OP. AREA: Northridge/Los Ango SOUTH COAST AQ	•
1.a. PERSON NOTIFYING	G Cal OES	5:			<u> </u>
AGENCY: S CA Gas					
1.b. PERSON REPORTING	G SPILL	(If different from ab	ove):		
AGENCY:					
SUBSTANCE TYPE:					
a. SUBSTANCE: b. QTY: Amount	Measure	c. TYPE:	d. OTHER:	e. PIPELINE	f. VESSEL >= 300 Tons
 Oil - Crude Type Unk 3. 	Gal(s)	PETROLE		No No No	No No No
Orignal Description: During we flowing directly into the atm traveling Southwest in the aitime, RP is handling the cont Update(s): 11/13/2015 01:50 No additional information.	osphere an r from the tainment an	nd pooling at the base well head, no estimate and clean up.	of the well on soil, te of containment at	, mist is t this	
PERSON NOTIFYING Ca NAME:	AG	SPILL UPDATE: GENCY: NRC	PHONE#:	Ext:	PAG/CELL:
UPDATE QUANTITY Amount 1.	Measure Gal(s)				
2. 3. 4.					
UPDATE KNOWN IMPA	CT:				
UPDATE CAUSE:					
SITUATION UPDATE: NRC report received: Wind s FAX NOTIFICATION LIST: AA/CUPA, DFG-OSPR, DTSC, RWQCB, US ADMINISTERING AGENCY: SECONDARY AGENCY: ADDITIONAL COUNTIES: ADDITIONAL ADMIN. AGENC DOG Unit: OTHER NOTIFIED: RWQCB Unit:	EPA, USFWS, Los Ang LACoF	•	.O., DOG, BSEE, Co/WP, Co/	'Hlth, Co/E-Hlth DOG	
CONFIRMATION REQUEST: FAX NOTIFICATION					

10/21/2020

AGENCY:

ADDITIONAL ADMIN.

AGENCY:

SECONDARY AGENCY:

ADDITIONAL **COUNTIES:**

Cal GEM:

RWQCB Unit:

Created by: Warning Center on: 11/13/2015 01:56:55 PM Last Modified by: Warning Center on: 11/13/2015 01:59:11 PM *********** End of Form *********

PrevDoc NextDoc

Governor's Office of Emergency Services Hazardous Material Spill Update

CONTROL#: 15-6708 NRC#

-					
	TIME: 11/13/2013	II.		CITY/OP. AREA:	
1334		OCCURENCE D	ATE/TIME:	Northridge/Los Ange	eles County
		11/13/2015/1317		SOUTH COAST AQ	MD.
La. PERSON NO	TIEVING Cal O	EC.		BOUTH COAST AQ	ĮNID .
1		ES:			
AGENCY: S CA		T (TO 1100	<u> </u>		
ļ	PORTING SPIL	L (If different from ab	ove):		
AGENCY:					
SUBSTANCE TY a. SUBSTANCE:	PE: b. QTY: Measur. Amount	c. TYPE:	d. OTHER:	e. PIPELINE	f. VESSEL >= 300 Tons
 Oil - Crude Type 3. 	Unk Gal(s)	PETROLE	EUM	No No No	No No No
No additional infor ; 11/13/2015 03:14 off site impact has	rmation. 1:36 PM - Called to occurred. No wate YING Cal OES (I - NRC report received: o update status: The miserways have been impact OF SPILL UPDATE: AGENCY:	st flow has reduced a		PAG/CELL:
MANIE.		S CA Gas	I HONE#.	EAU.	TAG/CELL.
UPDATE QUANT	TITY Measi	ıre			
1.	Gal(s)				
2. 3. 4.					
UPDATE KNOW	VN IMPACT:				
UPDATE CAUS	F.	<u>-</u>			
SITUATION UPI		_			
		w has reduced and no of	ff site impact has occ	curred. No waterways	have been

FAX NOTIFICATION LIST:

 $AA/CUPA, DFG-OSPR, DTSC, RWQCB, US EPA, USFWS, AIR RESOURCES BD, CDPH-D.O., DOG, BSEE, Co/WP, Co/Hlth, Co/E-Hlth \ \textbf{DOG} AA/CUPA AA$

ADMINISTERING AGENCY: Los Angeles City Fire Department SECONDARY AGENCY: LACoFD Health Haz-Mat

ADDITIONAL COUNTIES: ADDITIONAL ADMIN. AGENCY:

DOG Unit:

OTHER NOTIFIED:

RWQCB Unit: 4 **CONFIRMATION REQUEST:**

10/21/2020

FAX NOTIFICATION

LIST:

ADMINISTERING

AGENCY:

ADDITIONAL ADMIN.

AGENCY:

SECONDARY AGENCY:

ADDITIONAL **COUNTIES:** Cal GEM:

RWQCB Unit:

Created by: Warning Center on: 11/13/2015 03:14:36 PM Last Modified by: Warning Center on: 11/13/2015 03:17:31 PM

*********** End of Form *********

Ex. I-4

Message

From: Koskie, W. Jeff [WKoskie@semprautilities.com]

Sent: 11/25/2015 3:11:09 PM

To: Epuna, Matthewson (matthewson.epuna@cpuc.ca.gov) [matthewson.epuna@cpuc.ca.gov]

Subject: RE: CPUC Data Request - Public Notification
Attachments: CPUC Data Request_CommsTimeline.pdf

Importance: High

Matt,

Please replace first attachment with this PDF attachment that includes a prepared date.

Thanks,

Jeff

From: Koskie, W. Jeff

Sent: Wednesday, November 25, 2015 2:58 PM

To: Epuna, Matthewson (matthewson.epuna@cpuc.ca.gov) **Subject:** FW: CPUC Data Request - Public Notification

Importance: High

Matt.

Regarding your request to provide information demonstrating our public interaction tied to the Aliso Canyon, attached is a summary.

Please let me know if you have any questions, or if I can be of any further assistance.

Jeff

W. Jeff Koskie, ARM

Pipeline Safety and Compliance Manager

ML SC9334

Office Phone (661) 775-8770 Fax: (213) 244-8155

<mailto:wkoskie@semprautilities.com>

Customer Letter mailed plus 1,200 of the 8,000 Regular Updates Begin Regional Public Affairs Posted on the website Mailed 10/30 to 8,000 the website on 10/30 Mailed and posted to homes closest to the Neighborhood Town Stakeholder Briefing to 8,000 customers, Posted on website Posted on website Delivered to 1,400 Posted on website DESCRIPTION Posted on 10/28 Posted on 10/30 hand delivered hall Meeting customers on 10/31 10/30 10/31 COMMUNICATION English with translation inform customers about Aliso Canyon Customer Aliso Canyon Customer Customer FAQ English Letter #2 (Armenian, Customer Letters in Customer Letter to Korean, Armenian, Aliso web update Aliso web update Customer FAQ in Spanish, Korean, Korean, Spanish) Customer Letter coiled tubing rig preparation Armenian Letter #2 Meeting Meeting referral) Spanish Letter Email AUDIENCE Customer Various 10/27/2015 10/30/2015 10/30/2015 10/26/2015 10/27/2015 10/28/2015 10/30/2015 10/30/2015 10/30/2015 10/31/2015 10/31/2015 10/31/2015 11/2/2015 DATE

CPUC Data Request - Public Notifications - Prepared 11/25/2015

11/2/2015	Customer	Customer Letter	Mailed to 8,100 customers
11/2/2015	Customer	Air Sampling updates	Began regular updates on website
11/02/2015	Customer	Web Update	Posted on 11/2
11/03/2015	Customer	Web Update	Posted on 11/3
11/4/2015	Various	Meeting	Neighborhood Town hall Meeting
11/04/2015	Customer	Web Update	Posted on 11/4
11/05/2015	Customer	Health Issues FAQ	Posted on 11/5
11/06/2015	Customer	Web Update	Posted on 11/6
11/07/2015	Customer	Web Update	Posted on 11/7
11/08/2015	Customer	Web Update	Posted on 11/8
11/09/2015	Customer	Web Update	Posted on 11/9
11/10/2015	Customer	Web Update	Posted on 11/10
11/11/2015	Customer	Web Update	Posted on 11/11
11/12/2015	Customer	Customer Email – You may smell odors or hear noises	Deployed 11/12/15
11/12/2015	Customer	Outbound Dial Message - You may smell odors or hear noises	11/12/2015
11/12/2015	Customer	Customer Update BrochureEmail	Deployed and posted on 11/12/2015
11/12/2015	Customer	Web Update	Posted on 11/12
11/13/2015	Customer	Web Update	Posted on 11/13
11/13/2015	Customer	Outbound Dial Message - Stay Indoor Notification	Deployed 11/13/2015
11/13/2015	Customer	Outbound Message All Clear Notice	Deployed 11/13/2015
11/14/2015	Customer	Web Update	Posted on 11/14
11/15/2015	Customer	Web Update	Posted on 11/15

11/15/2015	Customer	Outbound Dial Message - Will Resume Pumping	Deployed 11/15/2015
11/16/2015	Customer	Web Update	Posted on 11/16
11/17/2015	Customer	Customer Update Brochure	Posted 11/17/2015
11/17/2015	Customer	Web Update	Posted on 11/17
11/18/2015	Customer	Web Update	Posted on 11/18
11/18/2015	Various	Meeting	Briefing on Updates
11/19/2015	Customer	Letter	Letter addressed to Dr. Steven Bohlen_DOGGR
11/19/2015	Customer	Web Update	Posted on 11/19
11/20/2015	LA Dept, of Public Health	Letter	Letter addressed to Angelo Bellomo County of Los Angeles Department of Public Health
11/20/2015	Customer	Web Update	Posted on 11/20
11/21/2015	Customer	Claims Flyer	Created for deployment
11/21/2015	Customer	Homeless Flyer	Created for deployment
11/21/2015	Customer	Web Update	Posted on 11/21
11/22/2015	Customer	Web Update	Posted on 11/22
11/23/2015	External Stakeholders	Aliso Canyon Storage Facility Update	Email deployed 11/23/2015
11/23/2015	Customer	Letter	One-month letter mailed to 8,000 customers
11/23/2015	Customer	Aliso Canyon Update Email	Deployed 11/23/2015
11/24/2015	Customer	Packet of communications	LACBOS 11/24/2015
11/24/2015	Customer	Web Update	Posted on 11/24
11/24/2015	Customer	Web Update	Posted on 11

Ex. I-5

Aliso Canyon Updates

Updated November 14, 2015

Background

On October 23, SoCalGas crews discovered a leak at one of the natural gas storage wells at its Aliso Canyon storage field. In response, we activated the appropriate procedures to begin to address the leak.

We regret that the smell of the odorant in natural gas is unpleasant and that some people are sensitive to the odor, and we sincerely apologize for the annoyance and concern this odor is causing the neighboring communities. However, the leak does not pose an imminent threat to public safety. The well is located in an isolated, mountain area more than a mile away from and more than 1,200 feet higher than the closest home or public area. Scientists agree natural gas is not toxic and that its odorant is harmless at the minute levels at which it is added to natural gas. In outdoor locations such as this, natural gas quickly dissipates into the air, greatly reducing the possibility for ignition and further diluting the gas as it reaches the public. The human nose is amazingly sensitive and can detect the smell of the odorant at levels much lower than any level of concern.

We have assembled a world-class team of experts, and we are working as quickly as safety will allow to stop the leak. In addition, we are in regular communication with L.A. City and County Fire and Hazmat Departments, the L.A. County Department of Health, the California Division of Oil, Gas & Geothermal Resources, and the South Coast Air Quality Management District.

Update on Activities - November 13

- SoCalGas' team of well-management experts began the multi-day process of pumping fluids down the well
 to stop the flow of gas. (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf)
 The goal is to fill the well pipe with enough brine solution to outweigh the pressure of the gas coming up out
 of the ground. The brine solution will act like a plug. (See page three of our brochure
 (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) for more information on
 this process.) Once the flow of natural gas is stopped, we will begin the effort to place a permanent seal at
 the bottom of the well pipe.
- We have some of the world's best experts advising us, and one of the reasons they are so successful is they are very cautious in their approach. The way we are addressing this incident is the best practice for situations such as this.
- As a result of this procedure which may take a few days, there is a potential for residents in the community to hear unusual noises and smell additional odors. In addition, some of the fluid being pumped down the well may come back up and spray into the air.
- On Friday, some of the brine solution did come back up, and it created a mist in the air over the facility. Out
 of an abundance of caution, we assumed the mist could contain oily residues (The storage field is depleted
 oil field.) and could travel beyond the facility. As a result, we immediately alerted the residents in nearby
 communities to stay indoors. As soon as we recognized the mist would not travel beyond the facility, we
 advised residents there was no reason to stay indoors.
- We conferred with the Health Department, the LA County Department of Health and HazMat and the SCAQMD. Our initial observations later in the day led us to believe the contents of the mist were likely mostly a mixture of mud and the brine solution; however, we have sent samples for analysis to be certain of its contents. When we receive the final report from the laboratory, we will make this information available.

- During these operations, we were monitoring and sampling the air both at the work site and down in the community. This information will be available as normal on our web site.
- As this work continues, SoCalGas will continue to monitor the well pressures 24/7 to ensure conditions remain safe.
- To update state and local officials and elected representatives on the progress and conditions at the site,
 SoCalGas participated in the regular, daily briefing with representatives of the local health, fire and hazmat agencies. We also informed community representatives about the issues related to the mist.
- A team of our environmental specialists and retained experts continued conducting daily air sampling and
 monitoring at several representative sites both within the leak site and the community. Although experts
 agree that natural gas is not toxic and that the levels of the odorant in the natural gas are too low to be a
 long-term health concern, we are continuing to conduct this sampling to provide the community with more
 information. The samples we are taking are in addition to those being taken by the SCAQMD. Air sampling
 results (http://www.socalgas.com/news-room/aliso-canyon-air-sample-results.shtml) from our tests are
 available at: http://www.socalgas.com/news-room/aliso-canyon-air-sample-results.shtml).
- We also continued meeting with neighbors at our public information booth, which we staff as weather
 permits. In the event of inclement weather, please remember, neighbors can check updates on this website,
 email us at AlisoCanyon@SoCalGas.com (mailto:AlisoCanyon@SoCalGas.com) or call us at (818) 4357707. The booth is located near the gates of our facility at 12801 Tampa Avenue in Porter Ranch, and its
 hours (weather permitting) are from 10 a.m. to 5 p.m.

We apologize for how this incident may be affecting you, and we appreciate the community's ongoing patience as we work as quickly as safety will allow to resolve this situation. If you believe you have suffered harm or injury as a result of this incident, please complete this online form (http://socalgas.com/about-us/our-services/consulting/claims.shtml) or call 213-244-5151.

Submit a Claim

Fill Out an Online Form

Call Us: <u>**Q18.12443521511**</u> 5151)

For temporary housing accommodations call:

4041497468078

6808)

Air Sample Results

<u>Learn More</u> per%2Fstandard)

Customer Letters

Download the Letter (English) 区

Descargue el documento (Español)

<u>편지를 다운로드 (Korean)</u> 🗗

բեռնել նամակը (Armenian) 🗷

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-14-15

Download and read customer letters from SoCalGas.

View Customer Letters

FAQs & Fact Sheets

Information on health issues and Aliso Canyon.

Learn More

Health Issues Information (PDF)

SoCalGas Will Conduct Indoor Air Screenings Media Statement 🗷

Download Health Department Fact Sheet 🗷

Benzene Levels Fact Sheet 🗷

LADPH - Medical Provider Fact Sheet 🗷

LADPH - Results of Air Monitoring 🗷

Aliso Canyon Sampling Map A

Aliso Canyon Archive

<u>View Previous Updates</u> **∠**

Explore SoCalGas

Site Map (https://spreview.socalgas.com/site-map) Accessibility Center

(https://spreview.socalgas.com/accessibility)

10/16/2020

Unclaimed Property Rates & Regulatory

(https://spreview.socalgas.com/unclaimed- (https://spreview.socalgas.com/regulatory)

property) Newsroom

(https://spreview.socalgas.com/newsroom)

Careers (https://spreview.socalgas.com/careers) More Languages

(https://spreview.socalgas.com/more-languages)

Newsletter (https://www.socalgas.com/preference- About Us (https://spreview.socalgas.com/about-us)

center)

Connect with Us*

(https://facebook.com/sontallyass//twitter.com/socallyass//twitter.com/socallyass//instagram.com/s

(https://www.linkedin.com/company/southerncalifornia-gas-company)

Privacy Notice Privacy Policy

(https://spreview.socalgas.com/privacy-notice) (https://spreview.socalgas.com/privacy-policy)

Terms & Conditions Energy Usage Request

(https://spreview.socalgas.com/terms-and- (https://www.socalgas.com/for-your-

conditions) business/energy-savings/energy-usage-requests)

*By clicking these links, you will leave socalgas.com and transfer directly to the website of a third party which is not part of Southern California Gas Company. The Terms and Conditions and Privacy Policy on that website will apply.

Southern California Gas Company is a subsidiary of Sempra Energy®. © 1998 - 2019 Southern California Gas Company. SoCalGas® is a registered trademark of Southern California Gas Company. The trademarks used herein are the property of their respective owners. All rights reserved.

Ex. I-6

Aliso Canyon Updates

Updated November 15, 2015

Background

On October 23, SoCalGas crews discovered a leak at one of the natural gas storage wells at its Aliso Canyon storage field. In response, we activated the appropriate procedures to begin to address the leak.

We regret that the smell of the odorant in natural gas is unpleasant and that some people are sensitive to the odor, and we sincerely apologize for the annoyance and concern this odor is causing the neighboring communities. However, the leak does not pose an imminent threat to public safety. The well is located in an isolated, mountain area more than a mile away from and more than 1,200 feet higher than the closest home or public area. Scientists agree natural gas is not toxic and that its odorant is harmless at the minute levels at which it is added to natural gas. In outdoor locations such as this, natural gas quickly dissipates into the air, greatly reducing the possibility for ignition and further diluting the gas as it reaches the public. The human nose is amazingly sensitive and can detect the smell of the odorant at levels much lower than any level of concern.

