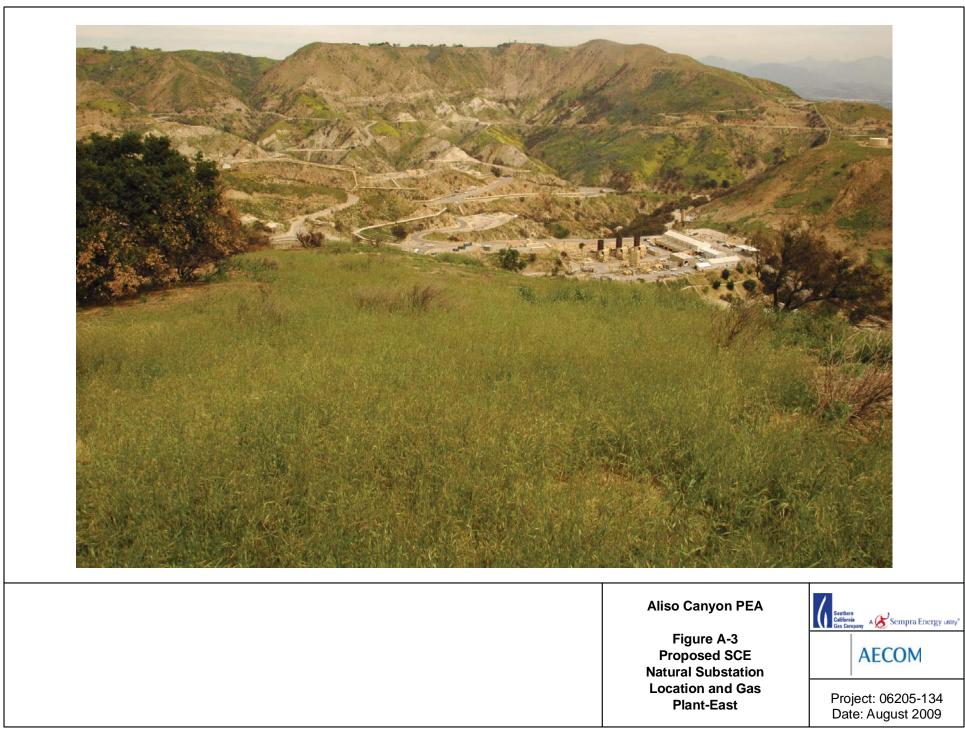
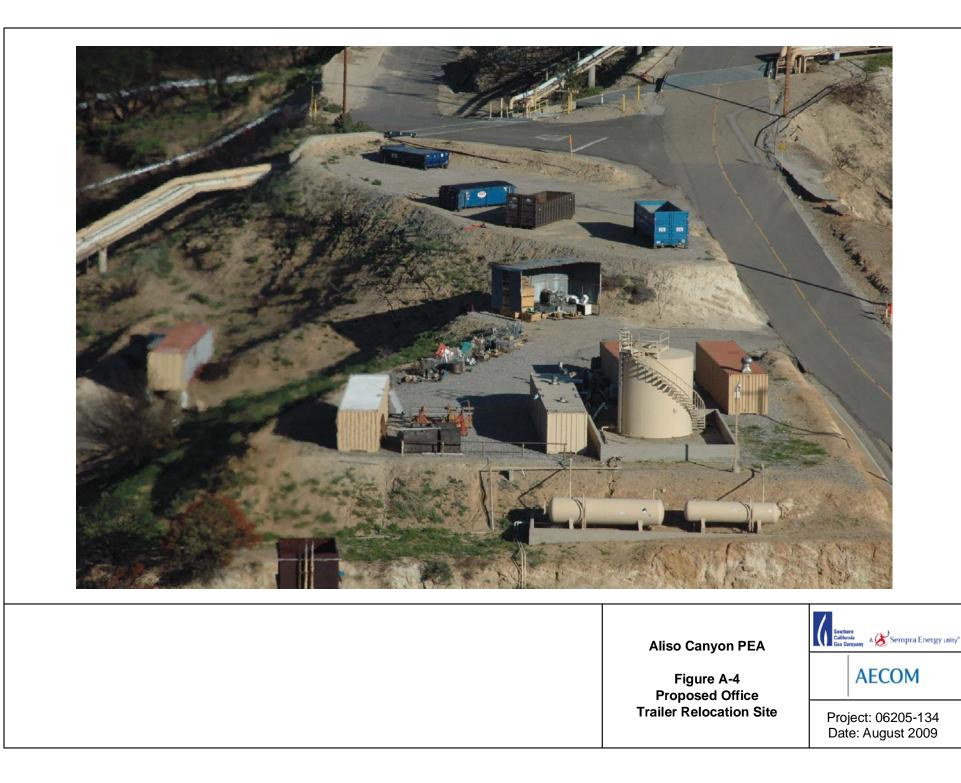

Appendix A Project Description Information


Appendix A – Project Description Information


List of Figures

- A.1 Gas Plant Overview
- A.2 Proposed SCE Natural Substation Location
- A.3 Proposed SCE Natural Substation Location and Gas Plant East
- A.4 Proposed Office Trailer Relocation Site

Appendix B Environmental Resource Information

Appendix B.1 – Air Quality Emission Calculations

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Scenario ¹	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day
1	43.00	78.35	490.11	10.80	24.88	8.82
2	69.31	129.30	492.42	5.09	46.65	17.03
3	68.42	174.60	425.98	3.62	28.87	12.52
4	70.34	197.48	492.96	4.99	36.97	15.84
5	73.55	226.98	454.30	3.77	30.80	15.47
6	38.59	58.14	192.86	1.98	14.85	4.86
Peak Daily	73.55	226.98	492.96	10.80	46.65	17.03

Scenario 1 Daily Emissions

	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}				
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Guard House and Office Trailer Relocation	20.36	46.57	312.12	8.31	8.11	4.43				
Substation Survey	0.15	0.18	0.19	0.15	0.23	0.15				
Marshalling Yard	1.73	2.25	0.91	0.00	0.75	0.11				
ROW Clearing	8.31	10.21	65.37	0.93	3.02	0.96				
Subtransmission Line Survey	0.15	1.36	0.19	0.00	0.10	0.01				
Subtransmission Line Roadway	12.13	16.68	110.10	1.41	12.59	3.13				
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04				
Total	43.00	78.35	490.11	10.80	24.88	8.82				

Scenario 2 Daily Emissions

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}					
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Compressor Station Survey	0.09	0.17	0.18	0.07	0.12	0.08					
Substation Grading	7.09	24.03	46.11	0.06	15.56	4.48					
Subtransmission Line Survey	0.15	1.36	0.19	0.00	0.10	0.01					
Subtransmission Line Roadway	12.13	16.68	110.10	1.41	12.59	3.13					
Subtransmission Pole Framing and Setting	12.04	21.62	65.64	0.52	4.74	3.10					
Subtransmission Line TSP Footing Installation	16.59	32.73	134.05	1.48	5.48	2.95					
Subtransmission Line Assembly	13.22	23.86	110.47	1.42	5.06	2.58					
Subtransmission Line Restoration	7.99	8.85	25.69	0.13	3.00	0.71					
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04					
Total	69.31	129.30	492.42	5.09	46.65	17.03					

Sce	nario 3 Daily	y Emissions	5			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Compressor Station Site Clearing	5.69	30.69	32.08	0.05	3.07	0.99
Compressor Station Site Preparation	7.57	39.40	50.28	0.07	5.28	0.99
Substation Civil	3.28	13.13	12.29	0.02	1.39	0.99
Substation Fencing	0.82	3.54	2.60	0.00	0.30	0.19
Subtransmission Guard Structure Installation	9.05	8.28	18.38	0.05	3.45	0.71
Subtransmission Line Survey	0.15	1.36	0.19	0.00	0.10	0.01
Subtransmission Pole Framing and Setting	12.04	21.62	65.64	0.52	4.74	3.10
Subtransmission Line TSP Footing Installation	16.59	32.73	134.05	1.48	5.48	2.95
Subtransmission Line Assembly	13.22	23.86	110.47	1.42	5.06	2.58
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04
Total	68.42	174.60	425.98	3.62	28.87	12.52

Table 1 Scenario 3 Daily Emission

Scenario	4	Daily	Emissions
000110110	-	Duny	LIIIIOOIOIIO

	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}					
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Compressor Station Civil	10.51	69.93	47.43	0.11	6.20	2.47					
Substation MEER	0.18	1.44	0.53	0.00	0.12	0.02					
Substation Electrical	1.69	7.44	5.75	0.01	0.70	0.42					
Substation Wiring	0.27	1.88	0.59	0.00	0.15	0.04					
Substation Transformer	1.54	6.78	7.45	0.01	0.75	0.52					
Substation Testing	0.12	1.03	0.49	0.00	0.07	0.02					
Substation Maintenance	0.18	1.37	1.27	0.00	0.10	0.04					
Substation Paving	1.33	8.84	7.63	0.01	0.69	0.47					
Substation Landscaping	0.38	2.51	1.39	0.00	0.21	0.07					
Subtransmission Line Survey	0.15	1.36	0.19	0.00	0.10	0.01					
Subtransmission Line Roadway	12.13	16.68	110.10	1.41	12.59	3.13					
Subtransmission Pole Framing and Setting	12.04	21.62	65.64	0.52	4.74	3.10					
Subtransmission Line TSP Footing Installation	16.59	32.73	134.05	1.48	5.48	2.95					
Subtransmission Line Assembly	13.22	23.86	110.47	1.42	5.06	2.58					
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04					
Total	70.34	197.48	492.96	4.99	36.97	15.84					

Scenario 5 Daily Emissions											
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}					
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Compressor Station Mechanical	11.76	73.06	57.14	0.12	6.57	2.80					
Compressor Station Electrical	5.95	33.10	34.80	0.06	2.99	1.68					
Substation MEER	0.18	1.44	0.53	0.00	0.12	0.02					
Substation Electrical	1.69	7.44	5.75	0.01	0.70	0.42					
Substation Wiring	0.27	1.88	0.59	0.00	0.15	0.04					
Substation Transformer	1.54	6.78	7.45	0.01	0.75	0.52					
Substation Testing	0.12	1.03	0.49	0.00	0.07	0.02					
Substation Maintenance	0.18	1.37	1.27	0.00	0.10	0.04					
Substation Paving	1.33	8.84	7.63	0.01	0.69	0.47					
Substation Landscaping	0.38	2.51	1.39	0.00	0.21	0.07					
Subtransmission Line Survey	0.15	1.36	0.19	0.00	0.10	0.01					
Subtransmission Pole Framing and Setting	12.04	21.62	65.64	0.52	4.74	3.10					
Subtransmission Line TSP Footing Installation	16.59	32.73	134.05	1.48	5.48	2.95					
Subtransmission Line Assembly	13.22	23.86	110.47	1.42	5.06	2.58					
Subtransmission Line Restoration	7.99	8.85	25.69	0.13	3.00	0.71					
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04					
Total	73.55	226.98	454.30	3.77	30.80	15.47					

Table 1 Scenario 5 Daily Emissions

Sce	enario 6 Daily	/ Emissions	5			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
PPL Installation	14.69	15.67	22.12	0.06	6.53	1.26
Subtransmission Line Conductor Installation	17.68	23.49	108.34	1.41	6.43	2.27
Subtransmission Line Restoration	7.99	8.85	25.69	0.13	3.00	0.71
Fiber Optic Installation	0.32	2.17	2.09	0.00	0.22	0.09
Subtransmission Guard Structure Removal	10.47	12.43	46.93	0.42	4.12	1.17
Compressor Station Paving	0.18	1.44	0.53	0.00	0.12	0.02
Compressor Station Fencing	0.27	1.88	0.59	0.00	0.15	0.04
Compressor Station Landscaping	1.54	6.78	7.45	0.01	0.75	0.52
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04
Total	38.59	58.14	192.86	1.98	14.85	4.86

Table 2 Compressor Station Survey

Emissions Summary										
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00				
Vehicle Exhaust	0.09	0.17	0.18	0.07	0.08	0.08				
Vehicle Fugitive					0.04	0.00				
Earthwork Fugitive					0.00	0.00				
Total	0.09	0.17	0.18	0.07	0.12	0.08				

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day)ª	CO (lb/day)ª	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Pickup Truck	5	1	0.01	0.09	0.10	0.00	0.00	0.00
Worker Commuting	40	2	0.07	0.07	0.07	0.07	0.07	0.07
Total Vehicle Exhaust			0.09	0.17	0.18	0.07	0.08	0.08

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Pickup Truck	Paved	5	1	0.00	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	2	0.04	0.00
Worker Commuting	Unpaved	0	2	0.00	0.00
Total Vehicle Fugitive				0.04	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 3 Compressor Station Site Clearing

Emissions Summary								
	ROG CO NO _x SO _x			PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Equipment Exhaust	3.55	12.87	26.32	0.03	1.62	1.49		
Vehicle Exhaust	2.15	17.81	5.76	0.03	0.36	0.27		
Vehicle Fugitive					1.08	0.00		
Earthwork Fugitive					0.00	0.00		
Total	5.69	30.69	32.08	0.05	3.07	1.76		

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
D6 Dozer		5	1	0.93	3.20	6.93	0.01	0.43	0.39
Grader		5	1	0.86	3.16	7.17	0.01	0.38	0.35
Backhoe/Loader		5	2	1.02	3.93	6.75	0.01	0.52	0.48
Sheep's Foot Vibrator Compactor (10 yard	ds)	5	2	0.05	0.26	0.32	0.00	0.02	0.01
Forklift		5	2	0.69	2.32	5.16	0.01	0.28	0.26
Total Equipment Exhaust				3.55	12.87	26.32	0.03	1.62	1.49

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Dump Truck	10	6	0.18	0.72	2.29	0.00	0.11	0.10
6 Ton Truck	10	2	0.06	0.24	0.76	0.00	0.04	0.03
Water Truck	20	1	0.06	0.24	0.76	0.00	0.04	0.03
Pickup Truck	5	1	0.01	0.09	0.10	0.00	0.00	0.00
Worker Commuting	40	50	1.83	16.53	1.84	0.02	0.17	0.11
Total Vehicle Exhaust			2.15	17.81	5.76	0.03	0.36	0.27

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Dump Truck	Paved	10	6	0.03	0.00
Dump Truck	Unpaved	0	6	0.00	0.00
6 Ton Truck	Paved	10	2	0.01	0.00
6 Ton Truck	Unpaved	0	2	0.00	0.00
Water Truck	Paved	20	1	0.01	0.00
Water Truck	Unpaved	0	1	0.00	0.00
Pickup Truck	Paved	5	1	0.00	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	50	1.03	0.00
Worker Commuting	Unpaved	0	50	0.00	0.00
Total Vehicle Fugitive				1.08	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (lb/dav) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 4 Compressor Station Site Preparation

Emissions Summary									
	ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	4.35	16.14	32.66	0.04	1.98	1.82			
Vehicle Exhaust	3.23	23.26	17.62	0.04	0.89	0.74			
Vehicle Fugitive					1.27	0.00			
Earthwork Fugitive					1.14	0.24			
Total	7.57	39.40	50.28	0.07	5.28	2.79			

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a	(lb/day) ^a				
D6 Dozer		5	1	0.93	3.20	6.93	0.01	0.43	0.39
Grader		5	1	0.86	3.16	7.17	0.01	0.38	0.35
Excavator		5	2	1.48	5.58	11.50	0.01	0.64	0.59
Backhoe/Loader		5	2	1.02	3.93	6.75	0.01	0.52	0.48
Sheep's Foot Vibrator Compactor (10 yards)		5	2	0.05	0.26	0.32	0.00	0.02	0.01
Total Equipment Exhaust				4.35	16.14	32.66	0.04	1.98	1.82

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Pickup Truck	10	15	0.39	2.77	3.09	0.00	0.11	0.10
Dump Truck (20 yards)	24	12	0.88	3.44	11.01	0.01	0.53	0.46
Dump Truck (10 yards)	24	1	0.07	0.29	0.92	0.00	0.04	0.04
Water Truck	20	1	0.06	0.24	0.76	0.00	0.04	0.03
Worker Commuting	40	50	1.83	16.53	1.84	0.02	0.17	0.11
Total Vehicle Exhaust			3.23	23.26	17.62	0.04	0.89	0.74

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Pickup Truck	Paved	10	15	0.08	0.00
Pickup Truck	Unpaved	0	15	0.00	0.00
Water Truck	Paved	20	1	0.01	0.00
Water Truck	Unpaved	0	1	0.00	0.00
Dump Truck (20 yards)	Paved	24	12	0.15	0.00
Dump Truck (10 yards)	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	50	1.03	0.00
Worker Commuting	Unpaved	0	50	0.00	0.00
Total Vehicle Fugitive				1.27	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
Soil Dropping ^b	CY/Day	1,150	1.14	0.24
Bulldozing, Scraping and Grading	Hours/Day	25	8.69	1.81
Storage Pile Wind Erosion ^c	Acres	0.5	11.00	2.29
Total Earthwork Fugitive			20.84	4.33

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Peak daily estimated from total of 100,000 CY over 4 months (87 working); i.e., 1150 CY per day

^c Assumed for 0.5 acre storage pile area

Table 5 Compressor Station Civil

Emissions Summary

Emissions ourmary										
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	4.15	15.68	32.71	0.04	1.93	1.77				
Vehicle Exhaust	6.36	54.25	14.72	0.08	0.93	0.68				
Vehicle Fugitive					3.25	0.00				
Earthwork Fugitive					0.10	0.02				
Total	10.51	69.93	47.43	0.11	6.20	2.47				

Construction Equipment Exhaust Emissions

		Hours/							
	Horse-	Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
Drilling Rig		5	1	0.53	2.57	5.67	0.01	0.25	0.23
Backhoe/Loader		5	2	1.02	3.93	6.75	0.01	0.52	0.48
Forklift		5	1	0.34	1.16	2.58	0.00	0.14	0.13
30 Ton Hydraulic Crane		5	1	0.80	2.72	7.26	0.01	0.32	0.30
D6 Dozer		5	1	0.93	3.20	6.93	0.01	0.43	0.39
Front End Loader		5	1	0.51	1.96	3.37	0.00	0.26	0.24
Sheep's Foot Vibrator Compactor									
(10 yards)		5	1	0.03	0.13	0.16	0.00	0.01	0.01
Total Equipment Exhaust				4.15	15.68	32.71	0.04	1.93	1.77