We have assembled a world-class team of experts, and we are working as quickly as safety will allow to stop the leak. In addition, we are in regular communication with L.A. City and County Fire and Hazmat Departments, the L.A. County Department of Health, the California Division of Oil, Gas & Geothermal Resources, and the South Coast Air Quality Management District.

Update on Activities - November 14

- SoCalGas' team of well-management experts resumed the multi-day process of pumping fluids down the well to stop the flow of gas. (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) The goal is to fill the well pipe with enough brine solution to outweigh the pressure of the gas coming up out of the ground. The brine solution will act like a plug. (See page three of our brochure (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) for more information on this process.) Once the flow of natural gas is stopped, we will begin the effort to place a permanent seal at the bottom of the well pipe.
- We have some of the world's best experts advising us, and one of the reasons they are so successful is
 they are very cautious in their approach. The way we are addressing this incident is the best practice for
 situations such as this.
- As a result of this procedure which may take a few days, there is a potential for residents in the community
 to hear unusual noises and smell additional odors. In addition, some of the fluid being pumped down the
 well may come back up and spray into the air.
- On Friday, some of the brine solution did come back up, and it created a mist in the air over the facility. Out
 of an abundance of caution, we assumed the mist could contain oily residues (The storage field is a
 depleted oil field.) and could travel beyond the facility. As a result, we immediately alerted the residents in
 nearby communities to stay indoors. As soon as we recognized the mist would not travel beyond the facility,
 we advised residents there was no reason to stay indoors.
- We sent samples of the liquid that generated the mist to an outside laboratory for analysis. The laboratory analysis determined that the liquid is non hazardous.
- During these operations, we were monitoring and sampling the air both at the work site and down in the community. This information will be available as normal on our web site.

- As this work continues, SoCalGas will continue to monitor the well pressures 24/7 to ensure conditions remain safe.
- To update state and local officials and elected representatives on the progress and conditions at the site, SoCalGas participated in the regular, daily briefing with representatives of the local health, fire and hazmat agencies. We also informed community representatives about the issues related to the mist.
- A team of our environmental specialists and retained experts continued conducting daily air sampling and
 monitoring at several representative sites both within the leak site and the community. Although experts
 agree that natural gas is not toxic and that the levels of the odorant in the natural gas are too low to be a
 long-term health concern, we are continuing to conduct this sampling to provide the community with more
 information. The samples we are taking are in addition to those being taken by the SCAQMD. Air sampling
 results (/newsroom/aliso-canyon-updates/air-sample-results) from our tests are available at:
 http://www.socalgas.com/news-room/aliso-canyon-air-sample-results (/newsroom/aliso-canyon-updates/air-sample-results)
- We also continued meeting with neighbors at our public information booth, which we staff as weather permits. In the event of inclement weather, please remember, neighbors can check updates on this website, email us at AlisoCanyon@SoCalGas.com (mailto:AlisoCanyon@SoCalGas.com) or call us at (818) 435-7707. The booth is located near the gates of our facility at 12801 Tampa Avenue in Porter Ranch, and its hours (weather permitting) are from 10 a.m. to 5 p.m. Today we will have an additional public information booth at Holly Bernson Park at Sesnon Blvd. and Porter Ranch Drive, and its hours are from 10:00 a.m. to 1:00 p.m.

We apologize for how this incident may be affecting you, and we appreciate the community's ongoing patience as we work as quickly as safety as possible to resolve this situation. If you believe you have suffered harm or injury as a result of this incident, please complete this online form (/about-us/claims) or call 213-244-5151.

Submit a Claim

Fill Out an Online Form

Call Us: <u>**Q18-1241351/5/1**</u>
5151)
For temporary housing accommodations call: <u>**401** 149746808</u>
6808)

Air Sample Results

<u>Learn More</u> per%2Fstandard)

Customer Letters

Download the Letter (English) 日

Descargue el documento (Español)

<u>편지를 다운로드 (Korean)</u> 🗗

բեռնել նամակը (Armenian) 🗷

Download and read customer letters from SoCalGas.

View Customer Letters

FAQs & Fact Sheets

Information on health issues and Aliso Canyon.

Learn More

Health Issues Information (PDF)

SoCalGas Will Conduct Indoor Air Screenings Media Statement 🗷

Download Health Department Fact Sheet 🗷

Benzene Levels Fact Sheet 🗷

LADPH - Medical Provider Fact Sheet 月

LADPH - Results of Air Monitoring A

Aliso Canyon Sampling Map A

Aliso Canyon Archive

View Previous Updates

Explore SoCalGas

Site Map (https://spreview.socalgas.com/site-map) Accessibility Center

(https://spreview.socalgas.com/accessibility)

Unclaimed Property Rates & Regulatory

(https://spreview.socalgas.com/unclaimed- (https://spreview.socalgas.com/regulatory)

property) Newsroom

(https://spreview.socalgas.com/newsroom)

Careers (https://spreview.socalgas.com/careers) More Languages

(https://spreview.socalgas.com/more-languages) -

Newsletter (https://www.socalgas.com/preference- About Us (https://spreview.socalgas.com/about-us)

center)

Connect with Us*

(https://facebook.com/sofattigass//twitter.com/socahgaps://youtube.com/sofattigass//instagram.com/s

(https://www.linkedin.com/company/southerncalifornia-gas-company)

Privacy Notice Privacy Policy

(https://spreview.socalgas.com/privacy-notice) (https://spreview.socalgas.com/privacy-policy)

Terms & Conditions Energy Usage Request

(https://spreview.socalgas.com/terms-and- (https://www.socalgas.com/for-your-

conditions) business/energy-savings/energy-usage-requests)

*By clicking these links, you will leave socalgas.com and transfer directly to the website of a third party which is not part of Southern California Gas Company. The Terms and Conditions and Privacy Policy on that website will apply.

Southern California Gas Company is a subsidiary of Sempra Energy®. © 1998 - 2019 Southern California Gas Company. SoCalGas® is a registered trademark of Southern California Gas Company. The trademarks used herein are the property of their respective owners. All rights reserved.

Ex. I-7

Message

From: Koskie, W. Jeff [WKoskie@semprautilities.com]

Sent: 11/17/2015 3:43:52 PM

To: Solis, Maria [Maria.Solis@cpuc.ca.gov]; Epuna, Matthewson [matthewson.epuna@cpuc.ca.gov]

CC: Gonzalez, Hector O [HGonzalez2@semprautilities.com]; Smith, Paul [PSmith1@semprautilities.com]; Bauer, Troy A.

[TBauer@semprautilities.com]

Subject: RE: Underground Storage facilities - CPUC Data Request Response - Aliso Canyon Storage Facility
Attachments: Attachment A- Mud Mixture - 11-13-15.pdf; Attachment B - Vacuum Truck Contents 11-13-15.pdf

Maria.

Attached are requested documents.

Please let me know if you have any questions, or if I can be of any further assistance.

Jeff

From: Solis, Maria [mailto:Maria.Solis@cpuc.ca.gov]

Sent: Monday, November 16, 2015 1:33 PM **To:** Koskie, W. Jeff; Epuna, Matthewson

Cc: Gonzalez, Hector O; Smith, Paul; Bauer, Troy A.

Subject: RE: Underground Storage facilities - CPUC Data Request Response - Aliso Canyon Storage Facility

Jeff, based on the statement highlighted below from your timeline, can you forward the test results and the conclusions of the test results, thank you, Maria

November 14 – Evaluating the well conditions, preparing the site and determining the best strategy for our continued efforts to stop the flow of gas. Representatives from the L.A. County Health & Hazmat have inspected the site today and yesterday and observed our containment procedures. Collected samples of the mud and liquid from yesterday's release and having it analyzed and expect results tonight. At 1:05 pm OES and NRC were notified of release containment and minor additional release of crude oil at 4:30 am.

Have a Blessed Day and be SAFE, Sincerely, Maria

Maria C. Solis, P.E.

Senior Utilities Engineer (Specialist)

California Public Utilities Commission

Safety and Enforcement Division

Gas Engineering and Compliance Section

180 Promenade Circle, Suite 115

2. Were any customers affected by this incident as far as delivery of gas? If so, how were they effected and how was the impact mitigated?

Delivery of gas to customers has not been impacted.

3. Estimate of product released to date, both to the atmosphere and underground.

No estimate at this time. While we are prioritizing the prompt resolution of the leak, we are in the process of determining appropriate estimation methodologies. We continue to gather and preserve

operational, well, air and subsurface data that may be used to evaluate the magnitude and character of the release.
4. Were any shallow groundwater aquifers or aquitards affected by the incident? If so were the local drinking water supply utilities notified? If so when and who was notified? No indication at this point that any shallow groundwater aquifers or aquitards have been affected by the incident. We will be able to further assess well after control to determine if there is any potential impact.
5. What is the initial proposed future mitigation to this type of incident. Our first priority is to stop the flow of gas using standard practices that ensure continued safety, offer the greatest likelihood of a prompt resolution and are appropriately tailored to the individual circumstances of this leak. Once we have the current incident under control, SoCalGas will evaluate whether anything can be done to mitigate the possibility of such incidents in the future. This evaluation will likely be part of our root cause analysis of the current incident.
6. Estimated time to correct the issue. Well kill efforts to stop the flow of gas continue today. No specific timeline for completion has been determined.
7. Already answered and submitted
Any injuries or potential harm to employees or the public.
None specifically connected to incident. However, one employee had a finger injured when door

9. Already answered and submitted
10. Already answered and submitted
11. Notification to date if any to local residents concerning the incident. Please refer to attached timeline which includes resident notification information.
12. Already answered and submitted
13. Estimate of the cost to mitigate the incident. To be determined
14. Any initial failure investigation findings to date.

We know the well has a casing leak. Until the leak is stopped and the well is inspected, we cannot determine the extent or the cause of the failure. Root cause investigation will commence at that time.

15. Documentation of any safety meetings or safety tailgate meetings that have occurred to date.

Our contracted well control experts have a safety coordinator on site. All persons entering the site are required to attend a tailgate safety meeting every day. Every morning, before any activities, SoCalGas safety professionals provide safety updates to crews. We will provide a supplemental update on specifics tomorrow.

W. Jeff Koskie, ARM

Pipeline Safety and Compliance Manager
ML SC9334

Office Phone (661) 775-8770 Fax: (213) 244-8155

<mailto:wkoskie@semprautilities.com>

From: Solis, Maria

Sent: Friday, November 13, 2015 4:41 PM

To: 'Bauer, Troy A.'; Smith, Paul; 'GLaFevers@semprautilities.com'

Cc: Epuna, Matthewson; Jeff Koskie

Subject: RE: Underground Storage facilities

Hello Paul, Troy, and Glenn, I've been asked by the LA CPUC office to assist with the CPUC's investigation of the incident reported below. The following is a list of my initial data requests. Thank you in advance for your prompt reply. I'm requesting a 48 hour return on this initial data request. I'm assuming based on your emergency management plan that all of these items have already been prepared. If any of the items are in draft form at this juncture in your investigation please forward them under the confidentiality order asap. If you can't respond to all the data requests within 48 hours of this email please let me know when the data request will be available.

- Time line that describes all the events to date, including initial response, recovery and mitigation.
- 2. Were any customers affected by this incident as far as delivery of gas? If so, how were they effected and how was the impact mitigated?
- 3. Estimate of product released to date, both to the atmosphere and underground.

- 4. Were any shallow groundwater aquifers or aquitards affected by the incident? If so were the local drinking water supply utilities notified? If so when and who was notified?
- 5. What is the initial proposed future mitigation to this type of incident.
- 6. Estimated time to correct the issue.
- 7. Emergency response team that was put in place as a result of the incident.
- 8. Any injuries or potential harm to employees or the public.
- 9. Sections of your storage facility emergency plan/procedures/standards that were initiated to respond to the incident.
- 10. A recent published copy of the Aliso Canyon emergency response plan and any other additional emergency response plans/procedures/standards that specifically call out gas storage wells.
- 11. Notification to date if any to local residents concerning the incident.
- 12. Notification to date if any to local first responders.
- 13. Estimate of the cost to mitigate the incident.
- 14. Any initial failure investigation findings to date.
- 15. Documentation of any safety meetings or safety tailgate meetings that have occurred to date.

Have a Blessed Day and be SAFE, Sincerely, Maria

Maria C. Solis, P.E.

Senior Utilities Engineer (Specialist)

California Public Utilities Commission

Safety and Enforcement Division

Gas Engineering and Compliance Section

180 Promenade Circle, Suite 115

Sacramento, CA 95834

Office (916)928-2534,

Fax (916) 928-6880

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

Calscience

WORK ORDER NUMBER: 15-11-1098

The difference Analytical Report For

AIR SOIL WATER MARINE CHEMISTRY

Client: Southern California Gas Company

Client Project Name: T\$2015-C013 / Aliso Canyon

Attention: Shanid Razzak

P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Approved for release on 11/16/2015 by: Amanda Porter Project Manager

ResultLink)

Email your PM)

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

CA ELAP ID: 2944 | AGLASS DID-ELAP ID: ADE 1884 (ISO/IEC 17025/2005) | CSDLAC ID: 10109

Contents

Client Project Name:	TS2015-C013 / Aliso Canyon
Work Order Number:	15-11-1098

1	Work Order Narrative	3
2	Client Sample Data	4
	2.1 EPA 8015B (M) C6-C44 (Solid)	4
	2.2 EPA 8015B (M) C6-C44 (Aqueous).	7
	2.3 EPA 6010B ICP Metals (Solid).	9
	2.4 EPA 6010B ICP Metals (Aqueous)	12
	2.5 EPA 7470A Mercury (Aqueous).	14
	2.6 EPA 7471A Mercury (Solid)	15
	2.7 EPA 8260B Volatile Organics (Solid)	16
	O. O. Cambinad Insurance CoT Coto	23
3	Quality Control Sample Data	24
	3.1 MS/MSD	24
	3.2 Sample Duplicate	31
	3.3 LCS/LCSD	36
4	Quality Control Sample Data 3.1 MS/MSD 3.2 Sample Duplicate 3.3 LCS/LCSD Sample Analysis Summary Glossary of Terms and Qualifiers Chain-of-Custody/Sample Receipt Form	45
5	Glossary of Terms and Qualifiers	46
6	Chain-of-Custody/Sample Receipt Form	47

Work Order Narrative

Work Order: 15-11-1098 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/14/15. They were assigned to Work Order 15-11-1098.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 3550B

Method:

EPA 8015B (M)

Units:

mg/kg

Project: TS2015-C013 / Aliso Canyon

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Well Fluid	15-11-1098-2-A	11/13/15 18:40	Sludge	GC 47	11/14/15	11/14/15 13:10	151114B02
Parameter	0	Result	RL		DF	Qua	alifiers
C6	an one	ND	5.0		1.00		
C7	C 9 90	ND	5.0		1.00		
C8	m. 80 7/12	ND	5.0		1.00		
C9-C10	19 00 Mg	ND	5.0		1.00		
C11-C12	Go So 80	ND	5.0		1.00		
C13-C14	Condiscion Seson	ND	5.0		1.00		
C15-C16	10/10	CMD	5.0		1.00		
G17-G18		ONDS	5.0		1.00		
C19-C20		NO.	5.0		1.00		
C21-C22		11/2 1/2	5.0		1.00		
C23-C24		ND W	Q. 50		1.00		
C25-C28		ND	Oc 40 5.0		1.00		
C29-C32		ND	5.0 5.0 5.0 5.0		1.00		
C33-C36		ND	5.0	Ow	1.00		
C37-C40		ND	8:0	G.	1.00		
C41-C44		ND	\$.0 5.0	none	1.00		
C6-C44 Total		ND	5.0	ho cheral	1.00		
Surrogate		Rec. (%)	Col	ntrol Limits	Qualifiers		
n-Octacosane		107	61-	145	60.0		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 3550B

Method:

EPA 8015B (M) mg/kg

Units:

Page 2 of 3

Project:	TS2015-C013	/ Aliso	Canyon
----------	-------------	---------	--------

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Junction SS25&9	15-11-1098-3-A	11/13/15 18:50	Sludge	GC 47	11/14/15	11/14/15 13:28	151114B02
Parameter	0	Result	RL		DF	Qua	lifiers
C6	an one	ND	10		2.00		
C7	C 9 90	ND	10		2.00		
C8	ma Boulla	12	10		2,00		
C9-C10	Cond Section Season	75	10		2.00		
C11-C12	Go So 40	130	10		2.00		
C13-C14	7, 3	120	10		2.00		
C15-C16	10/2 1/10	68	10		2.00		
G17-C18		STAN	10		2.00		
C19-C20		665	10		2.00		
C21-C22		28 0	0 10		2.00		
C23-C24		18	O. 10		2.00		
C25-C28		22	Oc 40 10		2,00		
C29-C32		37	COURS 10		2.00		
C33-C36		35	00 10	On	2,00		
C37-C40		32	76 10	G.	2.00		
C41-C44		22	10	mano.	2.00		
C6-C44 Total		750	5.0	18/	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		109	61-	145	60°C		

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Date Received: Work Order: Preparation: Method:

11/14/15 15-11-1098

EPA 3550B

EPA 8015B (M) mg/kg

Units:

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-490-1869	N/A	Solid	GC 47	11/14/15	11/14/15 12:53	151114802
Parameter	0	Result	RL		DF	Qua	lifiers
C6	an ope	ND	5.0		1.00		
C7	C 9 90	ND	5.0	I.	1.00		
C8	Compliance Audit of the	ND	5.0	1	1.00		
C9-C10	13 00 x 10	ND	5.0	1	1.00		
C11-C12	Go So 62	ND	5.0		1.00		
C13-C14	4 3 3	ND ND	5.0	i,	1.00		
C15-C16	10% Alb.	CMD	5.0	i -	1.00		
G17-G18		NON	5.0	1	1.00		
C19-C20		NO CA	5.0		1.00		
C21-C22		NDC B	5.0)	1.00		
023-024		ND W	0, 5.0	1	1.00		
C25-C28		ND 6	S 15 5.0)	1.00		
C29-C32		ND	0, 5.0 6, 0, 5.0 6, 0, 5.0 6, 5.0 6, 5.0	1	1.00		
C33-C36		ND	9 5.0	Ow	1.00		
C37-C40		ND	86 5.0		1.00		
C41-C44		ND	5.0	mana.	1.00		
C6-C44 Total		ND	5.0	The cheral	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		103	61	-145	06.0		