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (Ib/day) ^a	CO (lb/day) ^a	NO _x (Ib/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (lb/day) ^a
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Number			· · · · · ·		(
Water Truck	20	1	0.06	0.24	0.76	0.00	0.04	0.03
Pickup Truck	10	15	0.39	2.77	3.09	0.00	0.11	0.10
6 Ton Truck	20	7	0.43	1.67	5.35	0.01	0.26	0.22
Worker Commuting	40	150	5.48	49.58	5.51	0.06	0.52	0.33
Total Vehicle Exhaust			6.36	54.25	14.72	0.08	0.93	0.68

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Water Truck	Paved	20	1	0.01	0.00
Water Truck	Unpaved	0	1	0.00	0.00
Pickup Truck	Paved	10	15	0.08	0.00
Pickup Truck	Unpaved	0	15	0.00	0.00
6 Ton Truck	Paved	20	7	0.07	0.00
6 Ton Truck	Unpaved	0	7	0.00	0.00
Worker Commuting	Paved	40	150	3.09	0.00
Worker Commuting	Unpaved	0	150	0.00	0.00
Total Vehicle Fugitive				3.25	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Soil Dropping ^b	CY/Day	100	0.10	0.02
Total Earthwork Fugitive			0.10	0.02

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Estimate

Table 6 Compressor Station Mechanical

	LIIII33	Joins Summ	iai y			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	5.46	19.04	43.19	0.04	2.34	2.15
Vehicle Exhaust	6.30	54.02	13.95	0.07	0.89	0.65
Vehicle Fugitive					3.24	0.00
Earthwork Fugitive					0.10	0.00
Total	11.76	73.06	57.14	0.12	6.57	2.80

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
30 Ton Hydraulic Crane		5	1	0.80	2.72	7.26	0.01	0.32	0.30
50 Ton Hydraulic Crane		5	1	0.80	2.72	7.26	0.01	0.32	0.30
200 Ton Crawler Crane		5	2	1.59	5.43	14.51	0.01	0.64	0.59
Forklift		5	1	0.34	1.16	2.58	0.00	0.14	0.13
Front End Loader		5	3	1.53	5.89	10.12	0.01	0.78	0.72
Welders		5	1	0.40	1.12	1.46	0.00	0.13	0.12
Total Equipment Exhaust				5.46	19.04	43.19	0.04	2.34	2.15

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (Ib/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Pickup Truck	10	15	0.39	2.77	3.09	0.00	0.11	0.10
6 Ton Truck	20	7	0.43	1.67	5.35	0.01	0.26	0.22
Worker Commuting	40	150	5.48	49.58	5.51	0.06	0.52	0.33
Total Vehicle Exhaust			6.30	54.02	13.95	0.07	0.89	0.65

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Pickup Truck	Paved	10	15	0.08	0.00
Pickup Truck	Unpaved	0	15	0.00	0.00
6 Ton Truck	Paved	20	7	0.07	0.00
6 Ton Truck	Unpaved	0	7	0.00	0.00
Worker Commuting	Paved	40	150	3.09	0.00
Worker Commuting	Unpaved	0	150	0.00	0.00
Total Vehicle Fugitive				3.24	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive	Particulate	Matter	Emissions
----------	-------------	--------	-----------

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Soil Dropping ^b	CY/Day	100	0.10	0.00
Total Earthwork Fugitive			0.10	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Estimate

Table 7 Compressor Station Electrical

Emissions Summary

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	3.74	13.81	29.87	0.04	1.60	1.47
Vehicle Exhaust	2.22	19.29	4.93	0.03	0.29	0.21
Vehicle Fugitive					1.11	0.00
Earthwork Fugitive					0.00	0.00
Total	5.95	33.10	34.80	0.06	2.99	1.68

Construction Equipment Exhaust Emissions

Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Power	Used	Number	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a
	5	1	0.51	1.96	3.37	0.00	0.26	0.24
	8	2	1.54	5.27	10.30	0.01	0.63	0.58
	8	2	1.69	6.57	16.19	0.02	0.71	0.65
			3.74	13.81	29.87	0.04	1.60	1.47
		Horse- Day	Horse- Day	Horse- Power Day Used Number ROG (lb/day) ^a 5 1 0.51 8 2 1.54 8 2 1.69	Horse- Power Day Used ROG Number CO (lb/day) ^a 5 1 0.51 1.96 8 2 1.54 5.27 8 2 1.69 6.57	Horse- Power Day Used ROG Number CO (lb/day) ^a NO _x 5 1 0.51 1.96 3.37 8 2 1.54 5.27 10.30 8 2 1.69 6.57 16.19	Horse- Power Day Used ROG Number CO (lb/day) ^a NO _x SO _x 1 0.51 (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 5 1 0.51 1.96 3.37 0.00 8 2 1.54 5.27 10.30 0.01 8 2 1.69 6.57 16.19 0.02	Horse- Power Day Used ROG Number CO (lb/day) ^a NO _x SO _x PM ₁₀ 5 1 0.51 1.96 3.37 0.00 0.26 8 2 1.54 5.27 10.30 0.01 0.63 8 2 1.69 6.57 16.19 0.02 0.71

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (lb/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Pickup Truck	10	15	0.39	2.77	3.09	0.00	0.11	0.10
Worker Commuting	40	50	1.83	16.53	1.84	0.02	0.17	0.11
Total Vehicle Exhaust			2.22	19.29	4.93	0.03	0.29	0.21
	D : 1	1.1.1.1.1.1.1						

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM_{10}	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Pickup Truck	Paved	10	15	0.08	0.00
Pickup Truck	Unpaved	0	15	0.00	0.00
Worker Commuting	Paved	40	50	1.03	0.00
Worker Commuting	Unpaved	0	50	0.00	0.00
Total Vehicle Fugitive				1.11	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 8 **Compressor Station Paving**

	Emiss	sions Sumr	nary						
ROG CO NO _x SO _x PM ₁₀									
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	3.24	11.24	20.54	0.02	1.48	1.36			
Vehicle Exhaust	0.30	2.47	1.02	0.00	0.05	0.04			
Vehicle Fugitive					0.14	0.00			
Earthwork Fugitive					0.00	0.00			
Asphaltic Paving		2.62							
Total	3.5	16.3	21.6	0.0	1.7	1.4			

Construction Equipment Exhaust Emissions

-	Horse-	Hours/ Day		ROG	CO	NO _x	SO _x	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
Paving Roller		5	2	1.18	4.21	7.75	0.01	0.55	0.50
Asphalt Paver		5	1	0.89	2.82	4.93	0.00	0.35	0.33
Asphalt Curb Machine		5	1	0.67	2.24	4.48	0.00	0.31	0.29
Tractor		5	1	0.51	1.96	3.37	0.00	0.26	0.24
Total Equipment Exhaust				3.24	11.24	20.54	0.02	1.48	1.36

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (Ib/day) ^a	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Pickup Truck	10	2	0.05	0.37	0.41	0.00	0.02	0.01
Dump Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.30	2.47	1.02	0.00	0.05	0.04

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Deed	Miles/		PM ₁₀	PM _{2.5}
Vehicle Type	Road Type	Day per Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Pickup Truck	Paved	10	2	0.01	0.00
Pickup Truck	Unpaved	0	2	0.00	0.00
Dump Truck	Paved	10	1	0.01	0.00
Dump Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.14	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Asphaltic Paving VOC Emissions

	Emission	
Area Paved	Factor	ROG
(acre/day) ^a	(lb/acre) ^b	(lb/day) ^c
1.0	2.62	2.62

^a Assumed a maximum of 1 acre paved in a day for worst-case emission estimation

^b From URBEMISS 2007 User's Guide, Appendix A

^c Emissions [lb/day] = Emission factor [lb/acre] x Area paved [acre/day]

Table 9 Compressor Station Fencing

Emissions Summarv

Emissions ourmany											
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}					
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Equipment Exhaust	0.55	1.99	2.34	0.00	0.20	0.19					
Vehicle Exhaust	0.20	1.63	0.74	0.00	0.04	0.03					
Vehicle Fugitive					0.09	0.00					
Earthwork Fugitive					0.00	0.00					
Total	0.76	3.62	3.07	0.01	0.33	0.22					

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (Ib/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Skid Steer Loader		8	1	0.55	1.99	2.34	0.00	0.20	0.19
Total Equipment Exhaust				0.55	1.99	2.34	0.00	0.20	0.19

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Flatbed Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Pickup Truck	10	1	0.03	0.18	0.21	0.00	0.01	0.01
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.20	1.63	0.74	0.00	0.04	0.03

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/		DM	
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Flatbed Truck	Paved	10	1	0.01	0.00
Flatbed Truck	Unpaved	0	1	0.00	0.00
Pickup Truck	Paved	10	1	0.01	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.09	0.00
		· · · · · · · · · · · · · · · · · · ·	les 1 - Ni I		

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 10Compressor Station Landscaping

Emissions Summary

		Jone Cann				
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.61	2.36	4.05	0.00	0.31	0.29
Vehicle Exhaust	0.40	3.42	0.75	0.00	0.05	10.02
Vehicle Fugitive					0.21	0.00
Earthwork Fugitive					0.00	0.00
Total	1.01	5.78	4.80	0.01	0.58	10.30

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (lb/day) ^a	PM _{2.5} (Ib/day) ^a
Tractor		6	1	0.61	2.36	4.05	0.00	0.31	0.29
Total Equipment Exhaust				0.61	2.36	4.05	0.00	0.31	0.29

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (lb/day) ^a	PM _{2.5} (lb/day) ^a
Dump Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Worker Commuting	40	10	0.37	3.31	0.37	0.00	0.03	10.00
Total Vehicle Exhaust			0.40	3.42	0.75	0.00	0.05	10.02
^a Environment III (stard) Environment for store III (suit	·· Distance as		I N. I					

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Dump Truck	Paved	10	1	0.01	0.00
Dump Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	10	0.21	0.00
Worker Commuting	Unpaved	0	10	0.00	0.00
Total Vehicle Fugitive				0.21	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Table 11 Plant Power Line Construction

Emissions Summary											
	ROG	ROG CO NO _x SO _x PM ₁₀ PM _{2.5}									
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Equipment Exhaust	14.14	10.71	21.57	0.05	6.07	1.20					
Vehicle Exhaust	0.55	4.96	0.55	0.01	0.05	0.03					
Vehicle Fugitive					0.31	0.00					
Earthwork Fugitive		-	-	-	0.10	0.02					
Total	14.69	15.67	22.12	0.06	6.53	1.26					

Construction Equipment Exhaust Emissions

	Hours/ Day		ROG	со	NOx	SO,	PM ₁₀	PM _{2.5}
Equipment	Used	Number	(lb/day) ^a					
Backhoe	6	2	1.22	0.96	0.80	0.00	0.62	0.12
Hauler	4	1	0.99	0.74	1.75	0.00	0.35	0.08
Skid Steer Loader	4	2	0.55	0.28	0.04	0.00	0.20	0.03
Water Truck	6	1	1.49	1.11	3.93	0.01	0.53	0.12
Concrete Truck	4	1	0.99	0.74	1.75	0.00	0.35	0.08
Ditch Witch	6	1	1.06	0.59	1.02	0.00	0.43	0.07
Batch Plant	8	1	1.72	1.25	3.10	0.01	0.75	0.15
Drill Rig	6	2	1.26	1.30	1.86	0.00	0.60	0.12
Truck with Trailer	2	2	0.99	1.47	3.49	0.01	0.35	0.16
Compressor	2	1	0.22	0.08	0.01	0.00	0.36	0.04
Construction Fork	6	1	0.76	0.36	0.22	0.00	0.41	0.05
980 Loader	4	1	0.41	0.16	0.04	0.00	0.21	0.02
Boom Truck	4	1	0.99	0.74	1.75	0.00	0.35	0.08
Bucket Truck	4	1	0.99	0.74	1.75	0.00	0.35	0.08
Vibrating Roller	4	1	0.47	0.20	0.07	0.00	0.22	0.02
Total Equipment Exhaust			14.14	10.71	21.57	0.05	6.07	1.20

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission estimates calculated using SCAQMD Off-road Emission factors, provided in tab "Offroad 2010"

Emission factors based on equipment composite where BHP unknown.

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Worker Commuting	40	15	0.55	4.96	0.55	0.01	0.05	0.03
Total Vehicle Exhaust			0.55	4.96	0.55	0.01	0.05	0.03

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions Miles/ PMies Particulate Matter Emissions PMies

	Road	Day per		PIVI ₁₀	PIVI _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	15	0.31	0.00
Worker Commuting	Unpaved	0	15	0.00	0.00
Total Vehicle Fugitive				0.31	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM10	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
Soil Dropping ^b	CY/Day	100	0.10	0.02
Total Earthwork Fugitive			0.10	0.02

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Estimate

Table 12 Guard House and Office Trailer Relocation

Emissions Summary									
	ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	19.82	41.61	311.57	8.30	7.64	4.38			
Vehicle Exhaust	0.55	4.96	0.55	0.01	0.05	0.03			
Vehicle Fugitive					0.31	0.00			
Earthwork Fugitive					0.10	0.02			
Total	20.36	46.57	312.12	8.31	8.11	4.43			

		Constru	ction Equi	pment Exh	aust Emiss	sions		
	Hours/ Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Used	Number	(lb/day) ^a					
3/4-Ton Pickup Truck	4	4	3.97	11.79	111.75	3.50	1.40	1.28
10-Ton Hydraulic Crane	4	1	0.64	0.35	0.32	0.00	0.26	0.04
Backhoe/Loader	4	2	1.15	1.17	1.56	0.00	0.52	0.14
Water Truck	4	2	1.98	2.95	13.97	0.11	0.70	0.32
Grader	4	1	0.69	0.44	0.43	0.00	0.30	0.05
D6 Dozer	4	2	2.70	7.64	61.70	1.16	1.03	0.64
Dump Truck	4	4	3.97	11.79	111.75	3.50	1.40	1.28
Sheep's Foot Vibrator								
Compactor	4	2	1.72	2.50	6.20	0.02	0.75	0.30
Front End Loader	4	2	1.15	1.17	1.56	0.00	0.52	0.14
Drill Rig	4	1	0.42	0.22	0.10	0.00	0.20	0.02
Paver/Sealer	4	2	1.42	1.60	2.24	0.00	0.57	0.19
Total Equipment Exhaus	st		19.82	41.61	311.57	8.30	7.64	4.38

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission estimates calculated using SCAQMD Off-road Emission factors, provided in tab "Offroad 2010"

Emission factors based on equipment composite where BHP unknown.

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Worker Commuting	40	15	0.55	4.96	0.55	0.01	0.05	0.03
Total Vehicle Exhaust			0.55	4.96	0.55	0.01	0.05	0.03

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	15	0.31	0.00
Worker Commuting	Unpaved	0	15	0.00	0.00
Total Vehicle Fugitive				0.31	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (lb/day) ^a	PM _{2.5} (lb/day) ^a
Soil Dropping ^b	CY/Day	100	0.10	0.02
Total Earthwork Fugitive)		0.10	0.02

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Estimate

Table 13 Substation Survey

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00
Vehicle Exhaust	0.15	0.18	0.19	0.15	0.15	0.15
Vehicle Fugitive					0.08	0.00
Earthwork Fugitive					0.00	0.00
Total	0.15	0.18	0.19	0.15	0.23	0.15

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Dav		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/							
	Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Pickup Truck	1	2	0.01	0.04	0.04	0.00	0.00	0.00
Worker Commuting	40	4	0.15	0.15	0.15	0.15	0.15	0.15
Total Vehicle Exhaust			0.15	0.18	0.19	0.15	0.15	0.15
		La carla da se						

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Paved	1	2	. ,	0.00
Pickup Truck	Paved		Z	0.00	0.00
Pickup Truck	Unpaved	0	2	0.00	0.00
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.08	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 14 Substation Grading

	Emissions Summary									
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	5.78	15.86	36.26	0.04	2.63	1.56				
Vehicle Exhaust	1.31	8.17	9.86	0.02	0.49	0.42				
Vehicle Fugitive					0.44	0.00				
Earthwork Fugitive					12.00	2.50				
Total	7.09	24.03	46.11	0.06	15.56	4.48				

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (Ib/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Off-Highway Truck	300	8	1	1.31	0.56	1.19	0.00	0.46	0.07
Grader	350	1	1	0.17	0.63	1.43	0.00	0.08	0.07
Water Truck	350	8	2	1.87	9.44	15.88	0.02	0.87	0.80
Backhoe	350	6	1	0.85	2.42	9.30	0.01	0.31	0.29
Dozer	350	6	1	0.90	0.38	0.52	0.00	0.64	0.09
Lowboy Truck/Trailer	500	4	1	0.68	2.43	7.93	0.01	0.27	0.25

Total Equipment Exhaust				5.78	15.86	36.26	0.04	2.63	1.56						
^a Emissions [lb/day] = Emission factor [lb/hr] :	K Operating tin	ne [hr/day] x N	umber				-	^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number							

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Vahiala Tura	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀	PM _{2.5} (Ib/day) ^a
Vehicle Type		Number	,	,	· · · · ·	,	(lb/day) ^a	
Water Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Tool Truck	5	1	0.01	0.09	0.10	0.00	0.00	0.00
Pickup Truck	20	1	0.05	0.37	0.41	0.00	0.02	0.01
Dump Truck	5	44	0.67	2.63	8.41	0.01	0.40	0.35
Worker Commuting	40	15	0.55	4.96	0.55	0.01	0.05	0.03
Total Vehicle Exhaust			1.31	8.17	9.86	0.02	0.49	0.42