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method:

Units:

EPA 3510C EPA 8015B (M) ug/L

11/14/15

15-11-1098

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Equipment Blank	15-11-1098-1-C	11/13/15 18:25	Aqueous	GC 47	11/14/15	11/14/15 13:45	151114B01
Parameter	0	Result	RL		DF	Qua	lifiers
C6	Compliance Audin of the	ND	50		1.00		
C7	Cond State of State o	ND	50		1.00		
C8	m 80,7/12.	ND	50		1.00		
C9-C10	10 00 VE	ND	50		1.00		
C11-C12	So So 90	ND	50		1.00		
C13-C14	7, 3	ND	50		1.00		
C15-C16	10/1/2	CMD	50		1.00		
C17-C18		ND	50		1.00		
C19-C20		ND C	50		1.00		
C21-C22		NDC /	50		1.00		
C23-C24		ND W	50 50 50 50 50 50		1.00		
C25-C28		ND	CO 50		1.00		
C29-C32		ND	C 950		1.00		
C33-C36		ND	0 50	On	1.00		
C37-C40		ND	€0 50	G	1.00		
C41-C44		ND	50	n 70	1.00		
C6-C44 Total		ND	100	J. 181	1.00		
Surrogate		Rec. (%)	Cor	ntrol Limits	Qualifiers		
n-Octacosane		90	68-	140	6		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units: 11/14/15 15-11-1098

EPA 3510C

EPA 8015B (M)

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-310	N/A	Aqueous	GC 47	11/14/15	11/14/15 12:35	151114801
<u>Parameter</u>	0	Result	RL		DF	Qua	lifiers
C6	an one	ND	50		1.00		
C7	Cand olde	ND	50		1.00		
C8	ma Bourles	ND	50		1.00		
C9-C10	10 00 M	ND	50		1.00		
C11-C12	Go So 90	ND	50		1.00		
C13-C14	Complance Audit of the	ND	50		1.00		
C15-C16	10/2 1/0	CND	50		1.00		
G17-C18		ONDO	50		1.00		
C19-C20			50		1.00		
C21-C22		1/2 1/2	50		1.00		
C23-C24		ND W	50 50 50 50 50 50 50 50		1.00		
C25-C28		ND 8	Oc 40 50		1.00		
C29-C32		ND	C 950		1.00		
C33-C36		ND	0 50	On	1.00		
C37-C40		ND	€0 50	G.	1.00		
C41-C44		ND.	50	no no	1.00		
C6-C44 Total		ND	100	181	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		95	68-	140	60.0		

Southern California Gas Company	Date Received:	11/14/15
M.L. 723B, P.O. Box 513249, Terminal Annex	Work Order:	15-11-1098
Los Angeles, CA 90051-1249	Preparation:	EPA 3050B
	Method:	EPA 6010B
	Units:	ma/ka

Project: TS2015-C013 / Aliso Canyon

Page 1 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Well Fluid	15-11-1098-2-A	11/13/15 18:40	Sludge	ICP 7300	11/14/15	11/14/15 14:03	151114L01
Parameter	0	Result	R	L	DF	Qua	lifiers
Antimony	an one	ND	0.	732	0.976		
Arsenic	C 9 90	ND	0.	732	0.976		
Barium	ma con Ma.	67.1	0.	488	0.976		
Beryllium	10 00 10 C	ND	0.	244	0.976		
Cadmium	Compliance Audir of It	ND	0.	488	0.976		
Chromium	70000	ND	0.	0.244			
Cobalt	19/1/19	MD	0.244		0.976		
Copper		0.569	0.488		0.976		
_ead		NB C	0.	488	0.976		
Molybdenum		NDC /	0.	244	0.976		
Nickel		ND W	00 0	244	0.976		
Selenium		ND	Oc 150.0.	732	0,976		
Silver		0.671	C 90	244	0.976		
Thallium		0.945	CONSION	732	0.976	6	
Vanadium		ND	9	244 G	0.976		
Zinc		13.9	0.00	978	0,976		
Vell Fluid	15-11-1098-2-A	11/13/15 18:40	Sludge	ICP 7300	11/14/15	11/14/15 14:19	151114L01
Parameter		Result	R		<u>DF</u> 9.76	Qua	lifiers
Calcium		103000	4	3.8	9.76		

 Southern California Gas Company
 Date Received:
 11/14/15

 M.L. 723B, P.O. Box 513249, Terminal Annex
 Work Order:
 15-11-1098

 Los Angeles, CA 90051-1249
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Units:
 mg/kg

Project: TS2015-C013 / Aliso Canyon Page 2 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Junction SS25&9	15-11-1098-3-A	11/13/15 18:50	Sludge	ICP 7300	11/14/15	11/14/15 14:10	151114L01
Parameter	0	Result	R	L	DF	Qua	difiers
Antimony	Compliance Audio of the	ND	0.	.718	0.957		
Arsenic	Condition Seson	1.94	.0	.718	0.957		
Barium	m. 80, 743.	144	0	.478	0.957		
Beryllium	13 10 16 C	ND	0	.239	0.957		
Cadmium	Co Co Co	3.04	0	478	0.957		
Chromium	7, 30	8.47	0	.239	0.957		
Cobalt	100	239	0	.239	0.957		
Copper		0 120	0.	478	0.957		
Lead		0.772	0	.478	0.957		
Molybdenum		5.67	0	.239	0.957		
Nickel		24.8	000	.239	0.957		
Selenium		ND	Oc 400	.718	0,957		
Silver		0.340	Constant of the constant of th	.718 .239 .718	0.957		
Thallium		ND	900	718	0.957		
Vanadium		37.6	9	239	0.957		
Zinc		45.9	0.	9570 1000	0.957		
Junction SS25&9	15-11-1098-3-A	11/13/15 18:50	Sludge	ICP 7300	11/14/15	11/14/15 14:22	151114L01
Parameter		Result	R	Ļ	DF 9.57	Qua	lifiers
Calcium		43600	4	7.8	9.57		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15 15-11-1098

Work Order: Preparation:

EPA 3050B

Method:

EPA 6010B

Units:

mg/kg

Project: TS2015-C013 / Aliso Canyon

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-002-22051	N/A	Solid	ICP 7300	11/14/15	11/14/15 13:58	151114L01
<u>Parameter</u>	0	Result		RL	DF	Qua	lifiers
Antimony	an one	ND		0.750	1.00		
Arsenic	0,000	ND		0.750	1.00		
Barium	m 80 7/12	ND		0.500	1.00		
Beryllium	Cond Section Ses don	ND		0.250	1.00		
Cadmium	So So 40	ND		0.500	1.00		
Chromium	A 3 3	ND		0.250	1.00		
Cobalt	10/1 1/0	CMD		0.250	1.00		
Copper	16	NRY		0.500	1.00		
ead		MB CA		0.500	1.00		
Molybdenum		ND C	0	0.250	1.00		
Nickel			0.	0.250	1.00		
Selenium		ND 6	es Code	0.750	1.00		
Silver		ND	00	0,250	1.00		
Thallium		ND	90	0.250 0.750	1.00		
/anadium		ND	-	0/250 C	1.00		
Zinc		ND		1.007			
Calcium		ND		5.00			
					THE SE		
					50		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: Units: 11/14/15

15-11-1098 EPA 3010A Total

EPA 6010B

mg/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Equipment Blank	15-11-1098-1-A	11/13/15 18:25	Aqueous	ICP 7300	11/14/15	11/14/15 15:30	151114LA1
Parameter	0	Result	RL		DF	Qua	alifiers
Antimony	an ope	ND	0.0	150	1.00		
Arsenic	C 9 90	ND	0.0	100	1.00		
Barium	m 80 7/2	ND	0.0	100	1.00		
Beryllium	Cornolish Connolish Subrice Aludir Of It	ND	0.0	100	1.00		
Cadmium	Go So 80	ND	0.0	100	1_00		
Chromium	7, 3	ND	0.0	100	1.00		
Cobalt	10/10	CMD	0.0	100	1.00		
Copper		ONDO	0.0	100	1.00		
Lead		MD SA	0.0	100	1.00		
Molybdenum		ND C	0.0	100	1.00		
Nickel		NID YOU	O. no	100	1.00		
Selenium		ND	CO 000	150	1.00		
Silver		ND	C 98.0	0500	1.00		
Thallium		ND	0.0	150	1.00		
Vanadium		ND	60	1000	1.00		
Calcium		0.559	0.1	00 00	1.00		
Zinc		ND		14	1.00		
					1.00 Proj. 66		
					00		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order:

Preparation:

Method: Units: 11/14/15

15-11-1098

EPA 3010A Total

EPA 6010B

mg/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15490	N/A	Aqueous	ICP 7300	11/14/15	11/14/15 15:26	151114LA1
Parameter	0	Result	RL		DF	Qua	alifiers
Antimony	Cand Office	ND	0.0	150	1.00		
Arsenic	C 9 90	ND	0.0	100	1.00		
Barium	Comp. Conna	ND	0.0	100	1.00		
Beryllium	19 00 VE	ND	0.0	100	1.00		
Cadmium	So So 80	ND	0.0	100	1.00		
Chromium	Condiance Audit of the	ND	0.0	100	1.00		
Cobalt	10 10	OND	0.0	100	1.00		
Copper	1	ND	0.0	100	1.00		
Lead		ND C	0.0	100	1.00		
Molybdenum		NDC /		100	1.00		
Nickel		ND W		100	1.00		
Selenium		ND	OS 15, 0.0	150	1.00		
Silver		ND	C 900	0500	1.00		
Thallium		ND	Co 000	r50	1.00		
Vanadium		ND	0.0	100	1.00		
Calcium		ND	0.1	000	1.00		
Zinc		ND	0.0	100 9/	1.00		
				C			
					THOP SO.C.		
					0		

Mercury

Analytical Report

Southern California Gas C		Date Recei	ived:		11/14/15			
M.L. 723B, P.O. Box 5132	Work Order:				15-11-109			
Los Angeles, CA 90051-12					49 Preparation: EPA 7470A Total			
The state of the s			Method:			EPA 747		
			Units:				mg/L	
Project: TS2015-C013 / Al	iso Canyon					Pa	ige 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Equipment Blank	15-11-1098-1-A	11/13/15 18:25	Aqueous	Mercury 04	11/14/15	11/14/15 13:57	151113LA3	
Parameter	0	Result	RL		DF	Qua	alifiers	

 Method Blank
 099-04-908-7657
 N/A
 Aqueous
 Mercury 04
 11/13/15
 11/13/15
 151113LA3

 Parameter Mercury
 Result ND
 Result ND
 RL
 DE
 Qualifiers

0.000500

1.00

Analytical Report

Southern California Gas Co	mpany		Date Rece		11/14/15			
M.L. 723B, P.O. Box 51324	9, Terminal Annex		Work Orde		15-11-1098			
Los Angeles, CA 90051-1249			Preparatio	n:		EPA 7471A Total		
			Method:				EPA 7471A	
			Units:				mg/kg	
Project: TS2015-C013 / Alis	so Canyon					Pa	ige 1 of 1	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Well Fluid	15-11-1098-2-A	11/13/15 18:40	Sludge	Mercury 05	11/14/15	11/14/15 15:12	151113L02	
<u>Parameter</u>	C.	Result	R	L	DF	Qua	alifiers	
Mercury	O PO TOTAL	ND	0	.0833	1.00			
Junction SS25&9	16-11-1698-3-A	11/13/15 18:50	Sludge	Mercury 05	11/14/15	11/14/15 15:14	151113L02	
Parameter	2000	Result	R	L	DF	Qua	alifiers	
Mercury	A 63 M	ND	0	.0794	1.00			
Method Blank	099-16-272-1760	NA	Solid	Mercury 05	11/13/15	11/13/15 19:55	151113L02	
Parameter		Result	. В	L	DE	Qua	alifiers	
Mercury		ND'C CHILL	e orovision	0833	1.00			
				Wercury Us	Poer Soc			

 Southern California Gas Company
 Date Received:
 11/14/15

 M.L. 723B, P.O. Box 513249, Terminal Annex
 Work Order:
 15-11-1098

 Los Angeles, CA 90051-1249
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 1 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Well Fluid	15-11-1098-2-B	11/13/15 18:40	Sludge	GC/MS W	11/14/15	11/14/15 15:06	151114L007
Comment(s): - The reporting limit	t is elevated resulting from i	natrix interferer	ice.				
Parameter	2 Ope	Result	B	L	DF	Qua	differs
Acetone	0,000	ND	1	2000	50.0		
Benzene	ma en Ma	ND	4	90	50.0		
Bromobenzene	19 00 8/20	ND	4	90	50.0		
Bromochloromethane	So 50 90	ND	4	90	50.0		
Bromodichloromethane	7,000	ND	4	90	50.0		
Bromoform	John of the	CND	4	90	50.0		
Bromomethane		ND	2	400	50.0		
2-Butanone		NO CA	4	900	50.0		
n-Butylbenzene		NDC /	0 4	90	50.0		
sec-Butylbenzene		ND W	0, 4	90	50.0		
tert-Butylbenzene		ND	O. 40.4	90	50.0		
Carbon Disulfide		ND	C 04	900	50.0		
Carbon Tetrachloride		ND	904	900	50.0		
Chlorobenzene		ND	9	90 G	50.0		
Chloroethane		ND	4	90' G	50,0		
Chloroform		ND	4	90 10 10 9/	50.0		
Chloromethane		ND	2	400	50.0		
2-Chlorotoluene		ND	4	90	50.0		
4-Chlorotoluene		ND	4	90	5000		
Dibromochloromethane		ND	4	90	50.0		
1,2-Dibromo-3-Chloropropane		ND	9	70	50.0		
1,2-Dibromoethane		ND	4	90	50.0		
Dibromomethane		ND		90	50.0		
1,2-Dichlorobenzene		ND	4	90	50.0		
1,3-Dichlorobenzene		ND	4	90	50.0		
1,4-Dichlorobenzene		ND	4	90	50.0		
Dichlorodifluoromethane		ND	4	90	50.0		
1,1-Dichloroethane		ND	4	90	50.0		
1,2-Dichloroethane		ND	4	90	50.0		
1,1-Dichloroethene		ND	4	90	50.0		
c-1,2-Dichloroethene		ND	4	90	50.0		
t-1,2-Dichloroethene		ND	4	90	50.0		
1,2-Dichloropropane		ND	4	90	50.0		
1,3-Dichloropropane		ND		90	50.0		

Southern California Gas Company	Da	te Received:		11/14/15		
M.L. 723B, P.O. Box 513249, Terminal Annex	W	ork Order:		15-11-1098		
Los Angeles, CA 90051-1249	Pr	eparation:		EPA 5030C		
		ethod:		EPA 8260B		
		its:		ug/kg		
Project: TS2015-C013 / Aliso Canyon	7			Page 2 of 7		
Parameter	Result	RL	DE	Qualifiers		
2,2-Dichloropropane	ND	490	50.0			
,1-Dichloropropene	ND	490	50.0			
-1,3-Dichloropropene	ND	490	50.0			
-1,3-Dichloropropene	ND	490	50.0			
Ethylbenzene O O	ND	490	50.0			
-Hexanone	ND	4900	50.0			
sopropylbenzene	ND	490	50.0			
,1-Dichloropropene -1,3-Dichloropropene -1,3-Dichloropropene -1,3-Dichloropropene -1,3-Dichloropropene -1,4-Exanone -1,4-Tetrachloroethane -1,2,2-Tetrachloroethane -1,2,3-Trichlorobenzene -2,4-Trichlorobenzene -1,1-Trichloroethane -1,2-Tetrachloroethane -2,3-Trichlorobenzene -2,4-Trichloroethane -1,2-Trichloroethane -2,3-Trichlorobenzene -2,4-Trichloroethane -1,2-Trichloroethane -1,2-Trichloroethane -2,3-Trichlorobenzene -2,4-Trichloroethane	ND	490	50.0			
fethylene Chloride	Dix ND	4900	50.0			
-Methyl-2-Pentanone	CND	4900	50,0			
aphthalene	O NO	4900	50.0			
-Propylbenzene	ND Co.	490	50.0			
tyrene	NDG B	490	50.0			
1,1,2-Tetrachloroethane	ND You	490	50.0			
.1,2,2-Tetrachloroethane	ND Mg	Ob: 490	50.0			
etrachloroethene	ND	0 490	50.0			
oluene	ND	0 490	50.0			
,2,3-Trichlorobenzene	ND	970	50.0			
,2,4-Trichlorobenzene	ND	490	50.0			
,1,1-Trichloroethane	ND	490	50.0			
1,2-Trichloroethane	ND	490 C	50.0			
,1,2-Trichloro-1,2,2-Trifluoroethane	ND	4900	0 50.0			
richloroethene	ND	490	50.6			
,2,3-Trichloropropane	ND	490	50.0			
2,4-Trimethylbenzene	ND	490	50.0			
richlorofluoromethane	ND	4900	50.0			
,3,5-Trimethylbenzene	ND	490	50.0			
/inyl Acetate	ND	4900	50.0			
/inyl Chloride	ND	490	50.0			
/m-Xylene	ND	490	50.0			
-Xylene	ND	490	50.0			
Nethyl-t-Butyl Ether (MTBE)	ND	490	50,0			
Surrogate	Rec. (%)	Control Limits	Qualifiers			
.4-Bromofluorobenzene	100	60-132				
Dibromofluoromethane	97	63-141				
,2-Dichloroethane-d4	104	62-146				
Toluene-d8	99	80-120				

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 EPA 5030C

Method:

EPA 8260B

Units:

ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 3 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Junction SS25&9	15-11-1098-3-B	11/13/15 18:50	Sludge	GC/MS W	11/14/15	11/14/15 14:38	151114L007
Parameter	Cond Section Ses Only Of the	Result	R	L	DF	Qua	alifiers
Acetone	an one	ND	1:	2000	50.0		
Benzene	C 9 90	ND	4	90	50.0		
Bromobenzene	ma contra	ND	4	90	50.0		
Bromochloromethane	10 do 10	ND	4	90	50.0		
Bromodichloromethane	So 50 90	ND	4	90	50.0		
Bromoform	7, 3	ND	4	90	50.0		
Bromomethane	10/2 1/0	CIND	2	400	50.0		
2-Butanone		ND	4	900	50.0		
n-Butylbenzene		5600	4	90	50.0		
sec-Butylbenzene		1400	0 4	90	50.0		
tert-Butylbenzene		ND W	0 4	90	50.0		
Carbon Disulfide		ND	0 40 4	900	50.0		
Carbon Tetrachloride		ND	C 94	90	50.0		
Chlorobenzene		ND	904	900	50.0		
Chloroethane		ND	9	90 G	50.0		
Chloroform		ND	4	90 G	50,0		
Chloromethane		ND	2	400 10	50.0		
2-Chlorotoluene		ND	4	90	50.0		
4-Chlorotoluene		ND	4	90	50.0		
Dibromochloromethane		ND	4	90	5000		
1,2-Dibromo-3-Chloropropane		ND	9	70	50.0		
1,2-Dibromoethane		ND	4	90	50.0		
Dibromomethane		ND	4	90	50.0		
1,2-Dichlorobenzene		ND		90	50.0		
1,3-Dichlorobenzene		ND	4	90	50.0		
1,4-Dichlorobenzene		ND	4	90	50.0		
Dichlorodifluoromethane		ND	4	90	50.0		
1,1-Dichloroethane		ND	4	90	50.0		
,2-Dichloroethane		ND	4	90	50.0		
1,1-Dichlaroethene		ND		90	50.0		
c-1,2-Dichloroethene		ND	4	90	50.0		
t-1,2-Dichloroethene		ND	4	90	50.0		
1,2-Dichloropropane		ND	4	90	50.0		
1,3-Dichloropropane		ND		90	50.0		
2,2-Dichloropropane		ND		90	50.0		

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company		te Received:	11/14/15			
M.L. 723B, P.O. Box 513249, Terminal Anne	ex Wo	ork Order:	15-11-1098			
Los Angeles, CA 90051-1249		eparation:	EPA 5030C			
222 (11/2022) 27/ 27/27/27/		thod:		EPA 8260B		
	Un			ug/kg		
Project: TS2015-C013 / Aliso Canyon	Ç.	N.S.	Page 4 of 7			
Parameter	Result	DI	DC.	Qualifiers		
1,1-Dichloropropene	ND Result	<u>RL</u> 490	DF 50.0	Qualifiers		
c-1,3-Dichloropropene	ND	490	50.0			
t-1,3-Dichloropropene	ND	490	50.0			
Ethylbenzene	2800	490	50.0			
2-Hexanone	ND	4900	50.0			
Incorporation	1300	4900	50.0			
Isopropylbenzene	ND ND 2800 ND 1300 2500 ND	490	50.0			
p-Isopropyltoluene	2500	490				
Methylene Chloride	So YOU NO	4900	50.0			
4-Methyl-2-Pentanone	OF TOOMS	4900	50.0			
n-Propylbenzene	17 1/2 1/200	490	50.0			
Styrene	S. D. O.	490	50.0			
1,1,1,2-Tetrachloroethane	100 PM	490	50.0			
1,1,2,2-Tetrachloroethane	NDO 70	490	50.0			
Tetrachloroethene	ND CITY	490	50.0			
Toluene	4200	490	50.0			
1,2,3-Trichlorobenzene	ND	C 9970	50.0			
1,2,4-Trichlorobenzene	ND	0 490 m	50.0			
1,1,1-Trichloroethane	ND	\$50 Q	50.0			
1,1,2-Trichloroethane	ND	490/200	50.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	4900	50.0			
Trichloroethene	ND	490	50.0			
1,2,3-Trichloropropane	ND	490	50.0			
Trichlorofluoromethane	ND	4900	50.0			
1,3,5-Trimethylbenzene	12000	490	50.00			
Vinyl Acetate	ND	4900	50.0			
Vinyl Chloride	ND	490	50.0			
p/m-Xylene	22000	490	50.0			
o-Xylene	6900	490	50.0			
Methyl-t-Butyl Ether (MTBE)	ND	490	50.0			
Surrogate	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	108	60-132				
Dibromofluoromethane	94	63-141				
1,2-Dichloroethane-d4	100	62-146				
Toluene-d8	106	80-120				

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units: 11/14/15

15-11-1098 EPA 5030C

EPA 8260B

ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 5 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Junction SS25&9	15-11-1098-3-B	11/13/15 18:50	Sludge	GC/MS W	11/14/15	11/14/15 16:28	151114L007
<u>Parameter</u>	0	Result	B	L	DF	Qua	alifiers
Naphthalene	an one	28000	2	4000	250		
1,2,4-Trimethylbenzene	Con of Toon	26000	2	400	250		
Surrogate	Polis Clorels	Rec. (%)	<u>C</u>	ontrol Limits	Qualifiers		
1,4-Bromofluorobenzene	So So 40.	98	6	0-132			
Dibromofluoromethane	4 00 3	97	6	3-141			
1,2-Dichloroethane-d4	10% OF W	C001	6	2-146			
Toluene-d8	, ,	0 1015	8	0-120			
	Compliance study of h		es Core of	or General	Ditto, So		
					"C		

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 **EPA 5030C**

Method:

EPA 8260B

Units:

ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 6 of 7

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-796-10429	N/A	Solid	GC/MS W	11/14/15	11/14/15 13:42	151114L007
Parameter	Compliance Audie of the	Result	- I	RL.	DF	Qua	alifiers
Acetone	an Ope	ND	1	2000	50.0		
Benzene	C 9 90	ND	5	500	50.0		
Bromobenzene	m 80 745	ND		500	50.0		
Bromochloromethane	Salo do de	ND		500	50.0		
Bromodichloromethane	Co So 80	ND	5	500	50.0		
Bromoform	A 3 3/	ND		500	50.0		
Bromomethane	10/2 1/2	CMD		2500	50.0		
2-Butanone	16	ND		5000	50.0		
n-Butylbenzene		NB Ch		500	50.0		
sec-Butylbenzene		NDC /	0 5	500	50.0		
tert-Butylbenzene		ND W	00	500	50.0		
Carbon Disulfide		ND	Oc 400	5000	50.0		
Carbon Tetrachloride		ND	C 9	500	50.0		
Chlorobenzene		ND	90	500	50.0		
Chloroethane		ND	. 6	800 Q	50.0		
Chloroform		ND		500 C	50,0		
Chloromethane		ND		2500 9/	50.0		
2-Chlorotoluene		ND		500	50.0		
4-Chlorotoluene		ND		500	50.0		
Dibromochloromethane		ND	5	500	5000		
1,2-Dibromo-3-Chloropropane		ND	4	000	50.0 ^C		
1,2-Dibromoethane		ND	5	500	50.0		
Dibromomethane		ND		500	50.0		
1,2-Dichlorobenzene		ND		500	50.0		
1,3-Dichlorobenzene		ND		500	50.0		
1,4-Dichlorobenzene		ND	3	500	50.0		
Dichlorodifluoromethane		ND	5	500	50.0		
1,1-Dichloroethane		ND		500	50.0		
1,2-Dichloroethane		ND		500	50.0		
1,1-Dichloroethene		ND		500	50.0		
c-1,2-Dichloroethene		ND		500	50.0		
t-1,2-Dichloroethene		ND		500	50.0		
1,2-Dichloropropane		ND	5	500	50.0		
1,3-Dichloropropane		ND	5	500	50.0		
2,2-Dichloropropane		ND	9	500	50.0		

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company	Da	te Received:		11/14/15
M.L. 723B, P.O. Box 513249, Terminal Annex	We	ork Order:		15-11-1098
Los Angeles, CA 90051-1249		eparation:		EPA 5030C
2557111907057 577 55557 7275		ethod:		EPA 8260B
		its		ug/kg
Project: TS2015-C013 / Aliso Canyon	O.	113		Page 7 of 7
Parameter	Result	DI	DE	Qualifiers
1,1-Dichloropropene	ND	<u>RL</u> 500	<u>DF</u> 50.0	Qualifiers
	415	44.4	50.0	
t-1,3-Dichloropropene	ND	500	50.0	
Ethylbenzene	ND	500	50.0	
2-Hexanone	ND	5000	50.0	
Isopropylbenzene	ND	500	50.0	
p-Isopropylitoluene	ND	500	50.0	
c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,1,1-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	S ND	5000	50.0	
4-Methyl-2-Pentanone	ON ND	5000	50.0	
Naphthalene	OF TOND	5000	50.0	
n-Propylbenzene	S NO	5000	50.0	
Styrene	And de	500	50.0	
1,1,1,2-Tetrachloroethane	NIP/E	500	50.0	
1,1,2,2-Tetrachloroethane	ND CAS	500	50.0	
Tetrachloroethene	ND Wh	0/ 500	50.0	
Toluene	ND %	500	50.0	
1,2,3-Trichlorobenzene	ND	2000	50.0	
1,2,4-Trichlorobenzene	ND	500	50.0	
1,1,1-Trichloroethane	ND	500	50.0	
1,1,2-Trichloroethane	ND	500	50.0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5000	50.0	
Trichloroethene	ND	500	50.0	
1,2,3-Trichloropropane	ND	500	50.0	
1,2,4-Trimethylbenzene	ND	500	50.0	
Trichlorofluoromethane	ND	5000	50.0	
1,3,5-Trimethylbenzene	ND	500	50.0	
Vinyl Acetate	ND	5000	50.0	
Vinyl Chloride	ND	500	50.0	
p/m-Xylene	ND	500	50.0	
o-Xylene	ND	500	50.0	
Methyl-t-Butyl Ether (MTBE)	ND	500	50.0	
Surregate	Da- 10/1	Control Harter	Qualifiera	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	98	60-132		
Dibromofluoromethane	97	63-141		
1,2-Dichloroethane-d4	103	62-146		
Toluene-d8	99	80-120		

Southern California Gas Company

Date Received:

11/14/15

M.L. 723B, P.O. Box 513249, Terminal Annex

Work Order:

15-11-1098

Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix
Equipment Blank		-	15-11-1098-1			11/13/1	18:25	Aqueous
Parameter	Results	RL	DF	Qualifiers	Units	<u>Date</u> Prepared	<u>Date</u> <u>Analyzed</u>	Method
Chloride	ND	2.0	1.00		mg/L	N/A	11/14/15	SM 4500-CI C
Well Fluid		-	15-11	-1098-2	_	11/13/1	18:40	Sludge
Parameter	Results	RL	DF	Qualifiers	Units	<u>Date</u> <u>Prepared</u>	Date Analyzed	Method
Ignitability	ND ND	70 0.50	1.00		°F	N/A	11/14/15	EPA 1010A(M)
Sulfide, Total	ND 20	0.50	1.00		mg/kg	11/14/15	11/14/15	EPA 376.2M
Cyanide, Total	ND O	0.50	1.00		mg/kg	11/14/15	11/14/15	EPA 9010C/9014
pH	6.49	CO.000	91.00		pH units	11/14/15	11/14/15	EPA 9045D
Chloride	15000	2000	200		mg/kg	11/14/15	11/14/15	SM 4500-CI C
Junction SS25&9			15-11	1098-3		11/13/1	18:50	Sludge
Parameter	Results	RL			Units	<u>Date</u> Prepared	Date Analyzed	Method
Ignitability	>212	70	1,00	COUNTRIES CO	°F	N/A	11/14/15	EPA 1010A(M)
Sulfide, Total	ND	0.50	1.00	Man V	mg/kg	11/14/15	11/14/15	EPA 376.2M
Cyanide, Total	ND	0.50	1.00	C	mg/kg	11/14/15	11/14/15	EPA 9010C/9014
pН	7,30	0.01	1.00	Q	pH units	11/14/15	11/14/15	EPA 9045D
Chloride	28000	500	50.0	Collines Co	mg/kg C	11/14/15	11/14/15	SM 4500-CI C
Method Blank					30	N/A		Solid
Parameter	Results	RL	DF	Qualifiers	<u>Units</u>	Date Prepared	Date Analyzed	Method
Sulfide, Total	ND	0.10	0.200		mg/kg	11/14/15	511/14/15	EPA 376.2M
Cyanide, Total	ND	0.050	0.100		mg/kg	11/14/15	91/4/15	EPA 9010C/9014
Chloride	ND	2.0	1.00		mg/L	N/A	11/14/15	SM 4500-CI C
					mg/kg	11/14/15	11/14/15	SM 4500-CIC

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order:

Preparation:

11/14/15

15-11-1098 N/A

Method: EPA 9010C/9014

Page 1 of 7

Quality Control Sample ID	Туре	Matrix	Instru	iment	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
Junction SS25&9	Sample	Sludge	UV 8		11/14/15	11/14/15	12:09	F1114CNS1	
Junction SS25&9	Matrix Spike	Sludge	UV 8		11/14/15	11/14/15	12:09	F1114CNS1	
Junction SS25&9	Matrix Spike Duplicate	Sludge	uv s		11/14/15	11/14/15 12:09 F1114CNS1			
Parameter	Sample Spike Codc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Cyanide, Total	Sample Spike Added ND 0.2000	0.1770	88	0.1720	86	70-130	3	0-25	
	Andir or	The Una							
		Uble	the on						
			THE CO	one					
			9	QUITING	Pens				
				0	al Ora				
					0,	50.0			
						C.			

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order: 11/14/15 15-11-1098

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Page 2 of 7

Quality Control Sample ID	Туре	Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
Well Fluid	Sample	Sludge	GC	47	11/14/15	11/14/15	13:10	151114502	
Well Fluid	Matrix Spike	Sludge	GC	47	11/14/15	11/14/15	15:17	151114502	
Well Fluid	Matrix Spike Duplicate			11/14/15					
<u>Parameter</u>	Sample Spike Conc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPDCL	Qualifiers
TPH as Diesel	Sample Conc. Added ND 400.0	400.2	100	425.0	106	64-130	6	0-15	
	Audit or	The un							
		UBle	Bo						
			THES C	5/00					
			-0	of Or	3 ₀				
				"No	TO/A/O				
					100,	50			
						00			

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098

EPA 3050B EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 3 of 7

Quality Control Sample ID	Type		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
Well Fluid	Sample		Sludge	ICP	7300	11/14/15	11/14/15	14:03	151114501	
Well Fluid	Matrix Spike		Sludge	ICP	7300	11/14/15	11/14/15	14:05	151114801	
Well Fluid	Matrix Spike	Duplicate	Sludge	ICP	7300	11/14/16	11/14/15	14:08	151114501	
Parameter	Sample Code	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	COND MA	25.00	19.06	76	18.96	76	50-115	1	0-20	
Arsenic	O.ND.O.	25.00	24.24	97	24.02	96	75-125	1	0-20	
Barium	67,100	25,00	100.4	133	87.90	83	75-125	13	0-20	3
Beryllium	NDO	25.00	22.22	89	21 61	86	75-125	3	0-20	
Cadmium	ND 6	25.00	22.04	88	21.67	87	75-125	2	0-20	
Chromium	ND	(25,000)	23 20	89	21.81	87	75-125	2	0-20	
Cobalt	ND	25.00	22.60	90	22.19	89	75-125	2	0-20	
Copper	0.5885	25.00	26 62	104	26.00	102	75-125	2	0-20	
Lead	ND	25.00	19.43	7B	19.39	78	75-125	0	0-20	
Molybdenum	ND	25.00	23.97	96	23.78	95	75-125	1	0-20	
Nickel	ND	25.00	21.87	87 OL	21.49	86	75-125	2	0-20	
Selenium	ND	25.00	23.77	950	23.62	94	75-125	1	0-20	
Silver	0.6706	12.50	14.15	108 0	13:30	101	75-125	6	0-20	
Thallium	0,9450	25.00	22.81	87	@17.12°	65	75-125	28	0-20	3,4
Vanadium	ND	25.00	24.55	98	29,86	95	75-125	3	0-20	
Zinc	13.90	25.00	35.25	85	35.190	85 4X	75-125	0	0-20	
Calcium	103200	25.00	99250	4X	92280	AN Orto	75-125	4X	0-20	Q

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098 EPA 3010A Total EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 4 of 7

Quality Control Sample ID	Type		Matrix	- In	strument	Date Prepare	d Date Ana	lyzed	MS/MSD Ba	tch Numbe
15-11-1099-1	Sample		Aqueou	s IC	P 7300	11/14/15	11/14/15	15:34	151114SA1	
15-11-1099-1	Matrix Spike		Aqueou	s IC	P 7300	11/14/15	11/14/15	15:37	151114SA1	
15-11-1099-1	Matrix Spike	Duplicate	Aqueou	s IC	P 7300	11/14/15	11/14/15	15:43	151114SA1	
Parameter Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	OND THE	0.5000	0.2473	49	0.2457	49	72-132	1	0-10	3
Arsenic	0.01929	0.5000	0.6014	118	0.6118	120	80-140	2	0-11	
Barium	2,256	0,5000	2.893	4X	3.054	4X	87-123	4X	0-6	Q
Beryllium	NDO	0.5000	0.5453	109	0.5677	114	89-119	4	0-8	
Cadmium	0.05572	0.5000	0.5323	95	0,5480	98	82-124	3	0-7	
Chromium	ND	0.5000	0,5422	108	0,5708	114	86-122	5	0-8	
Cobalt	0.01920	0.5000	0.5191	100	0.5351	103	83-125	3	0-7	
Copper	0.1176	0.5000	0.6742	111	0.7070	118	78-126	5	0-7	
ead	ND	0.5000	0.4253	/85	0,4394	88	84-120	3	0-7	
Nolybdenum	0.05082	0,5000	0.5453	(6)	0.5629	102	78-126	3	0-7	
lickel	0.1773	0.5000	0.6734	99 0	0.6974	104	84-120	3	0-7	
Selenium	ND	0.5000	0.5193	1040	0.5629 0.6974 0.5492	110	79-127	6	0-9	
Silver	0.01846	0.2500	0.3288	124	0,3411	129	86-128	4	0-7	3
Thallium	0.03243	0.5000	0.2546	44	0.2788	49	79-121	9	8-0	3,4
/anadium	0.2425	0.5000	0.8265	117	0.8762		88-118	6	0-7	3
Calcium	3262	0.5000	3112	4X	31620	128 O	77-113	4X	0-11	Q
Zinc	0.9568	0.5000	1.561	121	1.595	128	89-131	2	0-8	