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

No. dump trucks = 440 CY/day / 10 CY/truck

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Water Truck	Paved	10	1	0.01	0.00
Water Truck	Unpaved	0	1	0.00	0.00
Tool Truck	Paved	5	1	0.00	0.00
Tool Truck	Unpaved	0	1	0.00	0.00
Pickup Truck	Paved	20	1	0.01	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Dump Truck	Paved	5	44	0.11	0.00
Dump Truck	Unpaved	0	44	0.00	0.00
Worker Commuting	Paved	40	15	0.31	0.00
Worker Commuting	Unpaved	0	15	0.00	0.00
Total Vehicle Fugitive				0.44	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Soil Dropping ^b	CY/Day	1,000	0.99	0.21
Storage Pile Wind Erosion ^c	Acres	0.5	11.00	2.29
Total Earthwork Fugitive			12.00	2.50

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Peak daily estimated from total of 40,000 CY over 45 days

^c Assumed for 0.5 acre storage pile area

Table 15 Substation Civil

	Emissions Summary									
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	2.84	9.49	11.06	0.01	1.00	0.92				
Vehicle Exhaust	0.44	3.64	1.23	0.01	0.08	0.06				
Vehicle Fugitive					0.22	0.00				
Earthwork Fugitive					0.10	0.02				
Total	3.28	13.13	12.29	0.02	1.39	0.99				

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
Excavator	152	4	1	0.56	2.13	3.36	0.00	0.31	0.29
Foundation Auger	79	6	1	0.33	1.50	1.69	0.00	0.12	0.11
Backhoe	79	3	2	0.75	2.13	1.87	0.00	0.19	0.17
Skip Loader	75	3	1	0.24	0.75	0.74	0.00	0.07	0.06
Skid Steer Loader	75	3	2	0.47	1.50	1.48	0.00	0.13	0.12
Forklift	83	4	1	0.27	0.73	0.61	0.00	0.07	0.06
17 Ton Crane	125	2	1	0.22	0.74	1.31	0.00	0.12	0.11
Total Equipment Exhaust				2.84	9.49	11.06	0.01	1.00	0.92

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Water Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Tool Truck	5	1	0.01	0.09	0.10	0.00	0.00	0.00
Dump Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Worker Commuting	40	10	0.37	3.31	0.37	0.00	0.03	0.02
Total Vehicle Exhaust			0.44	3.64	1.23	0.01	0.08	0.06

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	_	Miles/		рм	DM
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Water Truck	Paved	10	1	0.01	0.00
Water Truck	Unpaved	0	1	0.00	0.00
Tool Truck	Paved	5	1	0.00	0.00
Tool Truck	Unpaved	0	1	0.00	0.00
Dump Truck	Paved	10	1	0.01	0.00
Dump Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	10	0.21	0.00
Worker Commuting	Unpaved	0	10	0.00	0.00
Total Vehicle Fugitive				0.22	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive	Particulate	Matter	Emissions
I ugiuve	i aiticulate	mailei	LIIIISSIUIIS

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Soil Dropping ^b	CY/Day	100	0.10	0.02
Total Earthwork Fugitive			0.10	0.02

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

^b Estimate

Table 16 Substation MEER

Emissions Summarv

	LIIIISC		nary			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.0	0.0	0.0	0.0	0.0	0.0
Vehicle Exhaust	0.2	1.4	0.5	0.0	0.0	0.0
Vehicle Fugitive					0.1	0.0
Earthwork Fugitive					0.0	0.0
Total	0.2	1.4	0.5	0.0	0.1	0.0

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None				0.0	0.0	0.0	0.0	0.0	0.0
Total Equipment Exhaust				0.0	0.0	0.0	0.0	0.0	0.0
	0								

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/							
	Day per		ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Carry-all Truck	5	1	0.02	0.06	0.19	0.00	0.01	0.01
Stake Truck	5	1	0.02	0.06	0.19	0.00	0.01	0.01
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.2	1.4	0.5	0.0	0.0	0.0

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Carry-all Truck	Paved	5	1	0.0	0.0
Carry-all Truck	Unpaved	0	1	0.0	0.0
Stake Truck	Paved	5	1	0.0	0.0
Stake Truck	Unpaved	0	1	0.0	0.0
Worker Commuting	Paved	40	4	0.1	0.0
Worker Commuting	Unpaved	0	4	0.0	0.0
Total Vehicle Fugitive				0.1	0.0

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.0	0.0
Total Earthwork Fugitive			0.0	0.0

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Table 17 Substation Electrical

Emissions Summarv

	LIII33		nary			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	1.22	3.40	4.55	0.01	0.41	0.38
Vehicle Exhaust	0.47	4.04	1.19	0.01	0.06	0.05
Vehicle Fugitive					0.23	0.00
Earthwork Fugitive					0.00	0.00
Total	1.69	7.44	5.75	0.01	0.70	0.42

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Dav		ROG	со	NO	SO,	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
Scissor Lift	87	3	2	0.45	1.16	1.19	0.00	0.11	0.10
Manlift	43	3	2	0.13	0.35	0.61	0.00	0.04	0.04
Reach Manlift	87	4	1	0.30	0.77	0.79	0.00	0.08	0.07
15 Ton Crane	125	3	1	0.33	1.12	1.96	0.00	0.18	0.17
Total Equipment Exhaust				1.22	3.40	4.55	0.01	0.41	0.38

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Crew Truck	20	2	0.10	0.74	0.82	0.00	0.03	0.03
Worker Commuting	40	10	0.37	3.31	0.37	0.00	0.03	0.02
Total Vehicle Exhaust			0.47	4.04	1.19	0.01	0.06	0.05

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Crew Truck	Paved	20	2	0.02	0.00
Crew Truck	Unpaved	0	2	0.00	0.00
Worker Commuting	Paved	40	10	0.21	0.00
Worker Commuting	Unpaved	0	10	0.00	0.00
Total Vehicle Fugitive				0.23	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Table 18 Substation Wiring

Emissions Summary

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.08	0.23	0.41	0.00	0.03	0.02
Vehicle Exhaust	0.18	1.65	0.18	0.00	0.02	0.01
Vehicle Fugitive					0.10	0.00
Earthwork Fugitive					0.00	0.00
Total	0.27	1.88	0.59	0.00	0.15	0.04

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Manlift	43	4	1	0.08	0.23	0.41	0.00	0.03	0.02
Total Equipment Exhaust				0.08	0.23	0.41	0.00	0.03	0.02

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (Ib/day) ^a	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Worker Commuting	40	5	0.18	1.65	0.18	0.00	0.02	0.01
Total Vehicle Exhaust			0.18	1.65	0.18	0.00	0.02	0.01
^a Emissions [lb/day] - Emission factor [lb/mi]	v Distance nor	vehiele [lh/de	d v Number					

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Mahiata Tama	Road	Miles/ Day per	Nemelien	PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	5	0.10	0.00
Worker Commuting	Unpaved	0	5	0.00	0.00
Total Vehicle Fugitive				0.10	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 19 Substation Transformer

Emissions Summary

Emissions odminary									
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	1.07	3.33	4.84	0.00	0.46	0.42			
Vehicle Exhaust	0.47	3.45	2.60	0.01	0.12	0.10			
Vehicle Fugitive					0.17	0.00			
Earthwork Fugitive					0.00	0.00			
Total	1.54	6.78	7.45	0.01	0.75	0.52			

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/dav) ^a	CO (lb/dav) ^a	NO _x (Ib/day) ^a	SO _x (lb/dav) ^a	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (lb/day) ^a
Forklift	83	1	Nulliber 6	0.40	(ib/day) 1.09	(ib/day) 0.92	(ib/day) 0.00	(ib/day) 0.10	(10/0ay) 0.09
Crane	125	1	6	0.67	2.23	3.93	0.00	0.36	0.33
Total Equipment Exhaust				1.07	3.33	4.84	0.00	0.46	0.42

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (lb/day) ^a	PM _{2.5} (Ib/day) ^a
Crew Truck	30	2	0.16	1.11	1.24	0.00	0.05	0.04
Low Bed Truck	30	1	0.09	0.36	1.15	0.00	0.05	0.05
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.47	3.45	2.60	0.01	0.12	0.10

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Crew Truck	Paved	30	2	0.03	0.00
Crew Truck	Unpaved	0	2	0.00	0.00
Low Bed Truck	Paved	30	1	0.02	0.00
Low Bed Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.17	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Table 20 Substation Testing

Emissions Summary

Emissions Gammary									
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00			
Vehicle Exhaust	0.12	1.03	0.49	0.00	0.02	0.02			
Vehicle Fugitive					0.05	0.00			
Earthwork Fugitive					0.00	0.00			
Total	0.12	1.03	0.49	0.00	0.07	0.02			

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/dav) ^a	CO (lb/dav) ^a	NO _x (Ib/dav) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (Ib/dav) ^a
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Day per Vehicle	Number	ROG (Ib/day) ^a	CO (Ib/day) ^a	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
20	1	0.05	0.37	0.41	0.00	0.02	0.01
40	2	0.07	0.66	0.07	0.00	0.01	0.00
		0.12	1.03	0.49	0.00	0.02	0.02
	Vehicle 20	Day per Number 20 1 40 2	Day per ROG Vehicle Number (lb/day) ^a 20 1 0.05 40 2 0.07 0.012 0.012	Day per Vehicle Number ROG (lb/day) ^a CO 20 1 0.05 0.37 40 2 0.07 0.66 1 0.12 1.03	Day per Vehicle ROG CO NO _x Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a 20 1 0.05 0.37 0.41 40 2 0.07 0.66 0.07 40 1 0.12 1.03 0.49	Day per ROG CO NO _x SO _x Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 20 1 0.05 0.37 0.41 0.00 40 2 0.07 0.66 0.07 0.00 40 2 0.12 1.03 0.49 0.00	Day per ROG CO NO _x SO _x PM ₁₀ Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 20 1 0.05 0.37 0.41 0.00 0.02 40 2 0.07 0.66 0.07 0.00 0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Crew Truck	Paved	20	1	0.01	0.00
Crew Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	2	0.04	0.00
Worker Commuting	Unpaved	0	2	0.00	0.00
Total Vehicle Fugitive				0.05	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 21Substation Maintenance

Emissions Summary

Emissions odminary									
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00			
Vehicle Exhaust	0.18	1.37	1.27	0.00	0.05	0.04			
Vehicle Fugitive					0.05	0.00			
Earthwork Fugitive					0.00	0.00			
Total	0.18	1.37	1.27	0.00	0.10	0.04			

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (Ib/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (Ib/day) ^ª	CO (Ib/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Maintenance Truck	30	2	0.16	1.11	1.24	0.00	0.05	0.04
Worker Commuting	32	1	0.03	0.26	0.03	0.00	0.00	0.00
Total Vehicle Exhaust			0.18	1.37	1.27	0.00	0.05	0.04
	D' /		1 11 11 11					

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Maintenance Truck	Paved	30	2	0.03	0.00
Maintenance Truck	Unpaved	0	2	0.00	0.00
Worker Commuting	Paved	32	1	0.02	0.00
Worker Commuting	Unpaved	0	1	0.00	0.00
Total Vehicle Fugitive				0.05	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 22 Substation Paving

Emissions Summary

Emissions odiminary										
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	0.90	2.89	5.41	0.01	0.42	0.39				
Vehicle Exhaust	0.44	3.33	2.22	0.01	0.10	0.08				
Vehicle Fugitive					0.16	0.00				
Earthwork Fugitive					0.00	0.00				
Asphaltic Paving		2.62								
Total	1.3	8.8	7.6	0.0	0.7	0.5				

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
Paving Roller	46	4	2	0.13	0.44	0.84	0.00	0.04	0.04
Asphalt Paver	152	4	1	0.66	2.09	3.88	0.00	0.34	0.31
Asphalt Curb Machine	35	3	1	0.05	0.16	0.30	0.00	0.02	0.01
Tractor	45	3	1	0.06	0.20	0.39	0.00	0.02	0.02
Total Equipment Exhaust				0.90	2.89	5.41	0.01	0.42	0.39

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a	(lb/day) ^a				
Crew Truck	30	2	0.16	1.11	1.24	0.00	0.05	0.04
Stake Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Dump Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.44	3.33	2.22	0.01	0.10	0.08

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Crew Truck	Paved	30	2	0.03	0.00
Crew Truck	Unpaved	0	2	0.00	0.00
Stake Truck	Paved	10	1	0.01	0.00
Stake Truck	Unpaved	0	1	0.00	0.00
Dump Truck	Paved	10	1	0.01	0.00
Dump Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.16	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (lb/day) ^a	PM _{2.5} (lb/day) ^a
None				
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

Asphaltic Paving VOC Emissions

	Emission	
Area Paved	Factor	ROG
(acre/day) ^a	(lb/acre) ^b	(lb/day) ^c
1.0	2.62	2.6

^a Assumed one acre to be paved (worst-case)

^b From URBEMISS 2007 User's Guide, Appendix A,

http://www.urbemis.com/software/download.html

^c Emissions [lb/day] = Emission factor [lb/acre] x Area paved [acre/day]

Table 23 Substation Fencing

Emissions Summary

Emissions ourmany									
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	0.63	2.01	1.97	0.00	0.17	0.16			
Vehicle Exhaust	0.19	1.53	0.63	0.00	0.04	0.03			
Vehicle Fugitive					0.09	0.00			
Earthwork Fugitive					0.00	0.00			
Total	0.82	3.54	2.60	0.00	0.30	0.19			

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (Ib/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
Skid Steer Loader	75	8	1	0.63	2.01	1.97	0.00	0.17	0.16
Total Equipment Exhaust				0.63	2.01	1.97	0.00	0.17	0.16

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a	(lb/day) ^a				
Flatbed Truck	10	1	0.03	0.12	0.38	0.00	0.02	0.02
Pickup Truck	5	1	0.01	0.09	0.10	0.00	0.00	0.00
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.19	1.53	0.63	0.00	0.04	0.03

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Flatbed Truck	Paved	10	1	0.01	0.00
Flatbed Truck	Unpaved	0	1	0.00	0.00
Pickup Truck	Paved	5	1	0.00	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.09	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 24Substation Landscaping

Emissions Summary

	LIIII33	Sions Suim	nai y			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.13	0.41	0.79	0.00	0.04	0.04
Vehicle Exhaust	0.25	2.10	0.60	0.00	0.04	0.03
Vehicle Fugitive					0.13	0.00
Earthwork Fugitive					0.00	0.00
Total	0.38	2.51	1.39	0.00	0.21	0.07

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day)ª	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Tractor	45	6	1	0.13	0.41	0.79	0.00	0.04	0.04
Total Equipment Exhaust				0.13	0.41	0.79	0.00	0.04	0.04

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

Miles/ Day per Vehicle	Number	ROG (Ib/day) ^a	CO (Ib/day) ^ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
10	1	0.03	0.12	0.38	0.00	0.02	0.02
40	6	0.22	1.98	0.22	0.00	0.02	0.01
		0.25	2.10	0.60	0.00	0.04	0.03
	Day per Vehicle 10	Day perVehicleNumber101406	Day per Vehicle Number ROG (lb/day) ^a 10 1 0.03 40 6 0.22 0 0 0.25	Day per Vehicle ROG CO 10 1 (lb/day) ^a (lb/day) ^a 40 6 0.22 1.98	Day per Vehicle ROG CO NO _x 10 1 0.03 (lb/day) ^a (lb/day) ^a 40 6 0.22 1.98 0.22 10 1 0.05 2.10 0.60	Day per Vehicle ROG CO NO _x SO _x 10 1 0.03 0.12 0.38 0.00 40 6 0.22 1.98 0.22 0.00 10 0.15 0.10 0.00 0.00	Day per Vehicle Number ROG (lb/day) ^a CO (lb/day) ^a NO _x SO _x PM ₁₀ Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 10 1 0.03 0.12 0.38 0.00 0.02 40 6 0.22 1.98 0.22 0.00 0.02 40 6 0.25 2.10 0.60 0.00 0.04

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Dump Truck	Paved	10	1	0.01	0.00
Dump Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.13	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

 Table 25

 Subtransmission Guard Structure Installation

	Emissions Summary										
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}					
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Equipment Exhaust	8.83	6.30	18.16	0.05	3.30	0.69					
Vehicle Exhaust	0.22	1.98	0.22	0.00	0.02	0.01					
Vehicle Fugitive					0.12	0.00					
Earthwork Fugitive					0.00	0.00					
Total	9.05	8.28	18.38	0.05	3.45	0.71					

Construction Equipment Exhaust Emissions

		Hours/							
	Horse-	Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a	(lb/day) ^a				
3/4-Ton Pick-up	300	6	2	1.97	1.69	5.38	0.02	0.69	0.21
1-Ton Crew Cab Flat Bed, 4x4	300	6	1	0.98	0.42	0.67	0.00	0.34	0.05
Compressor Trailer	120	6	1	0.43	0.21	0.06	0.00	0.33	0.02
Auger Truck	500	6	1	1.50	1.13	3.91	0.01	0.52	0.12
Extendable Flat Bed Pole Truck	350	6	1	1.50	1.13	3.91	0.01	0.52	0.12
30-Ton Crane Truck	500	8	1	1.46	0.97	2.49	0.00	0.55	0.09
80ft. Hydraulic Man-lift Bucket Truck	350	4	1	1.00	0.75	1.74	0.00	0.35	0.08
Total Equipment Exhaust				8.83	6.30	18.16	0.05	3.30	0.69

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

	Miles/							
	Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.22	1.98	0.22	0.00	0.02	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM10	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.12	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (lb/day) ^a	PM _{2.5} (Ib/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 26Subtransmission Line Survey

Emissions Summary

Emissions outmitary									
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}			
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00			
Vehicle Exhaust	0.15	1.36	0.19	0.00	0.02	0.01			
Vehicle Fugitive					0.08	0.00			
Earthwork Fugitive					0.00	0.00			
Total	0.15	1.36	0.19	0.00	0.10	0.01			

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (Ib/day) ^a	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Pickup Truck	1	2	0.01	0.04	0.04	0.00	0.00	0.00
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.15	1.36	0.19	0.00	0.02	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Pickup Truck	Paved	1	2	0.00	0.00
Pickup Truck	Unpaved	0	2	0.00	0.00
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.08	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 27 Subtransmission Marshalling Yard