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received:

11/14/15 15-11-1098

Work Order: Preparation:

Method:

EPA 7470A Total

EPA 7470A

Page 5 of 7

Quality Control Sample ID	Туре	Matrix	Instru	ment	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Number
15-11-0525-14	Sample	Aqueous	Merci	ury 04	11/13/15	11/13/15	18:33	151113SA3	
15-11-0525-14	Matrix Spike	Aqueous	Merc	ury 04	11/13/15	11/13/15	18:35	151113SA3	
15-11-0525-14	Matrix Spike Duplicate	Aqueous	Merc	ury 04	11/13/16	11/13/15	18:38	151113SA3	Y
Parameter	Sample Spike Conc. Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	Matrix Spike Duplicate Sample Code. Added ND 0.01000	0.01030	103	0.01059	106	55-133	3	0-20	
	"HOTE OF	he Dunder	ē.						
		"CU	OF OVE	4					
			Coo	ONS OF G					
				"No	neral On				
					O	50.0			

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received:

11/14/15 15-11-1098

Work Order: Preparation:

EPA 7471A Total

EPA 7471A

Method:

Page 6 of 7

Quality Control Sample ID 15-11-0586-3 15-11-0586-3 16-11-0586-3	Type Sample Matrix Spike Matrix Spike Duplicate	Matrix Solid Solid Solid	Mei Mei	rument cury 05 cury 05 cury 05	Date Prepared 11/13/15 11/13/15 11/13/16	11/13/15 11/13/15	20:03 20:06	MS/MSD Ba 151113S02 151113S02 151113S02	tch Numbe
Parameter Mercury	Sample Spike Codc. Added NID 0.8350	MS Conc. 0.6764	MS %Rec. 81	MSD Conc. 0.7051	MSD %Rec. 84	%Rec. GL 71-137	RPD 4	RPD CL 0-14	Qualifiers
	Matrix Spike Duplicate Sample Spike Codc. Added NID 0.8350	***	Allies Co	Slons or of during	Peneral Order	°6.0			

 Southern California Gas Company
 Date Received:
 11/14/15

 M.L. 723B, P.O. Box 513249, Terminal Annex
 Work Order:
 15-11-1098

 Los Angeles, CA 90051-1249
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: TS2015-C013 / Aliso Canyon Page 7 of 7

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-11-0763-4	Sample		Solid	GC	MS W	11/11/15	11/14/15	14:09	1511145002	
15-11-0763-4	Matrix Spike		Solid	GC	MS W	11/11/15	11/14/15	15:33	1511145002	
15-11-0763-4	Matrix Spike	Duplicate	Solid	GC	MS W	11/11/15	11/14/15	16:00	151114S002	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND ND ND ND	25000	26090	104	26260	105	61-127	1	0-20	
Carbon Tetrachloride	ONDO	25000	24130	97	24850	99	51-135	3	0-29	
Chlorobenzene	ND CO	25000	24870	99	24890	100	57-123	0	0-20	
1,2-Dibromoethane	NDO	25000	25110	100	25200	101	64-124	0	0-20	
1,2-Dichlorobenzene	ND 6	25000	25430	102	25370	101	35-131	0	0-25	
1,2-Dichloroethane	ND	25000	25410	102	25580	102	80-120	1	0-20	
1,1-Dichloroethene	ND	25000	26710	107	26690	107	47-143	0	0-25	
Ethylbenzene	15560	25000	39850	97	40250	99	57-129	1	0-22	
Toluene	ND	25000	25700	103	25760	103	63-123	0	0-20	
Trichloroethene	ND	25000	25940	1940	25920	104	44-158	0	0-20	
Vinyl Chloride	ND	25000	22810	199- 01	22840	91	49-139	0	0-47	
p/m-Xylene	ND	50000	50810	1020	50680	101	70-130	0	0-30	
o-Xylene	ND	25000	24440	98 0	24460	98	70-130	0	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	25000	25190	101	© 24950°	100	57-123	1	0-21	
					"Ing	101 98 100 Seneral Order				
						Ordon	2			
							000			

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098

Method:

EPA 1010A(M)

Project: TS2015-C013 / Aliso Canyon

Page 1 of 5

Quality Control Sample ID Junction SS25&9 Junction SS25&9	Type Sample Sample Duplicate	Matrix Sludge Sludge	FP 3	N/A N/A			
<u>Parameter</u> Ignitability	Cond Section Se	Sample Conc. >212	DUP Conc. >212	RPD 0	RPD CL 0-25	Qualifiers	
	Compliance Audit	of the Duble U	the Otovisions				
			"e during	General Order	r Ko		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

EPA 376.2M

Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
Well Fluid	Sample	Sludge	N/A	11/14/15 00:00	11/14/15 12:39	F1114SD2
Well Fluid	Sample Duplicate	Sludge	N/A	11/14/15 00:00	11/14/15 12:39	F1114SD2
<u>Parameter</u> Sulfide, Total	Compliance Audit	Sample Conc. ND	DUP Conc. ND	RPD N/A	RPD CL 0-25	Qualifiers
	Ce Audin	OF the Public	ži.			
		The Co	the Otolisions			
			e during	General On		
				YON	Pa.C	

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098

N/A

Method:

EPA 9045D

Project: TS2015-C013 / Aliso Canyon

Page 3 of 5

Quality Control Sample ID 15-11-1085-2 15-11-1085-2	Type Sample Sample Duplicate	Matrix Solid Solid	Instrument PH 4 PH 4	11/14/15 0	o:00 11/14/15 12:33 0:00 11/14/15 12:33	50,000,000,400,400,000.
<u>Parameter</u> pH		Sample Conc. 6.350	<u>DUP Conc.</u> 6.380	RPD 0	<u>RPD CL</u> 0-25	Qualifiers
	Compliance Audit	or the Public O	the orox			
			Code during	General On	×	
				. 6	O C	

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098

N/A

Method:

SM 4500-CI C

Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
15-11-1099-1	Sample	Aqueous	BUR02	N/A	11/14/15 12:06	F1114CLCD2
15-11-1099-1	Sample Duplicate	Aqueous	BUR02	N/A	11/14/15 12:06	F1114CLCD2
<u>Parameter</u> Chloride	Conposion Section Se	Sample Conc. 6103	<u>DUP Conc.</u> 6103	RPD 0	RPD CL 0-25	Qualifiers
	Audi	of the Duble Up	The Open			
		4	Nes Code during	General Contract of the Contra		
				al Order	ra _c	
				O.	Pa _C	

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

SM 4500-CIC

nou.

Page 5 of 5

Project:	TS201	5-C013 /	Aliso	Canyon	

Quality Control Sample ID Well Fluid Well Fluid	Type Sample Sample Duplicate	Matrix Sludge Sludge	Instrument BUR02 BUR02	11/14/15 00	red Date Analyzed 0:00 11/14/15 12:48 0:00 11/14/15 12:48	
	Condidande Section Se					Qualifiers
	Audi	Stanifica Cindel	the or			
			The Code during	General		
				Oro	or So. C	

Quality Control - LCS/LCSD

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

N/A

Work Order:

15-11-1098

Preparation:

EPA 376.2M

Method:

Page 1 of 9

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pr	epared	Date	Analyzed	LCS/LCSD E	Batch Number
099-05-001-5592	LCS	Sol	id	N/A	11/14/1	5	11/14	4/15 12:39	F1114SL2	
099-05-001-5592	LCSD	Sol	id	N/A	11/14/1	5	11/14	1/15 12:39	F1114SL2	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec	. CL	RPD	RPD CL	Qualifiers
Sulfide, Total	1.000 Plate	0.8000	80	0,8500	85	80-12	0	6	0-20	
	Spike Added	Se Orning	ounder Collins	th _o						
			~	The Code of	9.0					
				4	The cher	Orde	.00			
							0,1	2		

Quality Control - LCS/LCSD

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

EPA 9010C/9014

Page 2 of 9

Project:	TS201	5-C013	/ Aliso	Canyon	
	_		_		

Quality Control Sample ID	Type	Mai	trix	Instrument	Date Pr	repared	Date	Analyzed	LCS/LCSD B	atch Number
099-12-810-1003	LCS	Sol	id	UV 8	11/14/1	5	11/14	4/15 12:09	F1114CNL1	
099-12-810-1003	LCSD	Sol	id	UV 8	11/14/1	5	11/14	4/15 12:09	F1114CNL1	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec	. CL	RPD	RPD CL	Qualifiers
Cyanide, Total	Spike Added	0.1680	84	0.1720	86	80-12	80	2	0-20	
	Ce	SES CONTINE	o un							
			Uble C	the Oro						
				es Code S	0,					
				44	The Police	3/0				
						00	500	2		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 **EPA 3550B**

Method:

EPA 8015B (M)

Page 3 of 9

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared 1	Date Analyzed LCS Ba	tch Number
099-15-490-1869	LCS	Solid	GC 47	11/14/15	11/14/15 14:58 151114	B02
Parameter		Spike Added	Conc. Reco			Qualifiers
TPH as Diesel		Audio of the Public C	432.7	108	75-123	
	C.					
	O TO TO					
	On Se	70-				
	Place	Salar.				
	200	50,90				
	-	The of the				
		The you				
		2,00				
		olic,	Bo			
		C	11 Oro.			
			CS 15/			
			Congo			
			600	9,0		
			-4	The cha		
				18 B		
				On		
				10,	5-	
					000	

Quality Control - LCS/LCSD

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 3510C

Method:

EPA 8015B (M)

.

Page 4 of 9

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Type	Mat	rix	Instrument	Date Pre	epared Da	te Analyzed	LCS/LCSD E	atch Number
099-15-498-310	LCS	Aqu	ieous	GC 47	11/14/15	11/	14/15 14:21	151114B01	
099-15-498-310	LCSD	Aqu	ueous	GC 47	11/14/15	5 11/	14/15 14:40	151114B01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CI	RPD	RPD CL	Qualifiers
TPH as Diesel	Connollation	1822	91	1962	98	75-117	7	0-13	
	Spike Added 2000	Holy of the	O Under	the ou					
				Thies Code of	9.0				
				ν,	The ner	Orders			
						20	Č.		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

LCS ME CL validation result: Pass

Date Received:

11/14/15 15-11-1098

Work Order: Preparation:

EPA 3050B

Method:

EPA 6010B

Page 5 of 9

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch N	umber
097-01-002-22051	LCS	Solid	ICP 7300	11/14/15	11/14/15 14:01	151114L01	
Parameter	Spil	re Added Conc.	Recovered LC:	S %Rec. %F	Rec. CL MI	E CL	Qualifiers
Antimony	25.0	00 25.05	100	80-	120 73	-127	
Arsenic	25,0	00 24.83	99	80-	120 73	-127	
Barium	25.0	00 26.24	105	80-	120 73	-127	
Beryllium	0 70 10 25.0	00 23.97	96	80-	120 73	1-127	
admium	On S 0,25.0	00 25.28	101	80-	120 73	1-127	
hromium	25.0 25.0 25.0 25.0 25.0 25.0	00 26,36	105	80-	120 73	-127	
cobalt	97 7250	27.01	108	80-	120 73	1-127	
opper	25.0	25.68	103	80-	120 73	-127	
ead	25.0	25.50	102	80-	120 73	1-127	
lolybdenum	25.0		103	80-	120 73	1-127	
ickel	25.0		109	80-	120 73	1-127	
elenium	25.0	00 /23.89	5 96	80-	120 73	-127	
ilver	12.5	50 12.52	0, 100	80-	120 73	-127	
hallium	25.0	00 26.62	100 PM 100	80-	120 73	-127	
anadium	25.0	00 25.81	0 0 103	80-	120 73	-127	
inc	25.0	00 24.47	0 98	80-	120 73	-127	
Calcium	25.0	00 27.02	0108	80- 80- 80- 80- 80- 80-	120 73	-127	
			40	2000			
otal number of LCS compound	ls: 17			S S			
otal number of ME compounds	g 0			0			
otal number of ME compounds	allowed: 1			196)_		

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

LCS ME CL validation result: Pass

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 3010A Total

Method:

EPA 6010B

Page 6 of 9

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	d Date Analyzed	LCS Batch N	umber
97-01-003-15490	LCS	Aqueous	ICP 7300	11/14/15	11/14/15 15:28	151114LA1	
Parameter	Spike	Added Conc.	Recovered LC	S %Rec.	%Rec. CL MI	E CL	Qualifiers
Antimony	0.500	0.4934	4 99		30-120 73	-127	
Arsenic	0.500	0.491	5 98		30-120 73	-127	
Barium	0.500	0.5183	3 10-	4 8	30-120 73	-127	
Beryllium	0.500	0.4960	99		30-120 73	-127	
Cadmium	On J 0 0 500	0.5043	3 10	1 8	30-120 73	-127	
Chromium	0/2 0/2 0/500	0.5113	2 10:	2 8	30-120 73	-127	
Cobalt	0.500	0.5300	100	3 8	30-120 73	-127	
Copper	0.500		4 99		30-120 73	-127	
ead	0,500	0.496	5 10	1 8	30-120 73	-127	
Nolybdenum	0.500	0 6 40.486	2 97		30-120 73	-127	
lickel	0,500	0.517	7 10-	4 8	30-120 73	-127	
Selenium	0.500		96	8	30-120 73	-127	
lilver	0.250	0.2518	3 0 10	1 .	30-120 73	-127	
hallium	0.500	0.5350	10 OL 10	7 8	30-120 73	-127	
/anadium	0.500	0.5029	000010	1 8	30-120 73	-127	
Calcium	0.500	0.4929	00 99		30-120 73	-127	
linc	0.500	0.492	3 098	0 1	30-120 73	-127	
			45	's ch			
otal number of LCS compounds	s: 17		10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 00			
otal number of ME compounds	0			0			
otal number of ME compounds	allowed: 1				%.		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 7470A Total

Method:

EPA 7470A

victiou.

Page 7 of 9

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch	Number
099-04-008-7657	LCS	Aqueous	Mercury 04	11/13/15	11/13/15 18:31	151113LA3	
Parameter		Spike Added	Conc. Recove	red LCS %Re	ec. %Rec	CL	Qualifiers
Mercury		0.01000	0.01065	107	80-120	3	

Conflict Submitted under the Oroxistors of General Order 66.6

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order:

15-11-1098 EPA 7471A Total

Preparation: Method:

EPA 7471A

Page 8 of 9

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepare	d Date Analyzed	LCS Batch	Number
99-16-272-1760	LCS	Solid	Mercury 05	11/13/15	11/14/15 15:23	151113L02	
<u>Parameter</u> Mercury		Spike Added 0.8350	Conc. Recov 0.8227				Qualifiers
	R Con						
	Cond Side	and the same of th					
	Planett	on along					
	6	O.8350					
		The Dand					
		Ble !	The state of				
			Which Original Contraction of the Contraction of th				
			Codons	On.			
			QUE	Gene			
				10 les 0.			
				- 3	Or S-		
					O.C.		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 EPA 5030C

Method:

EPA 8260B

Page 9 of 9

Deniant.	TOODA	E COMA	/ Alina	Contina
Floieci.	15/01	5-1.011.5	/ AllSO	Canvon

Quality Control Sample ID	Туре	Matrix	Instrumen	t Date Prep	ared Date Anal	yzed LCS Batch	Number
099-12-796-10429	LCS	Solid	GC/MS W	11/14/15	11/14/15	10:25 151114L0	07
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Benzene		50.00	52.42	105	78-120	71-127	
Carbon Tetrachloride	-	50,00	54.16	108	49-139	34-164	
Chlorobenzene	000	50.00	51.64	103	79-120	72-127	
1,2-Dibromoethane	000	50.00	49.47	99	80-120	73-127	
1,2-Dichlorobenzene	Complian	50.00 50.00	51.28	103	75-120	68-128	
1,2-Dichloroethane	10/	50.00 50.00	50.81	102	80-120	73-127	
1,1-Dichloroethene	90	30.00	56.50	113	74-122	66-130	
Ethylbenzene		50.00	53.52	107	76-120	69-127	
Toluene		50.00 9	53.05	106	77-120	70-127	
Trichloroethene		50.00	53.68	107	80-120	73-127	
Vinyl Chloride		50.00	49.21	98	68-122	59-131	
p/m-Xylene		100.0	106.65	106	75-125	67-133	
o-Xylene		50.00	50.52	101	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)		50.00	48.09 1 CS 045	96	77-120	70-127	
Total number of LCS compounds Total number of ME compounds:			Con	101 96 No Of General			
Total number of ME compounds a				Vyr. Go.			
LCS ME CL validation result: Pas				120 700			
EGG ME GE Validation result. I as				9/			
					0		
					10 h		
					50		

Sample Analysis Summary Report

Work Order: 15-11-1098				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 1010A(M)	N/A	691	FP3	1
EPA 376.2M	N/A	880	N/A	1
EPA 6010B	EPA 3010A Total	935	ICP 7300	19
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 7470A	EPA 7470A Total	915	Mercury 04	1
EPA 7471A	EPA 7471A Total	915	Mercury 05	1
EPA 8015B (M)	EPA 3510C	421	GC 47	1
EPA 8015B (M)	EPA 3550B	421	GC 47	1
EPA 8260B	EPA 5030C	927	GC/MS W	2
EPA 9010C/9014	PANA NA	880	UV 8	1
EPA 9045D	C O ONA	688	PH 4	1
SM 4500-CI C	EPA 3550B EPA 5030C N/A N/A A A A A A A A A A A A A A A A A	3,		
	The (The Oronis Codes		
		during	General Oros	

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

concentrations.

Glossary of Terms and Qualifiers

Work Order: 15-11-1098 Page 1 of 1 Qualifiers Definition See applicable analysis comment Less than the indicated value Greater than the indicated value 1 Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 2 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 3 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PBSD associated with this batch of samples was out of control due to suspected matrix interference. 6 Surrogate recovery below the acceptance limit. Surrogate recovery above the acceptance limit. 7 Analyte was present in the associated method blank. B Sample analyzed after holding time expired. BU BV Sample received after holding time expired. CI E Concentration exceeds the calibration range. ET Sample was extracted past end of recommended max. holding time. The chromatographic pattern was inconsistent with the profile of the reference fuel standard. HD HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected) The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were HDL also present (or detected). Analyle was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J JA Analyte positively identified but quantitation is an estimate. LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (454 SD from the mean). ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. X % Recovery and/or RPD out-of-range. Z Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported,

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero

CHAIN OF CUSTODY FORM

15-11-1098

SOUTHERN CALIFORNIA GAS COMPANY - ENGINEERING ANALYSIS CENTER

SHIPPING ADDRESS - 8730 E. SLAUSON AVE. ML SC723B, PICO RIVERA, CA 90660-5100 - PHONE: (562)- 806-4344 STREET ADDRESS - 8101 ROSEMEAD BLVD. BLDG H, PICO RIVERA, CA 90660 - EMAIL: EACChemicalSection@Socalgas.com

Project # 752015-CO13	6013	Requestor	The year	J	Sampling Location Alrso Curyan	" Alr	to Canyon
Sample I.D.	Sampling Date	Sampling Time	Collected	Sample Container	Sample Prese	Preservative	Analysis Requested
Epulpme Block 11/13/	seferfu	6:25 pm	6:25 pm S. Puten	1×500~l 1×250~l 1×250~l	Tide Tide Suit	Aven HVOn	THILL CHOWNER
Wall Fluid		Mook:9		2. Sunger	nine >	1 3 5 1	pt, Flushpoint, TPH-C., 8260 VOL, TIL Authols (1972L), Sultide, Cyambe Chloride, Potasium,
Junction SS25 49	>	msos:9	Qual.	ST. Sewner	Shudge 1	₩.	
1	\	1	General On	1	1	\	
Observations/Comments:		6	000				

in the contract of the contrac		(Print) (Signature)	GasCo. Dept.
n Dullon Ston DACTON FAC 11/10/18	8:10 P	Devil Kommen Mille	CAC
Kammere Milliam ett Works	0480	You Line	Ed
		Ó	

H:\Chem\Forms\Chain of Custody.xls

Ex. I-7, page 54 of 85

SOUTHERN CALIFORNIA GAS COMPANY Material Release Order

Release 44193

FOR NON-M&S MATERIAL

Supplier: In strict conformance with our Blanket Purchase Order with your firm, the following material is ordered.

Restrictions: Do not produce or supply any material ordered if our Blanket Purchase Order No. 5660018639 has expired or was canceled, or material ordered is not an item covered on the Blanket Purchase Order. Invoice as instructed on the Blanket Purchase Order.

				(N)
T.			7	
744	LSCIENCE ENVIRONMENTA 10 LINCOLN WAY RDEN GROVE, CA 92641-14		752	015-C013 a Day-ASAP
L	SHAHID BAZZAK SC 7 P.O. BOX 513249 LOS ANGELES, CA 9009	162	_ Sam	Date Wanted
Quantity:		Public Un Descripti	lon	
3	Engent Block	The Utille Dra		
2	Well Fluid	Tos Clsion		
2	Junetion 5525	49	SOF.	
8	Patriot 909		Ting oner	
	F 74.F F		10 OF OF OF	
			~ Oc.	
	PLEASE SHOW ABOVE R	ELEASE NUMBER ON	YOUR INVOICE. TH	ANK YOU.
Special Instru * Rush	THT Include	. Potusium in 1	metals, sce	Col.
REQUESTED BY		ACCT. OR W.O. NUMBER	SUG. ACCT. ORG. CODE	DATE JULIA
SHAHID RAZ		MATERIAL RECEIVED BY		DATE IN THE
dre	11	9		11/14/15

ROUTING
WHITE - TO SUPPLIER
YELLOW - ON RECEIPT OF MATERIAL, TO
DISBURSEMENTS, M.L. 205V
PINK - ORIGINATOR'S COPY

Page 49 of 49

WORK ORDER NUMBER: 15-11- 1098

SAMPLE RECEIPT CHECKLIST

COOLER __/_OF __/

CLIENT: Gas Co.			DA	TE: 11	1 14	/ 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen Thermometer ID: SC2 (CF:-0.4°C); Temperature (w/c Sample(s) outside temperature criteria (PM/API Sample(s) outside temperature criteria but rece Sample(s) received at ambient temperature; placed Ambient Temperature: Air	CF): 3, M contacted b ived on ice/ch	9°C (w/ CF): y:) illed on same day o		Blank		
CUSTODY SEAL: Cooler		Not Present	□ N/A			800
SAMPLE CONDITION:				Yes	No	N/A
Chain-of-Custody (COC) document(s) received with s	samples			A		
COC document(s) received complete				. P		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐	Number of c	ontainers				
☐ No analysis requested ☐ Not relinquished ☐	No relinquish	ed date 🛮 No relir	quished time	-		
Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time		***************	sammen man	, D		
Sample container label(s) consistent with COC	450		*******	J.		
Sample container(s) intact and in good condition	1604	(6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	**************	E		
Proper containers for analyses requested		Danie	(***) (***************	D		П
Sufficient volume/mass for analyses requested		6 9	**********	. D		
Samples received within holding time		The Co	rationalizatio	. D		
Adjugate samples for certain analyses received wi	thin 15-minut	e holding time//				
□ pH □ Residual Chlorine □ Dissolved Sulfide	☐ Dissolved	d Oxygen	********	. 🗆		石
Proper preservation chemical(s) noted on COC and/o	or sample con	tainer		. 0		
Unpreserved aqueous sample(s) received for cert			O.C			
☐ Volatile Organics ☐ Total Metals ☐ Dissolve						
Container(s) for certain analysis free of headspace				. 🗆		Ø
☐ Volatile Organics ☐ Dissolved Gases (RSK-17						
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM						
Tedlar™ bag(s) free of condensation		2	-			

CONTAINER TYPE:			k Lot Numb		*OFDE)
Aqueous: UVOA UVOAh UVOAna2 U100PJ U						
□ 125PBznna □ 250AGB □ 250CGB □ 250CGBs	1					
□ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs □ 1PB						
Solid: 4ozCGJ BozCGJ BozCGJ Select			A second of the last			
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF			0			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope						778
Preservative: b = buffered, f = filtered, h = HCI, n = HNO ₃ ,		$a_2 = Na_2S_2O_3, p = H_3P$	O ₄ , Labele			
$s = H_2SO_4$, $u = ultra-pure$, $znna = Zn(CH_3CO$	12)2 + NaOH			Review	ed by:	1050

Calscience

WORK ORDER NUMBER: 15-11-1099

Analytical Report For Client
Vient Project Nam
Attenti The difference to

AIR SOIL WATER MARINE CHEMISTRY

Client: Southern California Gas Company

Client Project Name: TS2015-C013 / Aliso Canyon
Attention: Sharid Razzak
M.b. 723B

P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Approved for release on 11/16/2015 by: Amanda Porter Project Manager

ResultLink)

Email your PM)

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

CA ELAP ID: 2944 | AGLASS DID-ELAP ID: ADE 1884 (ISO/IEC 17025/2005) | CSDLAC ID: 10109

Contents

Client Project Name:	TS2015-C013 / Aliso Canyon
Mork Order Number	15 11 1000

4
4
6
9
13
14
14
16
20
26
27
8 9 13 14 14 16 20 26 27 28

Work Order Narrative

Work Order: 15-11-1099 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/14/15. They were assigned to Work Order 15-11-1099.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units: 15-11-1099 EPA 3510C EPA 8015B (M)

:PA 8015B (M) ug/L

11/14/15

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Patriot 909	15-11-1099-1-H	11/13/15 19:40	Aqueous	GC 47	11/14/15	11/14/15 14:04	151114801
Parameter	0	Result	RL		DF	Qua	lifiers
C6	an ope	ND	50		1.00		
C7	Compliance Audin of the	ND	50		1.00		
C8	man on the	53	50		1.00		
C9-C10	10 10 10	450	50		1.00		
C11-C12	90 50 4b	580	50		1.00		
C13-C14	4 3 7	710	50		1.00		
C15-C16	10/1/1/10	360	50		1.00		
G17-C18	7	4160	50		1.00		
C19-C20		960 On	50		1.00		
C21-C22		2600	50		1.00		
C23-C24		200	50 50 50 50 50 50 50		1.00		
C25-C28		140	50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1.00		
C29-C32		170	C 050		1.00		
C33-C36		91	9 50	Ox	1.00		
C37-C40		ND	86 50	G.	1.00		
C41-C44		ND	50	mano	1.00		
C6-C44 Total		3800	50	18/	1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		90	68-	140	600		

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order:

Preparation:

Method: Units: 11/14/15

15-11-1099 EPA 3510C

EPA 8015B (M)

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-498-310	N/A	Aqueous	GC 47	11/14/15	11/14/15 12:35	151114B01
Parameter	0	Result	RL		DF	Qualifiers	
C6	an open	ND	50		1.00		
C7	C 0 0	ND	50		1.00		
C8	man en ma	ND	50		1.00		
C9-C10	Compliance Aldin OF	ND	50		1.00		
C11-C12	Go 50.46	ND	50		1.00		
C13-C14	A 3 7	ND	50		1.00		
C15-C16	10/4 1/10	CND	50		1.00		
C17-C18	Compliance Audin of the	OND	50		1.00		
C19-C20		NO CA	50		1.00		
C21-C22		ND C	50		1.00		
C23-C24		ND Y			1.00		
C25-C28		ND 7	00 40 50		1.00		
C29-C32		ND	C 050		1.00		
C33-C36		ND	010 50 50 50 50 50	Ox	1.00		
C37-C40		ND	86 50	Q.	1.00		
C41-C44		ND	50	mano.	1.00		
C6-C44 Total		ND	100	General C	1.00		
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		95	68-	140	60°C		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units: 11/14/15

15-11-1099 EPA 3010A Total

EPA 6010B

mg/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Patriot 909	15-11-1099-1-E	11/13/15 19:40	Aqueous	ICP 7300	11/14/15	11/14/15 15:34	151114LA1
Parameter	0	Result	RL		DF	Qualifiers	
Antimony	an one	ND	0.0150		1.00		
Arsenic	C 0 00	0.0113	0.0100		1.00		
Barium	ma con mis	2,26	0.0100		1.00		
Beryllium	10 10 10	ND	0.0100		1.00		
Cadmium	Co 50 40	0.0557	0.0100		1.00		
Chromium	4030	ND ND	0.0100		1.00		
Cobalt	Compliance Audit of the	0.0192	0.0100		1.00		
Copper		0.118	0.0100		1.00		
Lead		NB, Ch	0.0100		1.00		
Molybdenum		0.0908	0.0100		1.00		
Nickel		n	0		1.00		
Selenium		ND %	0.0100 0.0150 9.00500 0.0#50		1.00		
Silver		0.0185	0,00500		1.00		
Thallium		0.0324	% 0.0±50		1.00		
Vanadium		0,242	Ø:01000		1.00		
Zinc		0,957		fog Theray	1,00		
Patriot 909	15-11-1099-1-E	11/13/15 19:40	Aqueous	ICP 7300	11/14/15	11/14/15 15:33	151114LA1
Parameter		Result	RL		DF	Qualifiers	
Calcium		3260	1.00		10.00		

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15 15-11-1099

Work Order:

EPA 3010A Total

Preparation: Method:

EPA 6010B

Units:

mg/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	097-01-003-15490	N/A	Aqueous	ICP 7300	11/14/15	11/14/15 15:26	151114LA1
Parameter	0	Result	RL		DF	Qua	alifiers
Antimony	an one	ND	0.0	150	1.00		
Arsenic	C 0 00	ND	0.0	100	1.00		
Barium	ma en Ma	ND	0.0	100	1.00		
Beryllium	10, 10, 10	ND	0.0	100	1.00		
Cadmium	Conditions Submi	ND	0.0	100	1.00		
Chromium	4,30	ND	0.0	100	1.00		
Cobalt	10/ 1/D	CMO	0.0	100	1.00		
Copper		ND	0.0	100	1.00		
Lead		ND CH	0.0	100	1.00		
Molybdenum				100	1.00		
Nickel		ND TI	0,000 0.0	100	1.00		
Selenium		ND 3	00 40.00	150	1.00		
Silver		ND	C 980	0500	1.00		
Thallium		ND	Ode of	r50	1.00		
Vanadium		ND	00	1000	1.00		
Calcium		ND	0.1	00 00	1.00		
Zinc		ND	0.0	100 9/	1.00		
				- 0	1.00 1.00 1.00 1.00		
					00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Co	mpany		Date Recei	ved:			11/14/15
M.L. 723B, P.O. Box 51324	9, Terminal Annex		Work Order	:			15-11-1099
Los Angeles, CA 90051-12	49		Preparation	1:		EP	A 7470A Tota
			Method:				EPA 7470A
			Units:				mg/L
Project: TS2015-C013 / Alis	so Canyon					Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Patriot 909	15-11-1099-1-E	11/13/15 19:40	Aqueous	Mercury 04	11/14/15	11/14/15 13:59	151113LA3
Parameter	0	Result	RL		DF	Qua	alifiers
Mercury	Ong hig	ND	0.0	000500	1.00		
Method Blank	099-04-608-7657	N/A	Aqueous	Mercury 04	11/13/15	11/13/15 18:29	151113LA3
Parameter Mercury	On 1093-04-808-7657 On 1093-04-808-7657 On 1093-04-808-7657	Result ND	o.co Code do	000500	<u>DF</u> 1.00	Qui	alifiers
				No real	rder 60 C		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company

Los Angeles, CA 90051-1249

Date Received:

11/14/15

M.L. 723B, P.O. Box 513249, Terminal Annex

Work Order: Preparation:

15-11-1099 **EPA 5030C**

Method:

Units:

EPA 8260B ug/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Patriot 909	15-11-1099-1-A Connoliance Augin of the	11/13/15 19:40	Aqueous	GC/MS XX	11/14/15	11/14/15 17:11	151114L001
Parameter	0	Result	RL		DF	Qua	alifiers
Acetone	an open	ND	20		1.00		
Benzene	C 0 0	ND	0.5	50	1.00		
Bromobenzene	ma en ma	ND	1.0)	1.00		
Bromochloromethane	10 do 4/20	ND	1.0)	1.00		
Bromodichloromethane	90 50 4b	ND	1.0)	1.00		
Bromoform	A 3 3	ND ND	1.0)	1.00		
Bromomethane	10/4 1/6	CNO	10		1.00		
2-Butanone	7	NDO	10		1.00		
n-Butylbenzene		6% CA	1.0	1	1.00		
sec-Butylbenzene		150	0 1.0)	1.00		
tert-Butylbenzene		ND W	0 1.0)	1.00		
Carbon Disulfide		ND 3	O. 40.10		1.00		
Carbon Tetrachloride		ND	C 985	50	1.00		
Chlorobenzene		ND	90 18	Ox	1.00		
Chloroethane		ND	80	G.	1.00		
Chloroform		ND	1.0	man one	1.00		
Chloromethane		ND	10	10	1.00		
2-Chlorotoluene		ND	1.0		1.00		
4-Chlorotoluene		ND	1.0)	01.00		
Dibromochloromethane		ND	1.0)	600		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0)	1.00		
1,4-Dichlorobenzene		ND	1.0)	1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0)	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	1.0)	1.00		
c-1,2-Dichloroethene		ND	1.0)	1.00		
t-1;2-Dichloroethene		ND	1.0)	1.00		
1,2-Dichloropropane		ND	1.0)	1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company		ate Received:		11/14/15
M.L. 723B, P.O. Box 513249, Terminal Annu	ex V	Vork Order:		15-11-1099
Los Angeles, CA 90051-1249		reparation:		EPA 5030C
200 / Nigolos, 2/1 0000 (1240		Method:		EPA 8260B
		Inits:		ug/L
Project: TS2015-C013 / Aliso Canyon		mits.		Page 2 of 4
Parameter	Result	RL	DE	Qualifiers
1,1-Dichloropropene	ND	1.0	1.00	
-1,3-Dichloropropene	ND	0.50	1.00	
-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	3.0	1.0	1.00	
2-Hexanone	ND	10	1.00	
sopropylbenzene %	1,8	1,0	1.00	
o-Isopropyltoluene	R/ 3.3	0.50 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.00	
Methylene Chloride	S CK ND	10	1.00	
I-Methyl-2-Pentanone	ND ND	10	1.00	
Naphthalene	O. 95 CHIO	10	1.00	
-Propylbenzene	7 70 44	1.0	1.00	
Styrene	Sun %	1.0	1.00	
.1,1,2-Tetrachloroethane	NOTE TO	1.0	1.00	
.1,2,2-Tetrachloroethane	ND CA.S	0 10	1.00	
etrachloroethene	ND TE	0, 10	1.00	
oluene	30	5 3/10	1.00	
2,3-Trichlorobenzene	ND.	0 78	1.00	
2.4 Trichlershammen	ND	9000	1.00	
,2,4-Trichlorobenzene	ND	Sec. 6.	1.00	
1.1Trichloroethane	ND	20 70	1.00	
,1,2-Trichloro-1,2,2-Trifluoroethane	מא	9/	1.00	
1,2-Trichloroethane	ND	1.0	1.00	
richloroethene	ND	1.0	0,1.00	
richlorofluoromethane	ND	10	1000	
,2,3-Trichloropropane	ND	5.0	1.000	
,3,5-Trimethylbenzene	22	1.0	1.00	
/inyl Acetate	ND	10	1.00	
/inyl Chloride	ND	0.50	1.00	
/m-Xylene	29	1.0	1.00	
-Хујепе	9.5	1.0	1,00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
,4-Bromofluorobenzene	102	80-120		
Dibromofluoromethane	118	78-126		
,2-Dichloroethane-d4	126	75-135		
Foluene-d8	103	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1099 **EPA 5030C**

Method:

EPA 8260B

Units:

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	Connoise Clion Ses British of the	N/A	Aqueous	GC/MS XX	11/14/15	11/14/15 13:12	151114L001
Parameter	0	Result	RL		DF	Qua	lifiers
Acetone	an ope	ND	20		1.00		
Benzene	C 0 0	ND	0.5	50	1.00		
Bromobenzene	ma en ma	ND	1.0)	1.00		
Bromochloromethane	35 40 46	ND	1.0)	1.00		
Bromodichloromethane	100 50 Yb	ND	1.0)	1.00		
Bromoform	4 3 7	ND	1.0)	1.00		
Bromomethane	10 May 10	CMO	10		1.00		
2-Butanone	16	NDO	10		1.00		
n-Butylbenzene		NO CA	1.0	1	1.00		
sec-Butylbenzene		NDC ,	9 1.0)	1.00		
tert-Butylbenzene		ND Y	0 1.0)	1.00		
Carbon Disulfide		ND 3	Oc 40 10		1.00		
Carbon Tetrachloride		ND	C 985	50	1.00		
Chlorobenzene		ND	90 18	On	1.00		
Chloroethane		ND	80	C.	1.00		
Chloroform		ND	1.0	man on	1.00		
Chloromethane		ND	10	16 P	1.00		
2-Chlorotoluene		ND	1.0		1.00		
4-Chlorotoluene		ND	1.0)	90.00		
Dibromochloromethane		ND	1.0)	600		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.000		
1,2-Dibromoethane		ND	1.0)	1.00		
Dibromomethane		ND	1.0)	1.00		
1,2-Dichlorobenzene		ND	1.0)	1.00		
1,3-Dichlorobenzene		ND	1.0		1.00		
1,4-Dichlorobenzene		ND	1.0		1.00		
Dichlorodifluoromethane		ND	1.0)	1.00		
1,1-Dichloroethane		ND	1.0		1.00		
1,2-Dichloroethane		ND	0.5		1.00		
1,1-Dichlaroethene		ND	1.0		1.00		
c-1,2-Dichloroethene		ND	1.0		1.00		
t-1,2-Dichloroethene		ND	1.0		1.00		
1,2-Dichloropropane		ND	1.0		1.00		
1,3-Dichloropropane		ND	1.0		1.00		
2,2-Dichloropropane		ND	1.0		1.00		

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company		ate Received:		11/14/15
M.L. 723B, P.O. Box 513249, Terminal Annex	V	Vork Order:		15-11-1099
Los Angeles, CA 90051-1249	P	reparation:		EPA 5030C
many and the state and and	N	lethod:		EPA 8260B
	u	Inits:		ug/L
Project: TS2015-C013 / Aliso Canyon				Page 4 of 4
<u>Parameter</u>	Result	RL	DF	Qualifiers
1,1-Dichleropropene	ND	1.0	1.00	
c-1,3-Dichloropropene	ND	0.50	1.00	
t-1,3-Dichloropropene	ND	0.50	1.00	
Ethylbenzene	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Isopropylbenzene	ND	1,0	1.00	
o-Isopropyltoluene	ND ND	0.50 0.50 1.0 1.0 1.0 1.0 10 10 10 1.0 1.0 1.0 1	1.00	
Methylene Chloride	ND ND	10	1.00	
1-Methyl-2-Pentanone	3 Die ND	10	1.00	
Naphthalene 40	OF CND	10	1.00	
n-Propylbenzene	Po NO	1.0	1.00	
Styrene	ND %	1.0	1.00	
.1,1,2-Tetrachloroethane	NDIO B	1.0	1.00	
.1,2,2-Tetrachloroethane	ND CAS	0. 1.0	1.00	
Fetrachloroethene	ND Th	04. 10	1.00	
Toluene	ND	5 50010	1.00	
,2,3-Trichlorobenzene	ND	02 70	1.00	
1,2,4-Trichlorobenzene	ND	6000r	1.00	
1 1 Triphleresthese	ND	16. Co.	1.00	
1,1,1-Trichloroethane	ND	20 70	1.00	
I,1,2-Trichloro-1,2,2-Trifluoroethane	ND	9/	1.00	
1,1,2-Trichloroethane	ND	1.0	70-100	
Trichloroethene	ND	1.0	0,1.00	
Trichlorofluoromethane	ND	10	1.08	
1,2,3-Trichloropropane	ND	5.0	1.000	
1,3,5-Trimethylbenzene	ND	1.0	1.00	
√inyl Acetate	ND	10	1.00	
Vinyl Chloride	ND	0.50	1.00	
o/m-Xylene	ND	1.0	1.00	
p-Xylene	ND	1.0	1,00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	
1,4-Bromofluorobenzene	97	80-120		
Dibromofluoromethane	111	78-126		
1,2-Dichloroethane-d4	118	75-135		
Toluene-d8	101	80-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Southern California Gas Company

Date Received:

11/14/15

M.L. 723B, P.O. Box 513249, Terminal Annex

Work Order:

15-11-1099

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Page 1 of 1

Client Sample Number			Lab S	Sample Number		Date/Tir	ne Collected	Matrix	
Patriot 909			15-1	1-1099-1		11/13/1	5 19:40	Aqueous	
Parameter	Results	RL	DF	Qualifiers	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> <u>Analyzed</u>	Method	
Ignitability	>212	70	1.00		oF.	N/A	11/14/15	EPA 1010A	
рН	7.59	0.01	1.00	BV,BU	pH units	N/A	11/14/15	SM 4500 H+ B	
Sulfide, Total	ND O	0.050	1_00		mg/L	11/14/15	11/14/15	SM 4500 S2 - D	
Chloride	6100 0	100	50.0		mg/L	N/A	11/14/15	SM 4500-CI C	
Cyanide, Total	MONO	0.020	1.00		mg/L	11/14/15	11/14/15	SM 4500-CN E	
Method Blank	Polis	9/19/10		7.4		N/A		Aqueous	
Parameter	Results	Co Reco	16 DF	Qualifiers	Units	<u>Date</u> <u>Prepared</u>	Date Analyzed	Method	
Sulfide, Total	ND	0.050	0.100		mg/L	11/14/15	11/14/15	SM 4500 S2 - D	
Chloride	ND	2.0 7	6.000) ·	mg/L	N/A	11/14/15	SM 4500-CI C	
Cyanide, Total	Results ND ND	0.020	1.083	The Utilities Co.	isions of Gering	11/14/15	11/14/15	SM 4500-CN E	
						Order	86°C		

Quality Control - Spike/Spike Duplicate

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex
Los Angeles, CA 90051-1249

Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1099 EPA 3010A Total EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

Quality Control Sample ID	Type		Matrix	th	nstrument	Date Prepare	d Date Ana	lyzed	MS/MSD Bat	ch Numbe
Patriot 909	Sample		Aqueou	s (CP 7300	11/14/15	11/14/15	15:34	151114SA1	
Patriot 909	Matrix Spike		Aqueou	s I	CP 7300	11/14/15	11/14/15	15:37	151114SA1	
Patriot 909	Matrix Spike	Duplicate	Aqueou	s I	CP 7300	11/14/15	11/14/15	15:43	151114SA1	
Parameter	Sample Conc.	Spike Added	MS Conc.	MS %Rec	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Antimony	Call Olde	0.5000	0.2473	49	0.2457	49	72-132	1	0-10	3
Arsenic	the second secon	0.5000	0.6014	118	0.6118	120	80-140	2	0-11	
Barium	2,256 ND	0,5000	2.893	4X	3.054	4X	87-123	4X	0-6	Q
Beryllium	NDO	0.5000	0.5453	109	0.5677	114	89-119	4	0-8	
Cadmium	0.05572	0.5000	0.5323	95	0.5480	98	82-124	3	0-7	
Chromium	ND	0.5000	0,5422	108	0.5708	114	86-122	5	0-8	
Cobalt	0.01920	0.5000	0.5191	100	0.5351	103	83-125	3	0-7	
Copper	0.1176	0.5000	0.67420	111	0.7070	118	78-126	5	0-7	
Lead	ND	0.5000	0.4263	85	0,4394	88	84-120	3	0-7	
Molybdenum	0.05082	0,5000	0.5453	99	0.5629	102	78-126	3	0-7	
Nickel	0.1773	0.5000	0.6734	199	0.6974	104	84-120	3	0-7	
Selenium	ND	0.5000	0.5193	1045	0.5629 0.6974 0.5492 0.3411	110	79-127	6	0-9	
Silver	0.01846	0.2500	0.3288	124		129	86-128	4	0-7	3
Thallium	0.03243	0.5000	0.2546	44	0.2788	49	79-121	9	8-0	3,4
Vanadium	0.2425	0.5000	0.8265	117	0.8762	0 127	88-118	6	0-7	3
Calcium	3262	0.5000	3112	4X	31620	128 OF CO	77-113	4X	0-11	Q
Zinc	0.9568	0.5000	1.561	121	1.595	128	89-131	2	0-8	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - Spike/Spike Duplicate

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received: Work Order:

15-11-1099 EPA 7470A Total

Preparation:

EPA 7470A

11/14/15

Method:

Page 2 of 2

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number
15-11-0525-14	Sample	Aqueous	Mercury 04	11/13/15	11/13/15	18:33	151113SA3	
15-11-0525-14	Matrix Spike	Aqueous	Mercury 04	11/13/15	11/13/15	18:35	151113SA3	
15-11-0525-14	Matrix Spike Duplicate	Aqueous	Mercury 04	11/13/16	11/13/15	18:38	151113SA3	
Parameter	Sample Spike Conc. Added	MS Conc.	MS MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Mercury	Conpolience Audi, or	0.01030	103 0.01059	106	55-133	3	0-20	
		le Dublic Ut	he brown					
			S Code during	ene.				
				al Order	~ ~			
	Matrix Spike Duplicate Sample Coric. Spike Added ND 0.01000		S Code during	Seneral Order	in C			

RPD: Relative Percent Difference. CL: Control Limits

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

EPA 1010A

Page 1 of 4

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID 15-11-1028-4	Type Sample	Matrix Aqueous	Instrument	Date Prepared	Date Analyzed 11/14/15 14:00	Duplicate Batch Number
15-11-1028-4	Sample Duplicate	Aqueous	FP3	N/A	11/14/15 14:00	
Parameter Ignitability	Confidential Section	Sample Conc. >212	DUP Conc. >212	<u>RPD</u> 0	RPD CL 0-25	Qualifiers
	Compliance Audit	of the Duble Linder	the provision			
			ode duli	General Order	So	
					SK.C	

RPD: Relative Percent Difference. CL: Control Limite

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

N/A

Work Order: Preparation: 15-11-1099

Method:

SM 4500 H+ B

Project: TS2015-C013 / Aliso Canyon

Page 2 of 4

Quality Control Sample ID Patriot 909	Type Sample	Matrix Aqueous	Instrument PH 1	Date Prepared	Date Analyzed 11/14/15 10:44	Duplicate Batch Number
Patriot 909	Sample Duplicate	Aqueous	PH 1	N/A	11/14/15 10:44	
Parameter pH	Condidential	<u>Sample Conc.</u> 7.590	<u>DUP Conc.</u> 7.640	RPD 1	RPD CL 0-25	Qualifiers
	Compliance Audit	Of the Duble Ch	ho oro			
			des Code during	General Or		
				Gor.	Pa _C	

RPD: Relative Percent Difference. CL: Control Limite

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500 S2 - D

Page 3 of 4

Project: TS2015-C013	Aliso Canyon
----------------------	--------------

Type Sample Sample Duplicate	Matrix Aqueous Aqueous	N/A N/A	11/14/15 00	0:00 11/14/15 10:56	F1114SD1
Conposition Section Se	Sample Conc. ND	DUP Conc. ND	RPD N/A	<u>RPD CL</u> 0-25	Qualifiers
Audir	or the Dublic Uni	the provisions			
		e divili	General Oro	Son Co	
	Sample Sample Duplicate	Sample Aqueous Sample Duplicate Aqueous	Sample Aqueous N/A Sample Duplicate Aqueous N/A	Sample Aqueous N/A 11/14/15 00 Sample Duplicate Aqueous N/A 11/14/15 00	Sample Aqueous N/A 11/14/15 00:00 11/14/15 10:56 Sample Duplicate Aqueous N/A 11/14/15 00:00 11/14/15 10:56 Sample Conc. DUP Conc. RPD RPD CL

RPD: Relative Percent Difference. CL: Control Limits

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500-CI C

Page 4 of 4

Project: TS2015-C013 / Aliso Canyon

Date Prepared Date Analyzed Duplicate Batch Number

Matrix Instrument Quality Control Sample ID Type Patriot 909 Sample Aqueous BUR02 11/14/15 12:06 F1114CLCD2 N/A Compliance Align of the Dublic Utilities Code during letter oc. C 11/14/15 12:06 F1114CLCD2 Patriot 909 BUR02 Sample Duplicate Aqueous N/A RPD CL Parameter Chloride

RPD: Relative Percent Difference. CL: Control Limite

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order:

15-11-1099 N/A

Preparation: Method:

SM 4500 S2 - D

Page 1 of 6

Project: TS2015-C013 / Aliso Canyon

Type	Mat	rix	Instrument	Date Pr	repared	Date	Analyzed	LCS/LCSD E	Batch Number
LCS	Aqu	ieous	N/A	11/14/1	5	11/14	4/15 10:56	F1114SL1	
LCSD	Aqu	ieous	N/A	11/14/1	5	11/14	4/15 10:56	F1114SL1	
Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec	%Red	c. CL	RPD	RPD CL	Qualifiers
1.000 ONTICLE	0.8000	80	0,8000	80	80-12	20	0	0-20	
Mance A	Ses of the	o under							
		Offic Un	the brough						
			Code day	or Gener	Ć.				
					Orde	60	2		
	LCS	LCS Aqu	LCS Aqueous	LCS Aqueous N/A	LCS Aqueous N/A 11/14/1	LCS Aqueous N/A 11/14/15	LCS Aqueous N/A 11/14/15 11/14 LCSD Aqueous N/A 11/14/15 11/14	LCS Aqueous N/A 11/14/15 11/14/15 10:56 LCSD Aqueous N/A 11/14/15 11/14/15 10:56	LCS Aqueous N/A 11/14/15 11/14/15 10:56 F1114SL1 LCSD Aqueous N/A 11/14/15 11/14/15 10:56 F1114SL1

RPD: Relative Percent Difference. CL: Control Limits

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1099

N/A

Method:

SM 4500-CN E

Page 2 of 6

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date Pr	epared	Date	Analyzed	LCS/LCSD B	atch Number
099-05-061-3904	LCS	Aqı	ueous	UV 8	11/14/1	5	11/14	1/15 12:18	F1114CNL2	
099-05-061-3904	LCSD	Aqu	ueous	UV 8	11/14/1	5	11/14	1/15 12:18	F1114CNL2	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec	. CL	RPD	RPD CL	Qualifiers
Cyanide, Total	0.2000 Complianto	0.1700	85	0.1760	88	80-12	0	3	0-20	
	Spike Added 0.2000 Onnolisho	Ses Horning	ounder Diblic U	the Droi						
				es Code ou	or General	3/0				
						700	600	0		

RPD: Relative Percent Difference. CL: Control Limite

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1099 EPA 3510C

Method:

EPA 8015B (M)

Page 3 of 6

Project: TS2015-C013 / Aliso Canyon

Quality Control Sample ID	Type	Mat	rix	Instrument	Date P	repared	Date	Analyzed	LCS/LCSD B	atch Number
099-15-498-310	LCS	Aqı	ieous	GC 47	11/14/1	15	11/1	4/15 14:21	151114B01	
099-15-498-310	LCSD	Aqı	ueous	GC 47	11/14/1	5	11/1	4/15 14:40	151114B01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Red	c. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000 Onliden	1822	91	1962	98	75-11	17	7	0-13	
	Spike Added 2000 Show Section	SES UBTINE	OUD							
			Subjects	the Dra						
				Ties Code ons	Or					
				90	Ting energy	9/				
						Too	60	2		

RPD: Relative Percent Difference. CL: Control Limite

Quality Control - LCS

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

LCS ME CL validation result: Pass

Date Received:

11/14/15 15-11-1099

EPA 6010B

Work Order: Preparation:

Method:

EPA 3010A Total

Page 4 of 6

Quality Control Sample ID	Туре	Matrix	Instrume	nt Date Prep	pared Date Anal	lyzed LCS Batch I	Number
97-01-003-15490	LCS	Aque	ous ICP 730	11/14/15	11/14/15	15:28 151114LA1	
Parameter	S	pike Added	Conc. Recovere	LCS %Rec.	%Rec. CL	ME CL	Qualifiers
Antimony	0.	5000	0.4934	99	80-120	73-127	
rsenic	0.	5000	0.4915	98	80-120	73-127	
Jarium	2 On 0.	5000	0.5183	104	80-120	73-127	
leryllium	000 1000	5000	0.4960	99	80-120	73-127	
admium	On So 0/2	5000	0.5043	101	80-120	73-127	
Chromium	10/1 01/0	5000	0.5112	102	80-120	73-127	
Cobalt	Combiance of	5000	0.5300	106	80-120	73-127	
Copper	000	5000	0.4964	99	80-120	73-127	
ead	6	5000 / 100 5000 / 100	0.5036	101	80-120	73-127	
lolybdenum	0.	5000 %	0.4862	97	80-120	73-127	
lickel	0.	5000	6.5177	104	80-120	73-127	
elenium	0.	5000	0,4805	96	80-120	73-127	
ilver	0.	2500	0.2578	101	80-120	73-127	
hallium	0.	5000	0.5356	107	80-120	73-127	
/anadium	Ò,	5000	0.5029	6,101	80-120	73-127	
Calcium	0.	5000	0.4929	99	80-120	73-127	
linc	0.	5000	0.4923	98 G	80-120	73-127	
otal number of LCS compounds	s: 17			107 5,101 99 98 101 101 101 101 101 101 101 101 101			
otal number of ME compounds:				4/	0.		
otal number of ME compounds					700		

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 EPA 7470A Total

Method:

EPA 7470A

Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepare	d Date Analyzed	LCS Batch Number
099-04-008-7657	LCS	Aqueous	Mercury 04	11/13/15	11/13/15 18:31	151113LA3
Parameter		Spike Added	Conc. Recov	ered LCS %	Rec. %Rec	.CL Qualifiers
Mercury	Con	O.01000	0.01065	107	80-12	0
	Con Side	97.				
	Dollan	on also				
	8	ALLO OF THE				
		The Dung				
		Ublic	the			
		C	THE POPUL			
			Colons			
			COU.	9,00		
			1	no noral		
				000	26	
					60-	
					C	

RPD: Relative Percent Difference. CL: Control Limits

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received: Work Order:

11/14/15 15-11-1099 **EPA 5030C**

Preparation: Method:

EPA 8260B

Project: TS2015-C013 / Aliso Canyon

Page 6 of 6

Quality Control Sample ID	Type		Matrix	- 0	nstrument	Date Prepare	d Date A	nalyzed	LCS/LCSD Ba	tch Number
099-14-001-18768	LCS		Aqueous		C/MS XX	11/14/15	11/14/	15 10:55	151114L001	
099-14-001-18768	LCSD		Aqueous		C/MS XX	11/14/15	11/14/	15 11:29	151114L001	
<u>Parameter</u>	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	MECL	RPD	RPD CL	Qualifiers
Benzene	50.00 C	48.94	98	48.85	98	80-120	73-127	0	0-20	
Carbon Tetrachloride	50.90	55.76	112	55.28	111	67-139	55-151	1	0-20	
Chlorobenzene	50:00	47.74	95	48.38	97	78-120	71-127	1	0-20	
1,2-Dibromoethane	50.00	048.42	97	49.04	98	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	50.00	45:63 U	91	46.06	92	63-129	52-140	1	0-20	
1,2-Dichloroethane	50.00	C656,0763	112	55.89	112	70-130	60-140	0	0-20	
1,1-Dichloroethene	50.00	5408, 0	108	54.22	108	66-126	56-136	0	0-20	
Ethylbenzene	50.00	48.53	97 0	48.58	97	80-123	73-130	0	0-20	
Toluene	50.00	49.39	99 0 47	249.42	99	80-120	73-127	0	0-20	
Trichloroethene	50.00	48.26	97 46/	47,88	95	80-122	73-129	1	0-20	
Vinyl Chloride	50.00	35.70	71	37.60	75	70-130	60-140	5	0-20	
p/m-Xylene	100.0	96,63	97	97.65	6, 98	75-123	67-131	1	0-20	
o-Xylene	50.00	47.12	94	47.50	5 395	74-122	66-130	1	0-20	
Methyl-t-Butyl Ether (MTBE)	50.00	44.89	90	45.85	0,9275	69-129	59-139	2	0-20	
Total number of LCS compounds	: 14				947	74-122 69-129 General O				
Total number of ME compounds:					- 2	0 00				
Total number of ME compounds						90				
LCS ME CL validation result: Pas	SS						%			
							60			
							0.0	F.		
							_			

RPD: Relative Percent Difference. CL: Control Limits

Sample Analysis Summary Report

Work Order: 15-11-1099				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 1010A	N/A	691	FP3	1
EPA 6010B	EPA 3010A Total	935	ICP 7300	1
EPA 7470A	EPA 7470A Total	915	Mercury 04	1
EPA 8015B (M)	EPA 3510C	421	GC 47	1
EPA 8260B	EPA 5030C	986	GC/MS XX	2
SM 4500 H+ B	N/A	688	PH 1	1
SM 4500 S2 - D	N/A	880	N/A	1
SM 4500-CI C	N/A	688	BUR02	1
SM 4500-CN E	N/A	880	UV 8	1
	N/A Conflictential Submitted under Section Section Section Ses and in or the Dublic Section of the Dublic Section of the Dublic Section of the Subjection of	The state of the s		
		Tillies Chision		
		ode dur	G _{o.}	
		20	"Peral"	
			().	
			Ordon	

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

concentrations.

Glossary of Terms and Qualifiers

Work Order: 15-11-1099 Page 1 of 1 Qualifiers Definition See applicable analysis comment Less than the indicated value. Greater than the indicated value, 1 Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification. 2 Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control. 3 4 The MS/MSD RPD was out of control due to suspected matrix interference. 5 The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference. Surrogate recovery pelow the acceptance limit. 6 7 Surrogate recovery above the acceptance limit. В Analyte was present in the associated method blank. Sample analyzed after holding time expired BU BV Sample received after holding time expired. CI Concentration exceeds the calibration range. E Sample was extracted past end of recommended max, holding time. ET HD The chromatographic pattern was inconsistent with the proffle of the reference fuel standard. HDH The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected) The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were HDL Analyle was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is J estimated.

Analyte positively identified but quantitation is an estimate.

LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (F.4 SD from the mean). JA ME ND Parameter not detected at the indicated reporting limit. Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike Q concentration by a factor of four or greater. SG The sample extract was subjected to Silica Gel treatment prior to analysis. X % Recovery and/or RPD out-of-range. Z Analyte presence was not confirmed by second column or GC/MS analysis. Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported,

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero

CHAIN OF CUSTODY FORM

SOUTHERN CALIFORNIA GAS COMPANY - ENGINEERING ANALYSIS CENTER

SHIPPING ADDRESS - 8730 E. SLAUSON AVE, ML SC723B, PICO RIVERA, CA 90660-5100 - PHONE: (562)- 806-4344 STREET ADDRESS - 8101 ROSEMEAD BLVD. BLDG H, PICO RIVERA, CA 90660 - EMAIL: EACChemicalSection@Socalgas.com

Project # 420 5-C013	1013	Requestor	Tax gin		Sampling Lo	cation Also	Sampling Location Hism Common
Sample I.D.	Sampling Date	Sampling Time	Collected By	Sample Container	Sample	Preservative	Analysis Requested
Patriot 9001) [2] n	08:40 PM	S. Jalba	made x1	16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Na con	pt, Plusbout, Wood Cyuntek
_				1x 200 1 1005 1	The day	4004	TPH-CL TT 22 Propries + Noteslam
→	_	-3	Qurin.	12 4 40 L		Enthalfood Sulfithe	Sulfine Subo. Use
`	`	X	General Orde	,		1	Ţ
Observations/Comments:	ıts:	CO	8				

nt) / (Signature) GasCo. Dept.	Time Time	Received By (Print) (Signature)	Company/ GasCo. Dept.
on Matter SAM, DATON FAC 11/13	1,5 8:10 Pm	Mout Kommoner Shilter	an con
I Kammerer Had Come Este 11/1	0480	2 - Yay Liles	五五

H:\Chem\Forms\Chain of Custody.xls

Page 29 of 29 WORK ORDER NUMBER: 15-11- /099

Calscience SAMPLE RECEIPT CH

- 1419 MAGE - STATE	0004.3177 - 2 - 1 - 1	-
ECKLIST	COOLER_	1 of 1
	DATE: 11 /	11/ / 2015

CLIENT: 445 Co. DAT	E: 11 /	14	/ 2015
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC2 (CF:-0.4°C); Temperature (w/o CF):	Blank Z		
CUSTODY SEAL: Cooler	Checke Checke		
SAMPLE CONDITION: 10 Page 1/2	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples	P		
COC document(s) received complete	P		
☐ No analysis requested ☐ Not relinquished ☑ No relinquished date ☐ No relinquished time			
Sampler's name indicated on COC	D		
Sample container label(s) consistent with COC	Ø		
Sample container(s) intact and in good condition	Ø		
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested	P		D
□ No analysis requested □ Not relinquished ☑ No relinquished date □ No relinquished time Sampler's name indicated on COC Sample container label(s) consistent with COC Sample container(s) intact and in good condition Proper containers for analyses requested Sufficient volume/mass for analyses requested Samples received within holding time Aqueous samples for certain analyses received within 15-minute holding time	Ø		
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen		P	D
□ PH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen	Æ		
Container(s) for certain analysis free of headspace Volatile Organics Dissolved Gases (RSK-175) Dissolved Oxygen (SM 4500) Carbon Dioxide (SM 4500) Ferrous Iron (SM 3500) Hydrogen Sulfide (Hach)	Ø		
Tedlar™ bag(s) free of condensation			A.
CONTAINER TYPE: , (Trip Blank Lot Numbe	er:		1
Aqueous: VOA	GBp 🗆 1	GJs	
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labeled s = H ₂ SO ₄ , u = ultra-pure, znna = Zn(CH ₃ CO ₂) ₂ + NaOH	ealable Ba d/Checke Reviewe	d by: _	1050 728

Ex. I-8

Daily Well Work Report

					<u> </u>	Company
20	eld Name			Operator		
Aliso Canyon Daily Summary		Southern California Ga	is Company			
Job Name			Report Start Date	(1)	Report End Date	
Oct 2015 - Wellhead Leak	Laurence Communication	The state of the s		/13/2015	2.11	14/2015
Daily Field Est Total (Cost)	Cum Field Est To Date (Cost)	Total AFE Amo	ount (Cost)	Norma	alized AFE-Field Estimat	e (Cost)
Equalized swab valve w/ 1200 p. Perforated tubing 8387'-8391'. P open choke on 7" casing. Pump After 185 bbls pumped, pony mo surface cracks. Displaced 10 bbl pumped, observed brine from cra	ing kill. Installed target 90 on wellhead si. Opened swab valve. Tubing Pressu OOH. L/D lubricator. Pumped 10 bbls trate at 6 bpm. After 80 bbls displaced, otor went down. Pumps offline. Brought sof 9.4 ppg polymer into tubing. Shut acks. Continue pumping junk shots. Sh	re - 1201 psi. Pumped 9.4 polymer pill. Begar observed increased g pumps back online at down. Lined up to pun	I 6 bbls CaCl2. RII- n displacing w/ 9.4 pas flow and liquid a t 7 bpm. After 693 I np down 2-7/8" x 7"	w/ tubing punct ppg CaCl2. Afte at surface cracks bbls pumpd, brin	h. Tagged EZSV a er displacing tubing s. Continued pump ee, oil and gas flow	at 8402'. g volumed, ping 8 bpm. ving from
Comments NOT for DOGGR Report						
Job Phase			Planned Lik	ely Phase Cost (Actual Phase Field E	Cost Var ML (Cost)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			110000			
Daily Costs						
Cost Des		Vendor	Ticket	Field Est (Cost		Note
Labor - Contract	G.M. Volkmar	7	23-2015		M ke Volkma	ar Supervision
Labor - Contract	Halliburton Energy	Services	902886908		Boots & Coo	ts Estimate
Pumping Services	Halliburton Energy	Services	0902937291		Pump Truck supervisor, s truck	, crew, standby, pump
Labor - Contract	Carbon Wireline		0516			separator and Equipment and
Wireline - Production Equip.	Western Wireline		13028		Quad monito charge, subs Millingworth, Bottoms	stance charge.
Labor - Contract	Doby Hagar Truck	ing	est		Supervisor of	n site
Crane Services	Doby Hagar Trucki	ng	127318		Stinger.	
Welding Services	Hurst Welding		691431		Welding Ser	vices
Labor - Contract	Ensign Resources		3102664- SO18		Ensign crew	and supervisor
Trucking - Vacuum	Doby Hagar Truck	ng	23371		80 bbl vac tr (victor)	uck, labor
Trucking - Vacuum	Doby Hagar Truck	ing	23376		130 bbl vac (Robert/And	
Wireline - Production Equip.	Western Wireline		12647		James Botto	Curis Partain, oms, mileage, stand by, 2-9/16"
Trucking - Vacuum	Doby Hagar Truck	ng	23327		130 bbl vac (steve b)	truck, labor
Labor - Contract	Geo Drilling Fluids	Inc.	117057		Labor - Ryar	Lindsey
Rentals - Misc	Pacific Petroleum		185457		Couple equip to bakersfield	pment and truck d to load
Trucking - Vacuum	Pacific Petroleum		184783		Socal Gas. I	er from GEO to Load 1 load brine to 69 pad. Used trucks
Coiled tubing	Halliburton Energy	Services	0902876399			ass I Div II Unit, lodge, CT Zone Γ Add Hose
Rentals - Misc	PEB (Padilla Elect	ric Builders)	15-4960		SS4/SS7 ge trailers	nerators and
Trucking - Vacuum	Doby Hagar Truck	ing	127255		haul to SS-9	bl CC water and site and unload x fresh water into

Report Generated on: 12/21/2015

Daily Well Work Report

Daily Summary Daily Costs				
Cost Des	Vendor	Ticket I	Field Est (Cost)	Note
Crane Services	T & T Trucking	225908	ricia Est (oost)	40 ton crane. Operator (Tim)
		4.10		to the contract of the contract (the contract of the contract
Rentals - Misc	Pacific Petroleum	R-19468		House Trailer, gray water tanks, portable restroom
Crane Services	T & T Trucking	226059		110 ton crane. Operator (Mike)
Labor - Contract	Steve Cardiff	2015-26		Steve Cardiff
BOPE	Weatherford International	11447535 SR		Choke Manifold, Generator, 2xblower, air compressor, hoses, Super Choke, Spools adapters, API Rings
Labor - Contract	BCI	17140		Labor, Laborers, man lift, mules, air comp, septic tanks, crew with tools, barricades
Rentals - Misc	Pacific Petroleum	185205		Got parts to stabalize HT's.
Labor - Contract	BCI	17138		Equipment, operator, truck, fuel truck
Tanks/Bins	Pacific Petroleum	R-19464		Portable tanks at 69 site, Light Tower
Rentals - Misc	Pacific Petroleum	R-19474		9 x House Trailers, Gray water tanks, 13 x Portable water trailers
Rentals - Misc	Pacific Petroleum	R-19475		10 x generators, containments, fuel trailers, light towers, office trailers
Rentals - Misc	Pacific Petroleum	R-19477		3 x House Trailers, Gray tanks, 3 x PWT, 3 x Generators, Containments
Wireline - Production Equip.	Western Wireline	13027		Marine Wireline unit, Slickline unit, lubricator, flanges, pump
Wireline - Production Equip.	Western Wireline	12931		Offshore unit 306, temp log, baker setting tool, lubricator, crew
Trucking - Non-Fluid		4886515		ACME Trucking - Driver Retention 11/2/15-11/15/15 (Preston)
Trucking - Non-Fluid		4884104		AMCE Trucking - Driver Retention 11/2/15- 11/15/2015. Luther
Trucking - Non-Fluid		4884103		ACME Trucking - Driver Retention 11/2/15-11/15/15. Shaun

Report Generated on: 12/21/2015

Ex. I-9

CALLTYPE	RESPONSIBLE_COMPANY	RESPONSIBLE_ORG_TYPE	RESPONSIBLE_CITY	RESPONSIBLE_STATE	RESPONSIBLE_ZIP	SOURCE
INC	SOUTHERN CALIFORNIA GAS	PRIVATE ENTERPRISE	NORTH RIDGE	CA	91326	TELEPHONE

1133370 CALLER STATED THAT DURING WELL KILL ACTIVITIES AN OILY MIST WAS BEING RELEASED INTO THE AIR AS WELL AS OILY LIQUID BEING RELEASED TO THE GROUND IN THE AREA OF THE WELL.

INCIDENT LOCATION	
INCIDENT_DTG	DISCOVERED
INCIDENT DATE TIME	11/13/2015 13:17
INCIDENT CAUSE	OTHER
TYPE OF INCIDENT	FIXED

LOCATION_ADDRESS	LOCATION_STREET1	LOCATION_STREET2	LOCATION NEAREST CITY
10801 TAMPA AVENITE			NORTH BIOGE

LOCATION STATE	LOCATION_COUNTY	LOCATION ZIP	DISTANCE FROM CITY	DISTANCE UNITS	DIRECTION FROM CITY	LAT_DEG	LAT MIN
٥	S E E S	01326					

POTENTIAL_FLAG	z
LOCATION_RANGE	
LOCATION_TOWNSHIP	
OCATION_SECTION	
LONG_QUAD	
LONG_SEC	
LONG_MIN	
LONG_DEG	
LAT_QUAD	
LAT_SEC	

ER INJURED	
RIES NUMB	
ANY INJUR	z
RADIUS OF EVACUATION	
WHO EVACUATED	
NUMBER EVACUATED	
ANY EVACUATIONS	Z
FIRE EXTINGUISHED	Ω
FIRE INVOLVED	N 0.
SEGNOS	113337

NATERINAN CLOSED	WAIERWAI	z	
AID CLOCIDE TIME	CLOSURE		
A BOOLEGOS BIA	AIN CORRIDOR DESC		
Also to abdiagos alv	AIN CORRIDOR CLOSED	z	
TIMIONA BOMAG	DAMAGE AMOUNT		
OHOV DAMACE	AMA	z	
STELLATION N	NOMBER TALALITES		
ANY EATALITIES	ANTERIES	z	
GET INTIGSON GEGIN	NOMBER HOSFILALIZED		

ERWAY_DESC	WATERWAY CLOSURE TIME	ROAD_CLOSED	ROAD DESC	ROAD CLOSURE TIME
		Z		

) TRACK DESC		
TRACK_CLOSED	z	
MAJOR ARTERY	Z	
CLOSURE_DIRECTION		

ADDITIONAL MEDIUM INFO	LAND/ATMOSPHERE	
ST MEDIUM DESC	LAND	
MEDIA INTEREST	UNKNOWN	
TRACK_CLOSURE_TIME		

BODY OF WATER	TRIBUTARY_OF	NEAREST RIVER MILE MAKER	RELEASE SECURED
			Z

SHEEN SIZE	
WATER SUPPLY CONTAMINATED	n
WIND DIRECTION	SW
WIND SPEED	20
AIR_TEMPERATURE	
WEATHER CONDITIONS	SUNNY
OTHER AGENCY NOTIFIED	
STATE AGENCY REPORT NUM	15-6708

ROAD CLOSURE UNITS TRACK CLOSURE UNITS SHEEN SIZE UNITS ADDITIONAL INFO

PASSENGERS TRANSFERRED	ON
RELEASE RATE RATE	
RELEASE RATE UNIT	
DURATION UNIT	
OFFSHORE	Z
SHEEN SIZE WIDTH UNITS	
SHEEN SIZE WIDTH	

ATING CAPACITY TYPE OF FUEL NPD	
POWER GENERATING FACILITY GENERAL	П
SEGNOS TYPE OF FIXED OBJECT	1133370 WELLHEAD

PIPELINE_COVERED	Π
EXPOSED_UNDERWATER	Z
PIPELINE ABOVE GROUND	ABOVE
DOT_REGULATED	Π
PIPELINE_TYPE	

SEQNOS | CHRIS CODE|CAS NUMBER UN NUMBER AMOUNT OF MATERALUNIT OF MEASURE NAME OF MATERIAL 1133370 OIL 000000-00-0