Emissions Summary

	ROG	CO NO _x SO _x		SOx	PM ₁₀	PM _{2.5}				
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	1.58	0.93	0.77	0.00	0.66	0.10				
Vehicle Exhaust	0.15	1.32	0.15	0.00	0.01	0.01				
Vehicle Fugitive					0.08	0.00				
Earthwork Fugitive					0.00	0.00				
Total	1.73	2.25	0.91	0.00	0.75	0.11				

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}	
Equipment	Power	Used	Number	(lb/day) ^a						
1-Ton Crew Cab, 4x4	300	2	1	0.328	0.141	0.075	0.000	0.115	0.017	
30-Ton Crane Truck	300	2	1	0.249	0.086	0.026	0.000	0.094	0.011	
10,000 lb Rough Terrain	200	5	1	0.820	0.599	0.632	0.001	0.374	0.056	
Truck, Semi, Tractor	350	1	1	0.19	0.10	0.03	0.00	0.07	0.01	
Total Equipment Exhau	st			1.58	0.93	0.77	0.00	0.66	0.10	

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (Ib/day)ª	CO (lb/day)ª	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.15	1.32	0.15	0.00	0.01	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/		PM₁₀	PM ₂₅
Vehicle Type	Туре	Day per Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.08	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None			0.00	0.00
Total Earthwork Fugitiv		0.00	0.00	

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 28 Subtransmission ROW Clearing

	Emissions Summary											
	ROG CO NO _x SO _x PM ₁₀ PM											
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)						
Equipment Exhaust	8.17	8.89	65.23	0.93	2.93	0.95						
Vehicle Exhaust	0.15	1.32	0.15	0.00	0.01	0.01						
Vehicle Fugitive					0.08	0.00						
Earthwork Fugitive					0.00	0.00						
Total	8.31	10.21	65.37	0.93	3.02	0.96						

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SO _x	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
1-Ton Crew Cab, 4x4	300	8	1	1.311	0.564	1.195	0.001	0.460	0.069
Road Grader	350	6	1	1.290	0.970	2.652	0.006	0.484	0.096
Water Truck	350	8	2	3.988	6.015	55.618	0.894	1.395	0.640
Backhoe/Front Loader	350	6	1	1.58	1.34	5.76	0.03	0.59	0.14
Track Type Dozer	350	6	1	2.17	3.78	26.36	0.26	0.82	0.27
Lowboy Truck/Trailer	500	4	1	1.00	0.75	1.74	0.00	0.35	0.08
Total Equipment Exhaust				8.17	8.89	65.23	0.93	2.93	0.95

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions										
	Miles/	DOO	<u> </u>	NO,	SO,	DM	DM			
	Day per		ROG	со	^	30 _x	PM ₁₀	PM _{2.5}		
Vehicle Type	Vehicle	Number	(lb/day) ^a							
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01		
Total Vehicle Exhaust			0.15	1.32	0.15	0.00	0.01	0.01		

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vakiala Tura	Road	Miles/ Day per	Normalian	PM ₁₀	PM _{2.5}
Vehicle Type Worker Commuting	Type Paved	Vehicle 40	Number 4	(lb/day) ^a 0.08	(lb/day) ^a 0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.08	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Emission factors are in Table 46

Table 29Subtransmission Line Roadway

Emissions Summary										
ROG CO NO _x SO _x PM ₁₀										
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	12.02	15.69	109.99	1.41	4.18	1.38				
Vehicle Exhaust	0.11	0.99	0.11	0.00	0.01	0.01				
Vehicle Fugitive					0.06	0.00				
Earthwork Fugitive					8.34	1.74				
Total	12.13	16.68	110.10	1.41	12.59	3.13				

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
1-Ton Crew Cab, 4x4	300	2	2	0.66	0.56	0.60	0.00	0.23	0.07
Road Grader	350	4	1	0.86	0.65	1.18	0.00	0.32	0.06
Water Truck	350	8	2	3.99	6.01	55.62	0.89	1.39	0.64
Backhoe/Front Loader	350	6	1	2.08	3.40	24.08	0.25	0.59	0.19
Drum Type Compactor	250	4	1	0.90	0.56	1.28	0.00	0.34	0.07
Track Type Dozer	350	6	1	2.17	3.78	26.36	0.26	0.82	0.27
Excavator	300	6	1	0.87	0.34	0.45	0.00	0.31	0.04
Lowboy Truck/Trailer	500	2	1	0.50	0.38	0.43	0.00	0.17	0.04
Total Equipment Exhaust				12.02	15.69	109.99	1.41	4.18	1.38

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Miles/ Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle	Number	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a
40	3	0.11	0.99	0.11	0.00	0.01	0.01
		0.11	0.99	0.11	0.00	0.01	0.01
	Day per Vehicle	Day per Vehicle Number	Day per VehicleROG Number4030.11	Day per Vehicle Number ROG (lb/day) ^a CO (lb/day) ^a 40 3 0.11 0.99	Day per Vehicle Number ROG (lb/day) ^a CO (lb/day) ^a NO _x 40 3 0.11 0.99 0.11	Day per Vehicle Number ROG (lb/day) ^a CO (lb/day) ^a NO _x SO _x 40 3 0.11 0.99 0.11 0.00	Day per Vehicle Number ROG (lb/day) ^a CO (lb/day) ^a NO _x SO _x PM ₁₀ 40 3 0.11 0.99 0.11 0.00 0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	3	0.06	0.00
Worker Commuting	Unpaved	0	3	0.00	0.00
Total Vehicle Fugitive				0.06	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
Bulldozing, Scraping and Grading	Hours/Day	24	8.34	1.74
Total Earthwork Fugitive			8.34	1.74

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 30 Subtransmission Pole Framing and Setting

	ROG CO NO _x SO _x PM ₁₀ PM _{2.}									
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)				
Equipment Exhaust	11.82	19.64	65.42	0.52	4.59	3.09				
Vehicle Exhaust	0.22	1.98	0.22	0.00	0.02	0.01				
Vehicle Fugitive					0.12	0.00				
Earthwork Fugitive					0.00	0.00				
Total	12.04	21.62	65.64	0.52	4.74	3.10				

Construction Equipment Exhaust Emissions

		Hours/				NO		DM	DM
	Horse-	Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a	(lb/day) ^a				
1-Ton Crew Cab, 4x4	300	5	3	2.46	3.17	12.60	0.07	0.86	0.39
10,000 lb/ Rough Terrain Forklift	200	4	1	0.66	0.48	0.40	0.00	0.30	0.05
30-Ton Crane	300	6	2	1.49	1.03	1.91	0.00	0.56	0.39
Compressor Trailer	120	6	3	3.12	7.13	28.43	0.29	1.39	1.91
Flat Bed Truck/Trailer	350	4	1	1.00	3.02	6.97	0.06	0.35	0.08
10-cu yd. Dump Truck	350	4	1	1.00	3.02	4.86	0.03	0.35	0.08
Backhoe/Front Loader	350	8	1	2.10	1.79	10.24	0.07	0.78	0.19
Total Equipment Exhaust				11.82	19.64	65.42	0.52	4.59	3.09

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/dav) ^a	CO (lb/dav) ^a	NO _x (lb/dav) ^a	SO _x (lb/dav) ^a	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (lb/day) ^a
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.22	1.98	0.22	0.00	0.02	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.12	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day] Emission factors are in Table 46

Table 31 Subtransmission Line TSP Footing Installation

Emissions Summary											
ROG CO NO _x SO _x PM ₁₀											
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)					
Equipment Exhaust	15.80	26.65	130.41	1.47	4.93	2.79					
Vehicle Exhaust	0.80	6.08	3.63	0.01	0.19	0.15					
Vehicle Fugitive					0.34	0.00					
Earthwork Fugitive					0.02	0.00					
Total	16.59	32.73	134.05	1.48	5.48	2.95					

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO,	SO,	PM ₁₀	PM ₂₅
Equipment	Power	Used	Number	(lb/day) ^a					
1-Ton Crew Cab Flat Bed, 4x4	300	2	4	1.99	6.01	27.81	0.45	0.70	0.64
30-Ton Crane Truck	300	5	2	1.82	2.41	7.79	0.03	0.68	0.23
Backhoe	200	8	2	1.95	2.29	4.30	0.01	0.90	0.20
Auger Truck	500	6	2	2.99	4.51	31.28	0.38	1.05	0.48
4000 Gallon Water Truck	350	4	2	1.99	3.01	13.90	0.11	0.70	0.32
10-cu. yd. Dump Truck	350	5	2	2.49	3.76	21.73	0.22	0.87	0.40
10-cu. yd. Concrete Mixer Truck	425	5	3	2.56	4.66	23.60	0.27	0.04	0.52
Total Equipment Exhaust				15.80	26.65	130.41	1.47	4.93	2.79

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/day) ^a	CO (Ib/day)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Water Truck	20	2	0.12	0.48	1.53	0.00	0.07	0.06
Crew Truck	20	2	0.10	0.74	0.82	0.00	0.03	0.03
Concrete Truck	20	1	0.06	0.24	0.76	0.00	0.04	0.03
Worker Commuting	40	14	0.51	4.63	0.51	0.01	0.05	0.03
Total Vehicle Exhaust			0.80	6.08	3.63	0.01	0.19	0.15

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Water Truck	Paved	20	2	0.02	0.00
Water Truck	Unpaved	0	2	0.00	0.00
Crew Truck	Paved	20	2	0.02	0.00
Crew Truck	Unpaved	0	2	0.00	0.00
Concrete Truck	Paved	20	1	0.01	0.00
Concrete Truck	Unpaved	0	1	0.00	0.00
Worker Commuting	Paved	40	14	0.29	0.00
Worker Commuting	Unpaved	0	14	0.00	0.00
Total Vehicle Fugitive				0.34	0.00

 Total Vehicle Fugitive

 ^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Soil Dropping ^b	CY/Day	22	0.02	0.00
Total Earthwork Fugitive			0.02	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 32 Subtransmission Line Conductor Installation

Source	ROG (lb/day)	CO (lb/day)	NO _x (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)
Equipment Exhaust	17.08	18.10	107.64	1.41	6.03	2.23
Vehicle Exhaust	0.60	5.39	0.70	0.01	0.06	0.04
Vehicle Fugitive					0.33	0.00
Earthwork Fugitive					0.00	0.00
Total	17.68	23.49	108.34	1.41	6.43	2.27

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
3/4-Ton Pick-up	300	8	2	2.62	2.26	9.56	0.04	0.92	0.28
1-Ton Crew Cab Flat Bed, 4x4	300	8	4	5.25	9.03	76.46	1.29	1.84	1.11
Wire Truck/Trailer	350	2	2	0.66	0.56	0.60	0.00	0.23	0.07
Dump Truck	350	2	1	0.33	0.14	0.07	0.00	0.11	0.02
Bucket Truck	350	8	2	2.62	2.26	9.56	0.04	0.92	0.28
22-Ton Manitex	350	8	2	2.24	1.65	5.54	0.01	0.81	0.21
Splicing Rig	350	2	1	0.28	0.10	0.04	0.00	0.10	0.01
Splicing Lab	300	2	1	0.28	0.10	0.04	0.00	0.10	0.01
3 Drum Straw line Puller	300	6	1	0.84	0.31	0.39	0.00	0.31	0.04
Static Truck/Tensioner	350	6	2	1.97	1.69	5.38	0.02	0.69	0.21
Total Equipment Exhaust				17.08	18.10	107.64	1.41	6.03	2.23

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Crew Truck	0.35	16	0.01	0.10	0.12	0.00	0.00	0.00
Worker Commuting	40	16	0.58	5.29	0.59	0.01	0.06	0.04
Total Vehicle Exhaust			0.60	5.39	0.70	0.01	0.06	0.04

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Crew Truck	Paved	0.35	16	0.00	0.00
Crew Truck	Unpaved	0	16	0.00	0.00
Worker Commuting	Paved	40	16	0.33	0.00
Worker Commuting	Unpaved	0	16	0.00	0.00
Total Vehicle Fugitive				0.33	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 33Subtransmission Line Assembly

	Emissions Summary											
ROG CO NO _x SO _x PM ₁₀ PM _{2.5}												
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)						
Equipment Exhaust	12.93	21.22	110.18	1.41	4.87	2.57						
Vehicle Exhaust	0.29	2.64	0.29	0.00	0.03	0.02						
Vehicle Fugitive					0.16	0.00						
Earthwork Fugitive					0.00	0.00						
Total	13.22	23.86	110.47	1.42	5.06	2.58						

Construction Equipment Exhaust Emissions

	Horse-	Hours/		ROG	со	NO,	SO,	PM ₁₀	PM _{2.5}
Equipment	Power	Day Used	Number	(lb/day) ^a					
3/4-Ton Pick-up Truck, 4x4	300	5	5	4.10	8.81	58.34	0.96	1.44	1.08
1-Ton Crew Cab Flat Bed, 4x4	300	5	4	3.28	5.64	29.87	0.32	1.15	0.69
Compressor Trailer	120	5	2	1.32	1.43	1.63	0.00	0.74	0.18
80-Ton Rough Terrain Crane	350	6	3	2.24	2.32	6.43	0.02	0.85	0.29
40' Flat Bed Truck/Trailer	350	4	2	1.99	3.01	13.90	0.11	0.70	0.32
Total Equipment Exhaust				12.93	21.22	110.18	1.41	4.87	2.57

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle	Number	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a
40	8	0.29	2.64	0.29	0.00	0.03	0.02
		0.29	2.64	0.29	0.00	0.03	0.02
	Day per Vehicle	Day per Vehicle Number	VehicleNumber(lb/day) ^a 4080.29	Day per ROG CO Vehicle Number (lb/day) ^a (lb/day) ^a 40 8 0.29 2.64	Day per ROG CO NO _x Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a 40 8 0.29 2.64 0.29	Day per ROG CO NO _x SO _x Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 40 8 0.29 2.64 0.29 0.00	Day per ROG CO NO _x SO _x PM ₁₀ Vehicle Number (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a (lb/day) ^a 40 8 0.29 2.64 0.29 0.00 0.03

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	8	0.16	0.00
Worker Commuting	Unpaved	0	8	0.00	0.00
Total Vehicle Fugitive				0.16	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 34 Subtransmission Line Restoration

Source	ROG (lb/day)	CO (lb/day)	NO _x (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (lb/day)
Equipment Exhaust	7.81	7.20	25.50	0.12	2.88	0.70
Vehicle Exhaust	0.18	1.65	0.18	0.00	0.02	0.01
Vehicle Fugitive					0.10	0.00
Earthwork Fugitive					0.00	0.00
Total	7.99	8.85	25.69	0.13	3.00	0.71

Construction Equipment Exhaust Emissions

	Horse-	Hours/ Day		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
1-Ton Crew Cab, 4x4	300	2	2	0.66	0.56	0.60	0.00	0.23	0.07
Road Grader	350	6	1	1.29	0.97	2.65	0.01	0.48	0.10
Water Truck	350	4	1	1.00	0.75	1.74	0.00	0.35	0.08
Backhoe/Front Loader	350	6	1	1.58	1.34	5.76	0.03	0.59	0.14
Drum Type Compactor	250	6	1	1.35	0.84	2.87	0.01	0.50	0.10
Track Type Dozer	350	4	1	1.45	2.52	11.71	0.08	0.55	0.18
Lowboy Truck/Trailer	300	3	1	0.49	0.21	0.17	0.00	0.17	0.03
Total Equipment Exhaust				7.81	7.20	25.50	0.12	2.88	0.70

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

Motor Vehicle Exhaust Emissions

Vehicle Type	Miles/ Day per Vehicle	Number	ROG (lb/dav) ^a	CO (Ib/dav)ª	NO _x (Ib/day) ^a	SO _x (Ib/day) ^a	PM ₁₀ (Ib/dav) ^a	PM _{2.5} (Ib/dav) ^a
Worker Commuting	40	5	0.18	1.65	0.18	0.00	0.02	0.01
Total Vehicle Exhaust			0.18	1.65	0.18	0.00	0.02	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	5	0.10	0.00
Worker Commuting	Unpaved	0	5	0.00	0.00
Total Vehicle Fugitive				0.10	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

	Activity	Activity	PM ₁₀	PM _{2.5}
Activity	Units	Level	(lb/day) ^a	(lb/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00
^a Emissions [lb/day] = Emission factor [lb/acti	vity unit] x Activ	ity unit [units/d	ay]	
Emission factors are in Table 46				

Table 35 Fiber Optic Installation

Emissions Summary

	LIII33		laiy			
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Equipment Exhaust	0.00	0.00	0.00	0.00	0.00	0.00
Vehicle Exhaust	0.32	2.17	2.09	0.00	0.10	0.09
Vehicle Fugitive					0.11	0.00
Earthwork Fugitive					0.00	0.00
Total	0.32	2.17	2.09	0.00	0.22	0.09

Construction Equipment Exhaust Emissions

Equipment	Horse- Power	Hours/ Day Used	Number	ROG (lb/day) ^a	CO (lb/day) ^a	NO _x (lb/day) ^a	SO _x (lb/day) ^a	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None				0.00	0.00	0.00	0.00	0.00	0.00
Total Equipment Exhaust				0.00	0.00	0.00	0.00	0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 43

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Pickup Truck	20	1	0.05	0.37	0.41	0.00	0.02	0.01
Heavy Duty Truck	20	2	0.12	0.48	1.53	0.00	0.07	0.06
Worker Commuting	40	4	0.15	1.32	0.15	0.00	0.01	0.01
Total Vehicle Exhaust			0.32	2.17	2.09	0.00	0.10	0.09

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

		Miles/			
	Road	Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Pickup Truck	Paved	20	1	0.01	0.00
Pickup Truck	Unpaved	0	1	0.00	0.00
Heavy Duty Truck	Paved	20	2	0.02	0.00
Heavy Duty Truck	Unpaved	0	2	0.00	0.00
Worker Commuting	Paved	40	4	0.08	0.00
Worker Commuting	Unpaved	0	4	0.00	0.00
Total Vehicle Fugitive				0.11	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
None			0.00	0.00
Total Earthwork Fugitive			0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 36 Subtransmission Guard Structure Removal

Emissions Summary SO_x PM_{2.5} ROG CO NOx **PM**₁₀ Source (lb/day) (lb/day) (lb/day) (lb/day) (lb/day) (lb/day) Equipment Exhaust 10.25 10.45 46.71 0.42 3.98 1.15 Vehicle Exhaust 0.22 1.98 0.22 0.00 0.02 0.01 Vehicle Fugitive ---0.12 0.00 ---------Earthwork Fugitive ---0.00 0.00 ---------Total 10.47 12.43 46.93 0.42 4.12 1.17

Construction Equipment Exhaust Emissions

		Hours/							
	Horse-	Day		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Equipment	Power	Used	Number	(lb/day) ^a					
3/4-Ton Pick-up	300	6	2	1.97	1.69	5.38	0.02	0.69	0.21
1-Ton Crew Cab Flat Bed	300	6	2	1.97	1.69	5.38	0.02	0.69	0.21
Compressor Trailer	120	6	2	0.87	0.83	0.45	0.00	0.65	0.09
Extendable Flat Bed Pole	350	6	2	2.99	4.51	31.28	0.38	1.05	0.48
30-Ton Crane Truck	500	8	1	1.46	0.97	2.49	0.00	0.55	0.09
80ft. Hydraulic Man-lift Bu	350	4	1	1.00	0.75	1.74	0.00	0.35	0.08
Total Equipment Exhaus	st			10.25	10.45	46.71	0.42	3.98	1.15

^a Emissions [lb/day] = Emission factor [lb/hr] x Operating time [hr/day] x Number

Emission factors are in Table 42

	-								
Motor Vehicle Exhaust Emissions									
Miles/ Day per ROG CO NO _x SO _x PM ₁₀ PM _{2.5}									
Vehicle Type	Vehicle	Number	(lb/day) ^a						
Worker Commuting	40	6	0.22	1.98	0.22	0.00	0.02	0.01	
Total Vehicle Exhaust			0.22	1.98	0.22	0.00	0.02	0.01	

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	40	6	0.12	0.00
Worker Commuting	Unpaved	0	6	0.00	0.00
Total Vehicle Fugitive				0.12	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Fugitive Particulate Matter Emissions

Activity	Activity Units	Activity Level	PM ₁₀ (lb/dav) ^a	PM _{2.5} (lb/dav) ^a
None	00		0.00	0.00
Total Earthwork Fugitive	e		0.00	0.00

^a Emissions [lb/day] = Emission factor [lb/activity unit] x Activity unit [units/day]

Table 37 Worker Shuttle

Emissions Summary									
ROG CO NO _x SO _x PM ₁₀									
Source	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Vehicle Exhaust	0.16	1.11	1.24	0.00	0.05	0.04			
Vehicle Fugitive					0.03	0.00			
Total	0.16	1.11	1.24	0.00	0.08	0.04			

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NOx	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Worker Shuttle	60	1	0.16	1.11	1.24	0.00	0.05	0.04
Total Vehicle Exhaust			0.16	1.11	1.24	0.00	0.05	0.04

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

Vehicle Type	Road Type	Miles/ Day per Vehicle	Number	PM ₁₀ (Ib/day) ^a	PM _{2.5} (Ib/day) ^a
Worker Shuttle	Paved	60	1	0.03	0.00
Worker Shuttle	Unpaved	0	1	0.00	0.00
Total Vehicle Fugitive				0.03	0.00

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emissions Summary					
	CO ₂ e				
Source	(MT) ^a				
Equipment Exhaust	4,518				
Motor Vehicle Exhaust	1,663				
Project Total	6,181				

Construction Equipment Exhaust - Substation Site

Co	nstruction E		Exhaust - S	ubstation	Site		
	Horse-	Hours/ Day		Days	CO2	CH4	CO₂e
Equipment	Power	Used	Number	Used	(MT) ^a	(MT) ^a	(MT) ^a
Substation Grading	rower	USEU	Number	USEU	(111)	(1411)	(111)
Off-Highway Truck	300	8	1	90	54.4	0.005	54.5
Grader	350	1	1	90	9.4	0.007	9.5
Water Truck	350	8	2	90	69.6	0.007	69.7
Backhoe	350	6	1	90	42.1	0.002	42.1
Dozer	350	6	1	90	64.9	0.087	66.7
Lowboy Truck/Trailer Substation Civil	500	4	1	90	44.5	0.041	45.3
Excavator	152	4	1	60	8.0	0.001	8.043747
Foundation Auger	79	6	1	15	1.3	0.000	1.271261
Foundation Auger	79	3	1	15	0.6	0.000	0.635631
Backhoe	79	3	2	60	5.0	0.002	4.994448
Skip Loader	75	3	1	60	2.1	0.001	2.095733
Skid Steer Loader	75	3	2	60	4.2	0.001	4.191465
Forklift	83	4	1	60	1.6	0.001	1.610987
17 Ton Crane Substation Electrical	125	2	1	45	2.0	0.000	2.055878
Scissor Lift	87	3	2	70	3.7	0.001	3.763764
Manlift	43	3	2	70	2.1	0.000	2.095592
Reach Manlift	87	4	1	70	2.5	0.001	2.509176
15 Ton Crane	125	3	1	35	2.4	0.000	2.398524
Substation Wiring							
Manlift	43	4	1	25	0.5	0.000	0.49895
Substation Transformer	0.5		ć				
Forklift	83	1	6	30	1.2	0.000	1.20824
Crane Substation Paving	125	1	6	10	1.4	0.000	1.370585
Paving Roller	46	4	2	15	0.7	0.000	0.72796
Asphalt Paver	152	4	1	15	1.9	0.000	1.891696
Asphalt Curb Machine	35	3	1	15	0.3	0.000	0.258361
Tractor	45	3	1	15	0.3	0.000	0.324627
Substation Fencing							
Skid Steer Loader	75	8	1	10	0.9	0.000	0.931437
Substation Landscaping				1.5			
Tractor Subtransmission Marshalling Ya	45	6	1	15	0.6	0.000	0.649254
1-Ton Crew Cab, 4x4	300	2	1	660	99.7	0.4	109.0
30-Ton Crane Truck	300	2	1	660	67.2	0.4	71.9
10,000 lb Rough Terrain Fork Lift	200	5	1	660	187.0	0.8	204.4
Truck, Semi, Tractor	350	1	1	660	39.0	0.2	43.2
Subtransmission ROW Clearing							
1-Ton Crew Cab, 4x4	300	8	1	1	0.6	0.0	0.6
Road Grader	350	6	1	1	0.6	0.0	0.6
Water Truck	350	8	2	1	2.0	0.0	2.0
Backhoe/Front Loader	350	6	1	1	0.9	0.0	0.9
Track Type Dozer Lowboy Truck/Trailer	350 500	6	1	1	0.7	0.0	0.7
Subtransmission Line Roadway	500	4	1		0.5	0.0	0.5
1-Ton Crew Cab, 4x4	300	2	2	35	10.576	0.005	10.681
Road Grader	350	4	1	35	14.573	0.004	14.667
Water Truck	350	8	2	35	69.177	0.049	70.214
Backhoe/Front Loader	350	6	1	35	29.654	0.015	29.963
Drum Type Compactor	250	4	1	35	15.529	0.001	15.556
Track Type Dozer	350	6	1	35	25.231	0.013	25.506
Excavator	300	6	1	18	11.450	0.002	11.486
Lowboy Truck/Trailer	500	2	1	18	4.447	0.001	4.464
Subtransmission Guard House II 3/4-Ton Pick-up	300	6	2	6	5.439	0.000	5.448
1-Ton Crew Cab Flat Bed, 4x4	300	6	1	6	2.720	0.000	2.722
Compressor Trailer	120	6	1	6	0.767	0.000	0.767
Auger Truck	500	6	1	6	4.447	0.000	4.453
Extendable Flat Bed Pole Truck	350	6	1	6	2.720	0.000	2.722
30-Ton Crane Truck	500	8	1	6	3.921	0.000	3.925
80ft. Hydraulic Man-lift Bucket Truc		4	1	6	2.965	0.000	2.969
Subtransmission Pole Framing a		F	2	10	21 520	0.000	21 702
1-Ton Crew Cab, 4x4	300	5	3	19 2	21.530	0.008	21.703
10,000 lb/ Rough Terrain Forklift 30-Ton Crane	200 300	4	1	2	0.453	0.000	0.453
Compressor Trailer	120	6	3	19	7.283	0.000	7.320
Flat Bed Truck/Trailer	350	4	1	2	0.988	0.002	0.989
10-cu yd. Dump Truck	350	4	1	17	8.400	0.001	8.431
Backhoe/Front Loader	350	8	1	17	21.274	0.004	21.356
Subtransmission Line TSP Footi							
1-Ton Crew Cab Flat Bed, 4x4	300	2	4	111	67.084	0.200	71.281
30-Ton Crane Truck	300	5	2	111	56.472	0.064	57.811
Backhoe	200	8	2	111	81.677	0.090	83.572
Auger Truck	500	6	2	75	111.178	0.170	114.750
4000 Gallon Water Truck 10-cu. yd. Dump Truck	350	4	2	111 111	109.695 137.119	0.248	114.912 143.640
10-cu. yd. Dump Truck 10-cu. yd. Concrete Mixer Truck	350 425	5	2	111 75	137.119 129.738	0.311	143.640 134.016
Subtransmission Line Conducto				,,,	120.100	0.204	104.010
3/4-Ton Pick-up	300	8	2	38.000	45.931	0.023	46.423
1-Ton Crew Cab Flat Bed, 4x4	300	8	4	38.000	91.863	0.094	93.830
· · ·							

Wire Truck/Trailer	350	2	2	26.000	12.847	0.007	12.990
Dump Truck	350	2	1	38.000	9.388	0.004	9.465
Bucket Truck	350	8	2	38.000	75.107	0.058	76.329
22-Ton Manitex	350	8	2	38.000	73.198	0.057	74.393
Splicing Rig	350	2	1	10.000	2.471	0.000	2.476
Splicing Lab	300	2	1	10.000	2.306	0.000	2.310
3 Drum Straw line Puller	300	6	1	20.000	5.798	0.001	5.810
Static Truck/Tensioner	350	6	2	20.000	29.647	0.012	29.901
Subtransmission Assembly							
3/4-Ton Pick-up Truck, 4x4	300	5	5	37	69.9	0.1	71.701
1-Ton Crew Cab Flat Bed, 4x4	300	5	4	37	55.9	0.1	57.069
Compressor Trailer	120	5	2	37	7.9	0.0	7.931
80-Ton Rough Terrain Crane	350	6	3	37	54.4	0.0	55.354
40' Flat Bed Truck/Trailer	350	4	2	25	24.7	0.0	24.971
Subtransmission Guard House Re	emoval						
3/4-Ton Pick-up	300	6	2	4	3.6	0.0	3.630
1-Ton Crew Cab Flat Bed, 4x4	300	6	2	4	3.6	0.0	3.630
Compressor Trailer	120	6	2	4	1.0	0.0	1.023
Extendable Flat Bed Pole Truck	350	6	2	4	5.9	0.0	5.940
30-Ton Crane Truck	500	8	1	4	2.6	0.0	2.616
80ft. Hydraulic Man-lift Bucket Truc	350	4	1	4	2.0	0.0	1.978
TOTAL							2,342.0

^a Emissions [metric tons, MT] = Emission factor [lb/hr] x Operating time [hr/day] x Number x Days used [days] x 453.6 [g/lb] / 1,000,000 [g/MT] Emission factors are in Table 43

Vehicle Type	Miles/ Day per Vehicle	Number	Days Used	CO ₂ (MT) ^a	CH4 (MT) ^a	CO ₂ e (MT) ^a
Substation Survey	Veniere	Humber	USCU	(111)	(111)	(011)
Pickup Truck	1	2	10	0.02	0.00	0.02481
Vorker Commuting	40	4	10	0.80	0.00	0.79644
Substation Grading						
Vater Truck	10	1	90	1.72	0.00	1.720
Fool Truck Pickup Truck	5 20	1	90 90	0.56	0.00	0.5582
Dump Truck	5	44	90	37.82	0.00	37.848
Norker Commuting	40	15	90	26.84	0.00	26.8799
Substation Civil						
Nater Truck	10	1	60	1.15	0.00	1.14693
Tool Truck	5	1	60	0.37	0.00	0.3721
Dump Truck	10	1	60	1.15	0.00	1.14693
Norker Commuting	40	10	60	11.93	0.00	11.9466
Substation MEER	F	1	20	0.19	0.00	0.19115
Carry-all Truck Stake Truck	5	1	20	0.19	0.00	0.19115
Norker Commuting	40	4	20	1.59	0.00	1.59288
Substation Electrical	40	7	20	1.00	0.00	1.00200
Crew Truck	20	2	70	3.47	0.00	3.47349
Norker Commuting	40	10	70	13.92	0.00	13.9377
Substation Wiring						
Norker Commuting	40	5	25	2.49	0.00	2.48888
Substation Transformer						
Crew Truck	30	2	30	2.23	0.00	2.23296
Low Bed Truck	30	1	30	1.72 3.58	0.00	1.720
Norker Commuting Substation Testing	40	6	30	3.58	0.00	3.58399
Substation Testing	20	1	80	1.98	0.00	1.98485
Worker Commuting	40	2	80	3.18	0.00	3.1857
Substation Maintenance						1
Maintenance Truck	30	2	30	2.23	0.00	2.23296
Norker Commuting	32	1	31	0.49	0.00	0.49379
Substation Paving						
Crew Truck	30	2	15	1.12	0.00	1.1164
Stake Truck	10	1	15	0.29	0.00	0.28673
Dump Truck	10	1	15	0.29	0.00	0.28673
Norker Commuting Substation Fencing	40	6	15	1.79	0.00	1.79199
Flatbed Truck	10	1	10	0.19	0.00	0.19115
Pickup Truck	5	1	10	0.06	0.00	0.06202
Worker Commuting	40	4	10	0.80	0.00	0.79644
Substation Landscaping	10			0.00	0.00	0.1001
Dump Truck	10	1	15	0.29	0.00	0.28673
Worker Commuting	40	6	15	1.79	0.00	1.79199
Subtransmission Marshalling Ya	rds					
Worker Commuting	40	4	660	52.48	0.00	52.5
Subtransmission ROW Clearing						
Norker Commuting	40	4	1	0.08	0.00	0.07964
Subtransmission Guard House In	40	6	6	0.70	0.00	0.740
Norker Commuting	40	6	6	0.72	0.00	0.716
Subtransmission Line Survey Pickup Truck	1	2	10	0.02	0.00	0.0248
Worker Commuting	40	4	10	0.80	0.00	0.79644
Subtransmission Line Roadway				2.00		
Norker Commuting	40	3	5	0.30	0.00	0.29866
Subtransmission Pole Framing a						
Norker Commuting	40	6	113	13.48	0.00	13.4997
Subtransmission Line TSP Footi						
Nater Truck	20	2	33	2.52	0.00	2.52325
Crew Truck	20	2	33	1.64	0.00	1.63750
Concrete Truck	20	1	33	1.26	0.00	1.26162
Norker Commuting Subtransmission Line Conducto	40 r Installatio	14	33	9.18	0.00	9.19892
Subtransmission Line Conducto	0.35	n 16	7	0.05	0.00	0.0486
Worker Commuting	40	16	7	2.23	0.00	2.23004
Subtransmission Line Assembly				2.20	2.00	
Norker Commuting	40	8	6	0.95	0.00	0.95573
Subtransmission Line Restoration						
Norker Commuting	40	5	4	0.40	0.00	0.39822
Fiber Optic Installation						
Pickup Truck	20	1	10	0.25	0.00	0.24810
Heavy Duty Truck	20	2	10	0.76	0.00	0.76462
Norker Commuting	40	4	10	0.80	0.00	0.79644
Subtransmission Guard House F			4	0.40	0.00	0.47786
Norker Commuting	40	6	4	0.48	0.00	217.1
TOTAL						

	Table 38		
Construction	Greenhouse	Gas	Emissions

Constru	uction Equip	Hours/	ust - Comp	ressor Stat	ion Site	r –	1
	Horse-			Davia	CO ₂	CH4	CO ₂ e
		Day		Days	-	-	-
Equipment Compressor Station Site Clearin	Power	Used	Number	Used	(MT) ^a	(MT) ^a	(MT) ^a
	g			04	5.4		5 447005
D6 Dozer		5	1	21	5.4	0.0	5.447385
Grader		5		21 21	6.3	0.0	6.33784
Backhoe/Loader	10	5	2		6.4	0.0	6.382003
Sheep's Foot Vibrator Compactor (10 yards)	5	2	21	0.4	0.0	0.411827
Forklift		5	2	21	5.2	0.0	5.193898
Compressor Station Site Prepara	ation	-					
D6 Dozer		5	1	87	22.5	0.0	22.56774
Grader		5	1	87	26.2	0.0	26.25677
Excavator		5	2	87	47.2	0.0	47.30152
Backhoe/Loader		5	2	87	26.4	0.0	26.43973
Sheep's Foot Vibrator Compactor (10 yards)	5	2	87	1.7	0.0	1.706139
Compressor Station Civil							
Drilling Rig		5	1	30	11.2	0.0	11.23018
Backhoe/Loader		5	2	129	39.1	0.0	39.20373
Forklift		5	1	129	15.9	0.0	15.95269
30 Ton Hydraulic Crane		4	1	129	30.1	0.0	30.18349
D6 Dozer		5	1	129	33.4	0.0	33.46251
Front End Loader		5	1	129	19.5	0.0	19.60187
Sheep's Foot Vibrator Compactor (10 yards)	5	1	129	1.3	0.0	1.264896
Compressor Station Mechanical							
30 Ton Hydraulic Crane		5	1	198	57.8	0.0	57.91018
50 Ton Hydraulic Crane		5	1	198	57.8	0.0	57.91018
200 Ton Crawler Crane		5	2	198	115.5	0.0	115.8204
Forklift		5	1	198	24.4	0.0	24.48552
Front End Loader		5	3	198	90.0	0.0	90.25976
Welders		5	1	198	11.5	0.0	11.56575
Compressor Station Electrical							
Front End Loader		5	1	152	23.0	0.0	23.09677
Generators		5	2	152	42.1	0.0	42.17834
Other Construction Equipment		5	2	152	84.6	0.0	84.7795
Compressor Station Paving						•	•
Paving Roller		5	2	15	4.6	0.0	4.577418
Asphalt Paver		5	1	15	2.7	0.0	2.662787
Asphalt Curb Machine		5	1	15	2.3	0.0	2.354168
Tractor		5	1	15	2.3	0.0	2.279287
Compressor Station Fencing							
Skid Steer Loader		5	1	10	0.7	0.0	0.689758
Compressor Station Landscapin	a		· · · · ·				
Tractor	Ĭ	5	1	15	2.3	0.0	2.279287
TOTAL	1						821.8

Construction Equipment Exhaust - Compressor Station Site

^a Emissions [metric tons, MT] = Emission factor [lb/hr] x Operating time [hr/day] x Number x Days used [days] x 453.6 [g/lb] / 1,000,000 [g/MT] Emission factors are in Table 43

	Day per		Davs	CO ₂	CH4	CO ₂ e
Vehicle Type	Vehicle	Number	Used	(MT) ^a	(MT) ^a	(MT) ^a
Compressor Station Survey	venicie	Number	USEU	(111)	(1411)	(1411)
Pickup Truck	5	1	20	0.12	0.00	0.124053
Worker Commuting	40	2	20	0.80	0.00	0.796444
Compressor Station Site Clearin		-	20	0.00	0.00	0.100111
Dump Truck	9 10	6	21	2.41	0.00	2,40856
6 Ton Truck	10	2	21	0.80	0.00	0.802853
Water Truck	20	1	21	0.80	0.00	0.802853
Pickup Truck	5	1	21	0.13	0.00	0.130256
Worker Commuting	40	50	21	20.87	0.00	20.90665
Compressor Station Site Prepara		50	21	20.07	0.00	20.00000
Dump Truck	10	6	87	9.97	0.00	9.978321
6 Ton Truck	10	2	87	3.32	0.00	3.326107
Water Truck	20	1	87	3.32	0.00	3.326107
Pickup Truck	5	1	87	0.54	0.00	0.539632
Worker Commuting	40	50	87	86.48	0.00	86.61328
Compressor Station Civil	40	50	01	00.40	0.01	00.01020
Water Truck	20	1	129	4.93	0.00	4.931814
Pickup Truck	10	15	123	23.98	0.00	24.00433
6 Ton Truck	20	7	129	34.50	0.00	34.5227
Worker Commuting	40	150	123	384.68	0.00	385.2798
Compressor Station Mechanical		100	120	004.00	0.00	000.2700
Pickup Truck	10	15	198	36.81	0.00	36.84386
6 Ton Truck	20	7	198	52.95	0.00	52.98832
Worker Commuting	40	150	198	590.44	0.04	591.3596
Compressor Station Electrical	10	100	100	000.11	0.01	001.0000
Pickup Truck	10	15	152	28.26	0.00	28.28417
Worker Commuting	40	50	152	151.09	0.00	151.3244
Compressor Station Paving						
Pickup Truck	10	2	15	0.37	0.00	0.37216
Dump Truck	10	1	15	0.29	0.00	0.286733
Worker Commuting	40	6	15	1.79	0.00	1.791999
Compressor Station Fencing		-				
Flatbed Truck	10	1	10	0.19	0.00	0.191156
Pickup Truck	10	1	10	0.12	0.00	0.124053
Worker Commuting	40	4	10	0.80	0.00	0.796444
Compressor Station Landscapin						
Dump Truck	10	1	15	0.29	0.00	0.286733
Worker Commuting	40	10	15	2.98	0.00	2.986665
TOTAL						1.446.1
^a Emissions [metric tons, MT] = Emission 1,000,000 [g/MT] Emission factors are in Table 44	factor [lb/mi] x D	istance per veh	icle [mi/day] x	Number vehic	les x Days us	ed *453.6 [g/lb

Motor Vehicle Exhaust - Compressor Station Site

Vehicle Type Miles/day Number Used (MT) (MT) (MT) Worker Shuttle 60.00 1.00 492 36.59 0.00 36.62056 * Emissions [metric tons, MT] = Emission factor [Ib/mi] x Distance per vehicle [mi/day] x Number vehicles x Days used *453.6 [g/b: 1,000.000 [g/kT] Temission factors are in Table 44 Worker Shuttle Exhaust

Table 39 Operational Emissions

Source		Daily	/ Mass Emiss	ions (Ibs/day	/)	
	ROG	СО	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Emissions	0.22	1.98	0.22	0.00	0.33	0.01
Decrease from removal of Jet Turbines	(27.32)	(417.19)	(1069.61)	(2.98)	(37.75)	(37.75)
Net Total	(27.10)	(415.20)	(1069.39)	(2.98)	(37.42)	(37.73)
Significance Threshold	55	550	55	150	150	55
Significant? (Yes/No)	No	No	No	No	No	No

Current Project Emissions Summary

	•••••••••••••••••••••••••••••••••••••••		••••••			
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Source	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a	(lb/day) ^a
Vehicle Exhaust	0.22	1.98	0.22	0.00	0.02	0.01
Vehicle Fugitive					0.31	0.00
Total	0.22	1.98	0.22	0.00	0.33	0.01

Motor Vehicle Exhaust Emissions

	Miles/ Day per		ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}
Vehicle Type	Vehicle	Number	(lb/day) ^a					
Worker Commuting	60	4	0.22	1.98	0.22	0.00	0.02	0.01
Total Vehicle Exhaust			0.22	1.98	0.22	0.00	0.02	0.01

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 44

Motor Vehicle Entrained Particulate Matter Emissions

	Road	Miles/ Day per		PM ₁₀	PM _{2.5}
Vehicle Type	Туре	Vehicle	Number	(lb/day) ^a	(lb/day) ^a
Worker Commuting	Paved	60	10	0.31	0.00
Worker Commuting	Unpaved	0	10	0.00	0.00
Total Vehicle Fugitive				0.31	0.00
a					

^a Emissions [lb/day] = Emission factor [lb/mi] x Distance per vehicle [lb/day] x Number

Emission factors are in Table 45

Emissions Decrease from Decommissioning of the Existing Jet Turbines

	Average Daily	Daily Mass Emissions (lbs/day)				
Source	Fuel Use (MMscf/day) ¹	ROG	со	NOx	so _x	PM ₁₀
Emission Factor (Ib/MN	lscf) ²	5.50	84.00		0.60	7.60
D-14	1.38	7.59	115.98	358.56	0.83	10.49
D-15	1.26	6.94	106.04	348.08	0.76	9.59
D-16	1.32	7.28	111.16	362.97	0.79	10.06
Decrease due to shutdown or	Turbines ⁴	(27.32)	(417.19)	(1069.61)	(2.98)	(37.75)

¹ Average Daily Fuel Use calculated from Annual Acutal Fuel Use from the CEMS data for years 2007 and 2008. Average Annual Fuel Use for the two years was divided by 365 for daily fuel use.

² Emission factors in Ib/IMMscf from AP42 - Table 1.4-1 and Table 1.4-2 for all pollutants except NOx. NOx emissions are calculated from Annual Nox emissions 2007 and 2008 (CEMS data)

		Turbi	ne Fuel Data						
	Acutal F	uel Use	Actual Nox	Emissions					
	(MMscf	/year)	(lbs/	'year)	Average	Annual	Average	Daily	Peak Daily
Equipment	2007	2008	2007	2008	MMscf/year	lbs/year	MMscf/day	lbs/day	MMscf/day
D-14	500.34	507.60	130478.72	131269.05	503.97	130873.89	1.38	358.56	3.5053554
D-15	440.54	481.00	113772.60	140325.03	460.77	127048.82	1.26	348.08	3.5053554
D-16	502.37	463.70	139429.80	125539.50	483.04	132484.65	1.32	362.97	3.5053554
0									

Source: Actuals from CEMS data provided by SCG. Peak daily from SCAQMD permit limit of 150 MMBtu/hour

Emissions De	ecrease from Decon	nmissioning o	of the Existing	Jet Turbines				
Source	Peak Daily Fuel Use	Daily Mass Emissions (lbs/day)						
	(MMscf/day) ¹	ROG	со	NOx	PM ₁₀	SOx		
Emission Factor (Ib/MMsc	() ²	5.50	84.00		7.60	0.60		
D-14	3.51	19.28	294.45	358.56	176.67	26.64		
D-15	3.51	19.28	294.45	348.08	176.67	26.64		
D-16	3.51	19.28 294.45 362.97 176.67 26.64						
Decrease due to shutdown of Tu	irbines ⁴	(63.34)	(967.35)	(1069.61)	(537.61)	(80.52)		

¹ Peak Daily Fuel Use is based on SCAQMD permit limit of 150 MMBtu/hour. Fuel use is calculated for natural gas heating value of 1027 btu/scf per SCG recommendation.

² Emission factors in Ib/MMscf from AP42 - Table 1.4-1 and Table 1.4-2 for all pollutants except Nox. Nox emissions are calculated from Annual Nox emissions 2007 and 2008 (CEMS data)

Table 40 Operational Greenhouse Gas Emissions

Net GHG Emissions Summar	Net GHG Emissions Summary							
Source	CO2 Equivalents, metric tons/year							
SF ₆ Leakage	54							
Motor Vehicle Exhaust	4							
Compressor Electricity Use	138,709							
Potential GHG Emissions from Current Project	138,766							
Jet Turbine D14	(28,105)							
Jet Turbine D15	(25,696)							
Jet Turbine D16	(26,938)							
Decrease in GHG due to Removal of Turbines	(80,739)							
Net Total GHG Emissions	58,027							

GHG emissions from the new electric driven compressors and exisiting jet turbines are based on maximum potential to emit for 8760 hours per year.

Current Project GHG Emissions Summary

Source	CO₂e (MT/year)
SF ₆ Leakage	54
Motor Vehicle Exhaust	4
Compressor Electricity Use	138,709
TOTAL	138,766

SF₆ Leakage

Item	Value	Units
SF ₆ per Breaker	30	pounds
No. Breakers	17	
Total SF ₆	510	pounds
Annual Leakage Rate	1	percent
Annual Emissions	5.1	pounds
Global Warming Potential ^a	23,200	
CO₂e Emissions ^b	54	MT/year

^a Table C.7, California Climate Action Registry General Reporting Protocol, Version 3.1, January 2009
 ^b CO₂e emissions [metric tons] per year = SF₆ emissions [tb] x Global warming potential [tb CO2e/tb SF6] x 453.6 [g/tb] /1,000,000 [g/MT]

Motor Vehicle Exhaust

Vehicle Type	Miles/ Day per Vehicle	Number	Annual Use (days)	CO ₂ (MT) ^a	CH₄ (MT) ^a	CO₂e (MT) ^b
Worker Commuting	40	4	48	3.82	0.00	3.82
TOTAL						3.82

 ^b Crosses
 Constant
 Finission factor [lb/m] x Distance per vehicle [mi/day] x Number vehicles x Annual Use x 453.6 [g/lb] / 1,000,000 [g/MT]

 ^b CO2e = CO2 + (21°CH4); where 21 is the GWP of methane.
 Emission factors are in Table 44

GHG Emissions from New Electric VFD Motors - PTE (8760 hours)

		Emissi	on Factor (Ib/I	MWh) ^b		Emissions (MT/yr) CH ₄ N ₂ O 2 1 2 1 2 1 2 1 7 1 2 1 2 1 310 1	r)		
Source	Annual Electricity Usage, MWh/yr ^a	CO2	CH₄	N ₂ O	CO2	CH₄	N ₂ O	CO ₂ e	
VFD motor 1	140,160	724.12	0.0302	0.0081	46,036	2	1	46,236	
VFD motor 2	140,160	724.12	0.0302	0.0081	46,036	2	1	46,236	
VFD motor 3	140,160	724.12	0.0302	0.0081	46,036	2	1	46,236	
							Total	138,709	
Annual electricity usage for each of the 16 MW VF Table C.2, California Climate Action Registry Gene			ar.						
Global warming potential of CH ₄ , Table C.1, Californ	ia Climate Action Registry General	Reporting Protoco	ol, Version 3.1, Jar	nuary 2009		21			
Global warming potential of NO, Table C.1, Californ	a Climate Action Registry General	Reporting Protoc	ol Version 3.1 Ja	nuan/ 2000		310			

GHG Emissions Decrease from Removal of Exisitng Jet Turbines - AER

		Emissio	n Factor (kg/M	/MBtu)		Emissio	ns (MT/yr)	
Source	Annual Usage, MMBTU/yr ¹	CO2 ^b	CH₄ ^c	N ₂ O ^c	CO2	CH₄	N ₂ O	CO ₂ e
Jet Turbine D14	529,169	53.06	0.001	0.0001	28,077.68	0.53	0.05	(28,105)
Jet Turbine D15	483,809	53.06	0.001	0.0001	25,670.88	0.48	0.05	(25,696)
Jet Turbine D16	507,187	53.06	0.001	0.0001	26,911.33	0.51	0.05	(26,938)
					Т	otal Emissio	n Decrease	80,739
^a Annual Fuel suage per year was calculated from ann ^b Table C.7, California Climate Action Registry Gener			007 and 2008 and	using a natural o	gas heating value 10	027.		
^c Table C.8, Industrial Sector, California Climate Actio	n Registry General Reporting Pr	otocol, Version 3.1,	January 2009					
Global warming potential of CH ₄ , Table C.1, California	Climate Action Registry Genera	I Reporting Protoco	I, Version 3.1, Jan	uary 2009		21		
Global warming potential of NO, Table C.1, California	Climate Action Registry Genera	al Reporting Protoco	l, Version 3.1, Jar	uary 2009		310		

Project Total GHG Emissions Summary	
Source	CO ₂ e
Construction	
Equipment Exhaust (MT)	4,518
Motor Vehicle Exhaust (MT)	1,663
Total Construction Emissions (MT)	6,181
Total Construction Emissions Amortized over 30 years	
(MT/year)	206
Operation	
SF6 Leakage (MT/year)	54
Motor Vehicle Exhaust (MT/year)	4
Compressor Electricity Use (MT/year)	138,709
Potential GHG Emissions from Current Project (MT/year)	138,766
Jet Turbine D14 Operation (MT/year)	(69,789)
Jet Turbine D15 Operation (MT/year)	(69,789)
Jet Turbine D16 Operation (MT/year)	(69,789)
Decrease in GHG due to Removal of Turbines (MT/year)	(209,368)
Net Operational GHG Emissions (MT/year)	(70,395)
Total Project GHG Emissions (MT/year)	(70,189)
SCAQMD Interim Threshold (MT/year)	10,000
Significant (Yes/No)?	No
maximum potential to emit for 8760 hours per year.	

Table 41Project Total GHG Emissions Summary

Table 42 - Offroad Emission Factors

SCAB Fleet Average Emission Factors (Diesel)

SC

OffRoad 2010

Air Basin

		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)		(lb/hr)	(lb/hr)
Equipment	MaxHP	ROG	CO	NOX	SOX	PM	PM2.5	CO2	CH4
Aerial Lifts	15	0.0104	0.0529	0.0662	0.0001	0.0037	0.0034	8.7	0.0009
	25	0.0210	0.0577	0.1013	0.0001	0.0065	0.0060	11.0	0.0019
	50	0.0756	0.1937	0.1984	0.0003	0.0189	0.0174	19.6	0.0068
	120	0.0702	0.2501	0.4502	0.0004	0.0361	0.0332	38.1	0.0063
	500	0.1506	0.5801	1.9198	0.0021	0.0598	0.0550	213	0.0136
	750	0.2803	1.0486	3.5605	0.0039	0.1096	0.1008	385	0.0253
Aerial Lifts Composite		0.0670	0.2093	0.3600	0.0004	0.0248	0.0228	34.7	0.0060
Air Compressors	15	0.0144	0.0513	0.0838	0.0001	0.0061	0.0056	7.2	0.0013
	25	0.0325	0.0847	0.1397	0.0002	0.0098	0.0091	14.4	0.0029
	50	0.1163	0.2813	0.2386	0.0003	0.0265	0.0243	22.3	0.0105
	120	0.1014	0.3351	0.5977	0.0006	0.0545	0.0501	47.0	0.0091
	175	0.1274	0.5113	1.0082	0.0010	0.0568	0.0523	88.5	0.0115
	250	0.1225	0.3413	1.3983	0.0015	0.0462	0.0425	131	0.0111
	500	0.1943	0.6778	2.2062	0.0023	0.0752	0.0692	232	0.0175
	750	0.3054	1.0476	3.5002	0.0036	0.1179	0.1085	358	0.0276
	1000	0.5203	1.8591	6.0195	0.0049	0.1809	0.1664	486	0.0469
Air Compressors Composite		0.1120	0.3613	0.7320	0.0007	0.0526	0.0484	63.6	0.0101
Bore/Drill Rigs	15	0.0120	0.0632	0.0754	0.0002	0.0031	0.0028	10.3	0.0011
	25	0.0196	0.0660	0.1257	0.0002	0.0065	0.0059	16.0	0.0018
	50	0.0545	0.2505	0.2820	0.0004	0.0194	0.0178	31.0	0.0049
	120	0.0722	0.4812	0.6155	0.0009	0.0456	0.0419	77.1	0.0065
	175	0.0930	0.7543	0.9148	0.0016	0.0481	0.0443	141	0.0084
	250	0.0957	0.3460	1.1847	0.0021	0.0384	0.0353	188	0.0086
	500	0.1488	0.5566	1.7054	0.0031	0.0614	0.0565	311	0.0134
	750	0.2996	1.0997	3.4821	0.0062	0.1231	0.1132	615	0.0270
	1000	0.5360	1.7074	8.3092	0.0093	0.2078	0.1912	928	0.0484
Bore/Drill Rigs Composite		0.1052	0.5146	1.1331	0.0017	0.0498	0.0458	165	0.0095
Cement and Mortar Mixers	15	0.0079	0.0388	0.0505	0.0001	0.0029	0.0027	6.3	0.0007
	25	0.0346	0.0942	0.1633	0.0002	0.0107	0.0099	17.6	0.0031
Cement and Mortar Mixers C	omposite	0.0101	0.0434	0.0599	0.0001	0.0035	0.0033	7.2	0.0009
Concrete/Industrial Saws	25	0.0200	0.0678	0.1279	0.0002	0.0063	0.0058	16.5	0.0018
	50	0.1231	0.3210	0.3070	0.0004	0.0301	0.0277	30.2	0.0111
	120	0.1342	0.4976	0.8601	0.0009	0.0719	0.0662	74.1	0.0121

	175	0.1927	0.8786	1.6459	0.0018	0.0864	0.0794	160	0.0174
Concrete/Industrial Saws Co	mposite	0.1270	0.4273	0.6566	0.0007	0.0552	0.0508	58.5	0.0115
Cranes	50	0.1284	0.3166	0.2547	0.0003	0.0289	0.0266	23.2	0.0116
	120	0.1117	0.3723	0.6542	0.0006	0.0602	0.0554	50.1	0.0101
	175	0.1211	0.4880	0.9302	0.0009	0.0538	0.0495	80.3	0.0109
	250	0.1243	0.3464	1.2372	0.0013	0.0470	0.0432	112	0.0112
	500	0.1821	0.6625	1.7722	0.0018	0.0685	0.0630	180	0.0164
	750	0.3082	1.1113	3.0564	0.0030	0.1166	0.1072	303	0.0278
	9999	1.0894	4.1317	12.1879	0.0098	0.3792	0.3489	971	0.0983
Cranes Composite		0.1594	0.5431	1.4515	0.0014	0.0642	0.0591	129	0.0144
Crawler Tractors	50	0.1446	0.3520	0.2780	0.0003	0.0320	0.0295	24.9	0.0131
	120	0.1551	0.5018	0.9038	0.0008	0.0819	0.0753	65.8	0.0140
	175	0.1941	0.7597	1.4788	0.0014	0.0856	0.0787	121	0.0175
	250	0.2051	0.5743	1.9440	0.0019	0.0784	0.0722	166	0.0185
	500	0.2913	1.1931	2.7255	0.0025	0.1101	0.1013	259	0.0263
	750	0.5240	2.1290	4.9881	0.0047	0.1989	0.1829	465	0.0473
	1000	0.7980	3.3726	8.5998	0.0066	0.2810	0.2585	658	0.0720
Crawler Tractors Composite		0.1861	0.6409	1.3854	0.0013	0.0854	0.0786	114	0.0168
Crushing/Proc. Equipment	50	0.2271	0.5592	0.4700	0.0006	0.0520	0.0478	44.0	0.0205
	120	0.1760	0.5956	1.0382	0.0010	0.0960	0.0883	83.1	0.0159
	175	0.2367	0.9736	1.8607	0.0019	0.1068	0.0982	167	0.0214
	250	0.2243	0.6225	2.5465	0.0028	0.0841	0.0773	245	0.0202
	500	0.3091	1.0542	3.4510	0.0037	0.1187	0.1092	374	0.0279
	750	0.4956	1.6226	5.6506	0.0059	0.1900	0.1748	589	0.0447
	9999	1.3820	4.8014	16.0752	0.0131	0.4812	0.4427	1,308	0.1247
Crushing/Proc. Equipment C	omposite	0.2152	0.7260	1.4394	0.0015	0.0935	0.0861	132	0.0194
Dumpers/Tenders	25	0.0108	0.0336	0.0645	0.0001	0.0036	0.0034	7.6	0.0010
Dumpers/Tenders Composite	e	0.0108	0.0336	0.0645	0.0001	0.0036	0.0034	7.6	0.0010
Excavators	25	0.0199	0.0677	0.1261	0.0002	0.0057	0.0052	16.4	0.0018
	50	0.1131	0.3145	0.2638	0.0003	0.0276	0.0254	25.0	0.0102
	120	0.1398	0.5318	0.8402	0.0009	0.0781	0.0718	73.6	0.0126
	175	0.1465	0.6701	1.1143	0.0013	0.0663	0.0610	112	0.0132
	250	0.1451	0.3934	1.4935	0.0018	0.0519	0.0478	159	0.0131
	500	0.1984	0.6161	1.9285	0.0023	0.0711	0.0654	234	0.0179
	750	0.3313	1.0196	3.3023	0.0039	0.1198	0.1102	387	0.0299
Excavators Composite		0.1483	0.5581	1.1502	0.0013	0.0638	0.0587	120	0.0134
Forklifts	50	0.0666	0.1824	0.1530	0.0002	0.0163	0.0150	14.7	0.0060
	120	0.0601	0.2243	0.3497	0.0004	0.0342	0.0315	31.2	0.0054
	175	0.0738	0.3306	0.5540	0.0006	0.0337	0.0310	56.1	0.0067
	250	0.0652	0.1707	0.7163	0.0009	0.0227	0.0209	77.1	0.0059
	500	0.0868	0.2343	0.8909	0.0011	0.0307	0.0282	111	0.0078
Forklifts Composite		0.0686	0.2319	0.5161	0.0006	0.0281	0.0258	54.4	0.0062

Generator Sets	15	0.0172	0.0726	0.1154	0.0002	0.0069	0.0063	10.2	0.0016
	25	0.0300	0.1033	0.1705	0.0002	0.0107	0.0098	17.6	0.0027
	50	0.1117	0.2904	0.3070	0.0004	0.0284	0.0261	30.6	0.0101
	120	0.1395	0.5054	0.9075	0.0009	0.0714	0.0657	77.9	0.0126
	175	0.1672	0.7471	1.4780	0.0016	0.0721	0.0663	142	0.0151
	250	0.1618	0.5018	2.0720	0.0024	0.0618	0.0569	213	0.0146
	500	0.2305	0.8858	2.9974	0.0033	0.0917	0.0844	337	0.0208
	750	0.3838	1.4300	4.9646	0.0055	0.1502	0.1381	544	0.0346
	9999	1.0080	3.6008	12.1384	0.0105	0.3600	0.3312	1,049	0.0909
Generator Sets Composite		0.0961	0.3293	0.6440	0.0007	0.0396	0.0365	61.0	0.0087
Graders	50	0.1400	0.3584	0.2961	0.0004	0.0323	0.0297	27.5	0.0126
	120	0.1553	0.5459	0.9268	0.0009	0.0849	0.0781	75.0	0.0140
	175	0.1743	0.7409	1.3532	0.0014	0.0783	0.0720	124	0.0157
	250	0.1761	0.4934	1.7904	0.0019	0.0662	0.0609	172	0.0159
	500	0.2149	0.7523	2.1198	0.0023	0.0807	0.0742	229	0.0194
	750	0.4580	1.5877	4.6098	0.0049	0.1729	0.1591	486	0.0413
Graders Composite		0.1723	0.6314	1.4338	0.0015	0.0753	0.0693	133	0.0155
Off-Highway Tractors	120	0.2457	0.7439	1.4200	0.0011	0.1255	0.1155	93.7	0.0222
	175	0.2326	0.8561	1.7665	0.0015	0.1014	0.0933	130	0.0210
	250	0.1881	0.5347	1.7050	0.0015	0.0735	0.0677	130	0.0170
	750	0.7400	3.5496	6.8440	0.0057	0.2854	0.2625	568	0.0668
	1000	1.1197	5.5155	11.4633	0.0082	0.4009	0.3688	814	0.1010
Off-Highway Tractors Compo	osite	0.2368	0.8385	1.9897	0.0017	0.0974	0.0896	151	0.0214
Off-Highway Trucks	175	0.1732	0.7625	1.2796	0.0014	0.0771	0.0710	125	0.0156
	250	0.1639	0.4301	1.6150	0.0019	0.0574	0.0528	167	0.0148
	500	0.2492	0.7542	2.3188	0.0027	0.0872	0.0802	272	0.0225
	750	0.4069	1.2210	3.8814	0.0044	0.1436	0.1321	442	0.0367
	1000	0.6440	2.0615	7.3260	0.0063	0.2219	0.2041	625	0.0581
Off-Highway Trucks Compos	site	0.2480	0.7429	2.3885	0.0027	0.0875	0.0805	260	0.0224
Other Construction Equipme	15	0.0118	0.0617	0.0737	0.0002	0.0030	0.0028	10.1	0.0011
	25	0.0162	0.0545	0.1039	0.0002	0.0053	0.0049	13.2	0.0015
	50	0.1033	0.2930	0.2787	0.0004	0.0263	0.0242	28.0	0.0093
	120	0.1320	0.5419	0.8649	0.0009	0.0740	0.0681	80.9	0.0119
	175	0.1168	0.5901	0.9927	0.0012	0.0543	0.0499	107	0.0105
	500	0.1705	0.6068	1.9821	0.0025	0.0678	0.0624	254	0.0154
Other Construction Equipme	nt Composite	0.1056	0.4108	1.0117	0.0013	0.0442	0.0406	123	0.0095
Other General Industrial Equ		0.0066	0.0391	0.0466	0.0001	0.0017	0.0016	6.4	0.0006
	25	0.0186	0.0632	0.1177	0.0002	0.0054	0.0049	15.3	0.0017
	50	0.1281	0.3073	0.2413	0.0003	0.0285	0.0263	21.7	0.0116
	120	0.1459	0.4647	0.8218	0.0007	0.0795	0.0731	62.0	0.0132
	175	0.1516	0.5816	1.1364	0.0011	0.0676	0.0622	95.9	0.0137
	250	0.1400	0.3676	1.5016	0.0015	0.0509	0.0469	136	0.0126
	250	0.1400	0.3676	1.5016	0.0015	0.0509	0.0469	136	0.0

	500	0.2500	0.8031	2.6018	0.0026	0.0919	0.0845	265	0.0226
	750	0.4153	1.3236	4.4083	0.0044	0.1538	0.1415	437	0.0375
	1000	0.6374	2.2063	7.1530	0.0056	0.2212	0.2035	560	0.0575
Other General Industrial Eq	uipmen Compo	0.1847	0.5948	1.6649	0.0016	0.0740	0.0681	152	0.0167
Other Material Handling Equ	J 50	0.1773	0.4246	0.3355	0.0004	0.0395	0.0363	30.3	0.0160
	120	0.1417	0.4524	0.8014	0.0007	0.0772	0.0710	60.7	0.0128
	175	0.1914	0.7367	1.4429	0.0014	0.0856	0.0787	122	0.0173
	250	0.1481	0.3917	1.6024	0.0016	0.0542	0.0499	145	0.0134
	500	0.1782	0.5784	1.8750	0.0019	0.0660	0.0607	192	0.0161
	9999	0.8390	2.9174	9.4509	0.0073	0.2912	0.2679	741	0.0757
Other Material Handling Equ	uipment Compo	0.1773	0.5556	1.6150	0.0015	0.0715	0.0658	141	0.0160
Pavers	25	0.0278	0.0845	0.1603	0.0002	0.0092	0.0085	18.7	0.0025
	50	0.1624	0.3860	0.3110	0.0004	0.0356	0.0328	28.0	0.0147
	120	0.1638	0.5223	0.9693	0.0008	0.0853	0.0785	69.2	0.0148
	175	0.2049	0.7959	1.6028	0.0014	0.0903	0.0831	128	0.0185
	250	0.2426	0.7011	2.3337	0.0022	0.0953	0.0877	194	0.0219
	500	0.2622	1.1661	2.5319	0.0023	0.1023	0.0941	233	0.0237
Pavers Composite		0.1774	0.5644	0.9868	0.0009	0.0709	0.0652	77.9	0.0160
Paving Equipment	25	0.0155	0.0521	0.0993	0.0002	0.0051	0.0047	12.6	0.0014
	50	0.1384	0.3277	0.2654	0.0003	0.0303	0.0279	23.9	0.0125
	120	0.1282	0.4084	0.7600	0.0006	0.0668	0.0615	54.5	0.0116
	175	0.1599	0.6208	1.2577	0.0011	0.0704	0.0648	101	0.0144
	250	0.1506	0.4363	1.4619	0.0014	0.0592	0.0545	122	0.0136
Paving Equipment Composi		0.1336	0.4478	0.8963	0.0008	0.0629	0.0579	68.9	0.0121
Plate Compactors	15	0.0050	0.0263	0.0317	0.0001	0.0015	0.0014	4.3	0.0005
Plate Compactors Composi		0.0050	0.0263	0.0317	0.0001	0.0015	0.0014	4.3	0.0005
Pressure Washers	15	0.0083	0.0348	0.0553	0.0001	0.0033	0.0030	4.9	0.0007
	25	0.0122	0.0419	0.0691	0.0001	0.0043	0.0040	7.1	0.0011
	50	0.0413	0.1143	0.1388	0.0002	0.0115	0.0106	14.3	0.0037
	120	0.0388	0.1487	0.2674	0.0003	0.0193	0.0177	24.1	0.0035
Pressure Washers Compos		0.0199	0.0666	0.0989	0.0001	0.0070	0.0065	9.4	0.0018
Pumps	15	0.0148	0.0528	0.0862	0.0001	0.0062	0.0057	7.4	0.0013
	25	0.0439	0.1142	0.1884	0.0002	0.0133	0.0122	19.5	0.0040
	50	0.1339	0.3428	0.3479	0.0004	0.0333	0.0306	34.3	0.0121
	120	0.1441	0.5136	0.9216	0.0009	0.0744	0.0685	77.9	0.0130
	175	0.1709	0.7489	1.4815	0.0016	0.0742	0.0683	140	0.0154
	250	0.1593	0.4846	1.9941	0.0023	0.0609	0.0560	201	0.0144
	500	0.2450	0.9411	3.1080	0.0034	0.0973	0.0895	345	0.0221
	750	0.4167	1.5559	5.2721	0.0057	0.1631	0.1500	571	0.0376
	9999	1.3269	4.8008	15.8590	0.0136	0.4723	0.4345	1,355	0.1197
Pumps Composite		0.0936	0.3096	0.5545	0.0006	0.0393	0.0362	49.6	0.0084
Rollers	15	0.0074	0.0386	0.0461	0.0001	0.0019	0.0017	6.3	0.0007

I	25	0.0164	0.0551	0.1049	0.0002	0.0054	0.0050	13.3	0.0015
	50	0.1270	0.3169	0.2753	0.0003	0.0292	0.0269	26.0	0.0115
	120	0.1201	0.4177	0.7383	0.0007	0.0641	0.0590	59.0	0.0108
	175	0.1478	0.6270	1.2022	0.0012	0.0659	0.0606	108	0.0133
	250	0.1542	0.4540	1.6232	0.0017	0.0603	0.0555	153	0.0139
	500	0.1987	0.7785	2.0882	0.0022	0.0783	0.0721	219	0.0179
Rollers Composite		0.1176	0.4212	0.7749	0.0008	0.0547	0.0503	67.1	0.0106
Rough Terrain Forklifts	50	0.1590	0.4186	0.3558	0.0004	0.0377	0.0347	33.9	0.0143
Ű	120	0.1213	0.4447	0.7326	0.0007	0.0676	0.0621	62.4	0.0109
	175	0.1640	0.7302	1.2875	0.0014	0.0749	0.0689	125	0.0148
	250	0.1523	0.4270	1.6632	0.0019	0.0567	0.0521	171	0.0137
	500	0.2097	0.6871	2.1987	0.0025	0.0788	0.0725	257	0.0189
Rough Terrain Forklifts Com	posite	0.1272	0.4766	0.7988	0.0008	0.0678	0.0624	70.3	0.0115
Rubber Tired Dozers	175	0.2398	0.8686	1.7881	0.0015	0.1036	0.0953	129	0.0216
	250	0.2776	0.7758	2.4482	0.0021	0.1071	0.0986	183	0.0250
	500	0.3621	1.7411	3.2071	0.0026	0.1370	0.1260	265	0.0327
	750	0.5457	2.6075	4.9024	0.0040	0.2071	0.1906	399	0.0492
	1000	0.8464	4.1786	8.4813	0.0060	0.3018	0.2776	592	0.0764
Rubber Tired Dozers Compo	osite	0.3379	1.4127	2.9891	0.0025	0.1288	0.1185	239	0.0305
Rubber Tired Loaders	25	0.0206	0.0697	0.1314	0.0002	0.0064	0.0059	16.9	0.0019
	50	0.1560	0.4005	0.3333	0.0004	0.0361	0.0332	31.1	0.0141
	120	0.1206	0.4268	0.7227	0.0007	0.0660	0.0608	58.9	0.0109
	175	0.1476	0.6326	1.1513	0.0012	0.0664	0.0611	106	0.0133
	250	0.1493	0.4210	1.5357	0.0017	0.0563	0.0518	149	0.0135
	500	0.2172	0.7648	2.1684	0.0023	0.0819	0.0754	237	0.0196
	750	0.4484	1.5625	4.5660	0.0049	0.1700	0.1564	486	0.0405
	1000	0.6154	2.2308	7.1368	0.0060	0.2156	0.1983	594	0.0555
Rubber Tired Loaders Comp	osite	0.1440	0.5078	1.1537	0.0012	0.0651	0.0599	109	0.0130
Scrapers	120	0.2236	0.7169	1.3034	0.0011	0.1177	0.1083	93.9	0.0202
	175	0.2391	0.9290	1.8284	0.0017	0.1053	0.0969	148	0.0216
	250	0.2618	0.7368	2.4818	0.0024	0.1006	0.0926	209	0.0236
	500	0.3650	1.5182	3.4250	0.0032	0.1386	0.1275	321	0.0329
	750	0.6328	2.6115	6.0373	0.0056	0.2413	0.2220	555	0.0571
Scrapers Composite		0.3202	1.2424	2.9078	0.0027	0.1256	0.1155	262	0.0289
Signal Boards	15	0.0072	0.0377	0.0450	0.0001	0.0017	0.0016	6.2	0.0006
1	50	0.1492	0.3827	0.3689	0.0005	0.0364	0.0335	36.2	0.0135
	120	0.1495	0.5380	0.9446	0.0009	0.0792	0.0728	80.2	0.0135
1	175	0.1907	0.8437	1.6203	0.0017	0.0846	0.0778	155	0.0172
	250	0.2049	0.6138	2.5094	0.0029	0.0789	0.0726	255	0.0185
Signal Boards Composite		0.0224	0.0953	0.1615	0.0002	0.0091	0.0084	16.7	0.0020
Skid Steer Loaders	25	0.0249	0.0700	0.1252	0.0002	0.0079	0.0073	13.8	0.0022
l	50	0.0785	0.2507	0.2463	0.0003	0.0217	0.0199	25.5	0.0071

1	120	0.0607	0.2822	0.4131	0.0005	0.0355	0.0327	42.8	0.0055
Skid Steer Loaders Compos	ite	0.0692	0.2489	0.2919	0.0004	0.0252	0.0232	30.3	0.0062
Surfacing Equipment	50	0.0589	0.1520	0.1451	0.0002	0.0142	0.0131	14.1	0.0053
	120	0.1192	0.4334	0.7683	0.0007	0.0624	0.0574	63.8	0.0108
	175	0.1071	0.4787	0.9169	0.0010	0.0472	0.0435	85.8	0.0097
	250	0.1254	0.3883	1.3783	0.0015	0.0494	0.0455	135	0.0113
	500	0.1854	0.7785	2.0517	0.0022	0.0741	0.0682	221	0.0167
	750	0.2960	1.2171	3.2929	0.0035	0.1173	0.1079	347	0.0267
Surfacing Equipment Compo		0.1550	0.6164	1.5685	0.0017	0.0606	0.0557	166	0.0140
Sweepers/Scrubbers	15	0.0124	0.0729	0.0870	0.0002	0.0033	0.0030	11.9	0.0011
	25	0.0239	0.0808	0.1524	0.0002	0.0075	0.0069	19.6	0.0022
	50	0.1508	0.3893	0.3297	0.0004	0.0355	0.0327	31.6	0.0136
	120	0.1490	0.5329	0.8645	0.0009	0.0843	0.0776	75.0	0.0134
	175	0.1856	0.8049	1.4276	0.0016	0.0854	0.0786	139	0.0167
	250	0.1344	0.3643	1.5598	0.0018	0.0489	0.0450	162	0.0121
Sweepers/Scrubbers Compo	osite	0.1548	0.5380	0.8473	0.0009	0.0686	0.0631	78.5	0.0140
Tractors/Loaders/Backhoes	25	0.0214	0.0681	0.1317	0.0002	0.0072	0.0066	15.9	0.0019
	50	0.1257	0.3548	0.3114	0.0004	0.0312	0.0287	30.3	0.0113
	120	0.0910	0.3623	0.5664	0.0006	0.0515	0.0474	51.7	0.0082
	175	0.1216	0.5881	0.9646	0.0011	0.0562	0.0517	101	0.0110
	250	0.1418	0.4037	1.5493	0.0019	0.0523	0.0482	172	0.0128
	500	0.2630	0.8495	2.7242	0.0039	0.0980	0.0901	345	0.0237
	750	0.3986	1.2725	4.2276	0.0058	0.1496	0.1376	517	0.0360
Tractors/Loaders/Backhoes	Composite	0.1021	0.3930	0.6747	0.0008	0.0521	0.0479	66.8	0.0092
Trenchers	15	0.0099	0.0517	0.0617	0.0001	0.0023	0.0021	8.5	0.0009
	25	0.0400	0.1355	0.2555	0.0004	0.0125	0.0115	32.9	0.0036
	50	0.1837	0.4365	0.3620	0.0004	0.0405	0.0373	32.9	0.0166
	120	0.1509	0.4840	0.9082	0.0008	0.0776	0.0714	64.9	0.0136
	175	0.2254	0.8843	1.7973	0.0016	0.0990	0.0911	144	0.0203
	250	0.2770	0.8161	2.6802	0.0025	0.1103	0.1015	223	0.0250
	500	0.3468	1.6352	3.4013	0.0031	0.1373	0.1264	311	0.0313
	750	0.6586	3.0677	6.5218	0.0059	0.2602	0.2394	587	0.0594
Trenchers Composite		0.1675	0.4907	0.7598	0.0007	0.0637	0.0586	58.7	0.0151
Welders	15	0.0124	0.0441	0.0720	0.0001	0.0052	0.0048	6.2	0.0011
1	25	0.0254	0.0661	0.1091	0.0001	0.0077	0.0071	11.3	0.0023
1	50	0.1231	0.3025	0.2724	0.0003	0.0287	0.0264	26.0	0.0111
1	120	0.0807	0.2738	0.4899	0.0005	0.0428	0.0394	39.5	0.0073
1	175	0.1333	0.5515	1.0896	0.0011	0.0590	0.0542	98.2	0.0120
	250	0.1052	0.3022	1.2367	0.0013	0.0400	0.0368	119	0.0095
	500	0.1327	0.4823	1.5648	0.0016	0.0520	0.0479	168	0.0120
Welders Composite		0.0805	0.2246	0.2920	0.0003	0.0270	0.0248	25.6	0.0073

Table 43
Off-road Exhaust Emission Factors - Year 2010

		Horse-	SCAQMD Off-Road Model		ROG	со	NOx	sox	PM ₁₀	PM _{2.5}	CO2	CH4
Equipment Type	Fuel	power	Category		(lb/hr) ^a	(lb/hr) ^b	(lb/hr) ^a	(lb/hr				
ozer	Diesel	305	Rubber Tired Dozers	Dozer 0305	0.278	0.776	2.448	0.002	0.107	0.099	183.487	0.02
bader	Diesel	147	Tractors/Loaders/Backhoes	Loader 0147	0.091	0.362	0.566	0.001	0.052	0.047	51.728	0.00
craper	Diesel	267	Scrapers	Scraper 0267	0.262	0.737	2.482	0.002	0.101	0.093	209.470	0.02
rader rader	Diesel Diesel	110 350	Graders Graders	Grader 0110 Grader 0350	0.172	0.631 0.6314	1.434 1.4338	0.001 0.0015	0.075	0.069	132.743 132.743	0.01
ackhoe	Diesel	79	Tractors/Loaders/Backhoes	Backhoe 0079	0.1/25	0.355	0.311	0.0013	0.0733	0.029	30.347	0.01
ackhoe	Diesel	350	Tractors/Loaders/Backhoes	Backhoe 0350	0.120	0.404	1.549	0.002	0.052	0.048	171.737	0.009
amper	Diesel	174	Rollers	Tamper 0174	0.120	0.418	0.738	0.001	0.064	0.059	58.989	0.01
xcavator	Diesel	152	Excavators	Excavator 0152	0.140	0.532	0.840	0.001	0.078	0.072	73.623	0.01
oundation Auger	Diesel	79	Bore/Drill Rigs	Foundation Auger 0079	0.054	0.250	0.282	0.000	0.019	0.018	31.037	0.00
kip Loader	Diesel	75	Skid Steer Loaders	Skip Loader 0075	0.078	0.251	0.246	0.000	0.022	0.020	25.519	0.00
kid Steer Loader	Diesel	75	Skid Steer Loaders	Skid Steer Loader 0075	0.078	0.251	0.246	0.000	0.022	0.020	25.519	0.00
orklift	Diesel	83	Forklifts	Forklift 0083	0.067	0.182	0.153	0.000	0.016	0.015	14.672	0.00
7 Ton Crane cissor Lift	Diesel Diesel	125 87	Cranes Aerial Lifts	17 Ton Crane 0125 Scissor Lift 0087	0.112 0.076	0.372 0.194	0.654 0.198	0.001	0.060	0.055	50.148 19.613	0.01
Aanlift	Diesel	43	Aerial Lifts	Manlift 0043	0.021	0.058	0.101	0.000	0.007	0.006	10.960	0.00
Reach Manlift	Diesel	87	Aerial Lifts	Reach Manlift 0087	0.021	0.194	0.198	0.000	0.019	0.000	19.613	0.00
5 Ton Crane	Diesel	125	Cranes	15 Ton Crane 0125	0.112	0.372	0.654	0.001	0.060	0.055	50.148	0.01
Frane	Diesel	125	Cranes	Crane 0125	0.112	0.372	0.654	0.001	0.060	0.055	50.148	0.01
aving Roller	Diesel	46	Rollers	Paving Roller 0046	0.016	0.055	0.105	0.000	0.005	0.005	13.343	0.00
sphalt Paver	Diesel	152	Pavers	Asphalt Paver 0152	0.164	0.522	0.969	0.001	0.085	0.079	69.196	0.01
sphalt Curb Machine	Diesel	35	Paving Equipment	Asphalt Curb Machine 0035	0.016	0.052	0.099	0.000	0.005	0.005	12.628	0.00
ractor	Diesel	45	Tractors/Loaders/Backhoes	Tractor 0045	0.021	0.068	0.132	0.000	0.007	0.007	15.863	0.00
lozer, D6	Diesel	165	Crawler Tractors	Dozer, D6 0165	0.155	0.502	0.904	0.001	0.082	0.075	65.811	0.01
lozer, D8	Diesel	305	Crawler Tractors	Dozer, D8 0305	0.205	0.574	1.944	0.002	0.078	0.072	166.132	0.01
ruck Mounted Crane	Diesel	235	Cranes Other Construction Equipment	Truck Mounted Crane 0235	0.121	0.488	0.930	0.001	0.054	0.050	80.345	0.01
Conductor Pulling Machine	Diesel Diesel	120 120	Other Construction Equipment Other Construction Equipment	Conductor Pulling Machine 0120 Conductor Tensioner 0120	0.132	0.542	0.865	0.001	0.074	0.068	80.859 80.859	0.01
0 Ton Crane	Diesel	120	Cranes	30 Ton Crane 0125	0.132	0.542	0.865	0.001	0.074	0.068	50.148	0.01
1 Ton Crane	Diesel	300	Cranes	31 Ton Crane 0300	0.112	0.346	1.237	0.001	0.047	0.043	112.159	0.01
Drilling Rig	Diesel	190	Bore/Drill Rigs	Drilling Rig 0190	0.093	0.754	0.915	0.002	0.048	0.043	141.076	0.00
Vater Truck	Diesel	350	Other Construction Equipment	Water Truck 0350	0.117	0.590	0.993	0.001	0.054	0.050	106.516	0.01
i0 Ton Hydraulic Crane	Diesel		Cranes	50 Ton Hydraulic Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.01
0 Ton Hydraulic Crane	Diesel		Cranes	30 Ton Hydraulic Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.01
00 Ton Crawler Crane	Diesel		Cranes	200 Ton Crawler Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.01
orklift	Diesel		Forklifts	Forklift 0000	0.069	0.232	0.516	0.001	0.028	0.026	54.396	0.00
Backhoe/Loader	Diesel		Tractors/Loaders/Backhoes	Backhoe/Loader 0000	0.102	0.393	0.675	0.001	0.052	0.048	66.805	0.00
Grader	Diesel		Graders	Grader 0000	0.172	0.631	1.434	0.001	0.075	0.069	132.743	0.01
06 Dozer Sheep's Foot Vibrator	Diesel		Crawler Tractors	D6 Dozer 0000	0.186	0.641	1.385	0.001	0.085	0.079	114.021	0.01
Compactor (10 yards)	Diesel		Plate Compactors	ep's Foot Vibrator Compactor (10 yards)	0.005	0.026	0.032	0.000	0.002	0.001	4.314	0.00
Excavators	Diesel		Excavators	Excavators 0000	0.148	0.558	1.150	0.000	0.064	0.059	119.581	0.00
Front End Loader	Diesel		Tractors/Loaders/Backhoes	Front End Loader 0000	0.102	0.393	0.675	0.001	0.052	0.048	66.805	0.00
Drilling Rig	Diesel		Bore/Drill Rigs	Drilling Rig 0000	0.105	0.515	1.133	0.002	0.050	0.046	164.853	0.00
Paver/Sealer	Diesel		Pavers	Paver/Sealer 0000	0.177	0.564	0.987	0.001	0.071	0.065	77.935	0.01
Velders	Diesel		Welders	Welders 0000	0.081	0.225	0.292	0.000	0.027	0.025	25.603	0.00
Generators	Diesel		Generator Sets	Generators 0000	0.096	0.329	0.644	0.001	0.040	0.036	60.993	0.00
Other Construction Equipment	Diesel		Other Construction Equipment	Other Construction Equipment 0000	0.106	0.411	1.012	0.001	0.044	0.041	122.763	0.01
Off-Highway Trucks	Diesel		Other Construction Equipment	Off-Highway Trucks 0000	0.106	0.411	1.012	0.001	0.044	0.041	122.763	0.01
owboy Truck/Trailer	Diesel	500	Other Construction Equipment	Lowboy Truck/Trailer 0500	0.171	0.607	1.982	0.002	0.068	0.062	254.238	0.01
orklift	Diesel		Other Construction Equipment	Forklift 0000	0.106	0.411	1.012	0.001	0.044	0.041	122.763	0.01
Compressor Trailer	Diesel	120	Other Construction Equipment	Compressor Trailer 0120	0.132	0.542	0.865	0.001	0.074	0.068	80.859	0.01
Off-Highway Trucks	Diesel		Off-Highway Trucks	Off-Highway Trucks 0000	0.248	0.743	2.388	0.003	0.088	0.081	260.104	0.02
Dozer	Diesel		Rubber Tired Dozers	Dozer 0000	0.2776	1.413	2.989	0.002	0.129	0.118	239.101	0.03
oader	Diesel		Tractors/Loaders/Backhoes	Loader 0000	0.102	0.393	0.675	0.001	0.052	0.048	66.805	0.00
Scraper	Diesel		Scrapers	Scraper 0000	0.320	1.242	2.908	0.003	0.126	0.116	262.499	0.02
Grader	Diesel		Graders	Grader 0000	0.172	0.631	1.434	0.001	0.075	0.069	132.743	0.01
Backhoe	Diesel		Tractors/Loaders/Backhoes	Backhoe 0000	0.102	0.393	0.675	0.001	0.052	0.048	66.805	0.00
amper	Diesel	-	Rollers	Tamper 0000	0.118	0.421	0.775	0.001	0.055	0.050	67.052	0.01
xcavator	Diesel		Excavators	Excavator 0000	0.148	0.558	1.150	0.001	0.064	0.059	119.581	0.01
oundation Auger	Diesel		Bore/Drill Rigs	Foundation Auger 0000	0.105	0.515	1.133	0.002	0.050	0.046	164.853	0.00
Skip Loader Skid Steer Loader	Diesel Diesel		Skid Steer Loaders Skid Steer Loaders	Skip Loader 0000 Skid Steer Loader 0000	0.069	0.249 0.249	0.292	0.000	0.025	0.023	30.281 30.281	0.00
orklift	Diesel		Forklifts	Forklift 0000	0.069	0.249	0.292	0.000	0.025	0.023	30.281 54.396	0.00
7 Ton Crane	Diesel		Cranes	17 Ton Crane 0000	0.069	0.232	1.451	0.001	0.028	0.028	128.655	0.00
Scissor Lift	Diesel		Aerial Lifts	Scissor Lift 0000	0.067	0.209	0.360	0.000	0.025	0.023	34.722	0.00
Manlift	Diesel		Aerial Lifts	Manlift 0000	0.067	0.209	0.360	0.000	0.025	0.023	34.722	0.00
Reach Manlift	Diesel		Aerial Lifts	Reach Manlift 0000	0.067	0.209	0.360	0.000	0.025	0.023	34.722	0.00
5 Ton Crane	Diesel		Cranes	15 Ton Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.01
Crane	Diesel	-	Cranes	Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.01
Paving Roller	Diesel		Rollers	Paving Roller 0000	0.118	0.421	0.775	0.001	0.055	0.050	67.052	0.01
sphalt Paver	Diesel		Pavers	Asphalt Paver 0000	0.177	0.564	0.987	0.001	0.071	0.065	77.935	0.01
sphalt Curb Machine	Diesel		Paving Equipment	Asphalt Curb Machine 0000	0.134	0.448	0.896	0.001	0.063	0.058	68.946	0.01
ractor	Diesel		Tractors/Loaders/Backhoes	Tractor 0000	0.102	0.393	0.675	0.001	0.052	0.048	66.805 114.021	0.00
Dozer, D6 Dozer, D8	Diesel Diesel		Crawler Tractors Crawler Tractors	Dozer, D6 0000 Dozer, D8 0000	0.186	0.641 0.641	1.385	0.001	0.085	0.079	114.021	0.01
ruck Mounted Crane	Diesel		Cranes	Truck Mounted Crane 0000	0.159	0.641	1.365	0.001	0.065	0.079	128.655	0.01
Conductor Pulling Machine	Diesel		Other Construction Equipment	Conductor Pulling Machine 0000	0.109	0.343	1.012	0.001	0.004	0.039	128.055	0.01
Conductor Tensioner	Diesel		Other Construction Equipment	Conductor Tensioner 0000	0.106	0.411	1.012	0.001	0.044	0.041	122.763	0.0
	Diesel		Cranes	30 Ton Crane 0000	0.159	0.543	1.451	0.001	0.064	0.059	128.655	0.0
0 Ton Crane			Bore/Drill Rigs	Drilling Rig 0000	0.105	0.515	1.133	0.002	0.050	0.046	164.853	0.00
	Diesel											
0 Ton Crane	Diesel		Air Compressors	Air Compressors 0000	0.112	0.361	0.732	0.001	0.053	0.048	63.607	0.01

	Or	nroad Emi	ssion Fac	tor Sumr	mary				
Vechile Type	SCAQMD EF Classification	ROG	со	NO _x	SOx	PM ₁₀	PM _{2.5}	CO2	СН₄
			l	Į	20 ⁻	10		Į	
Water Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Dump Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Carry-all Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Stake Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Low Bed Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Flatbed Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Line Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Concrete Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Heavy Duty Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
6 Ton Truck	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Dump Truck (10 yards)	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Dump Truck (20 yards)	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Water Truck (2000 gallons)	HHDT	0.00304	0.01195	0.03822	0.00004	0.00183	0.00160	4.21121	0.00014
Worker Shuttle	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Pickup Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Crew Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Maintenance Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Tool Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Light Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Bucket Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Framing Truck	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
3/4-Ton Pickup	MHDT	0.00259	0.01844	0.02062	0.00003	0.00075	0.00064	2.73222	0.00013
Worker Commuting	Passenger	0.00091	0.00826	0.00092	0.00001	0.00009	0.00005	1.09568	0.00008

Table 44

^a SCAQMD CEQA Air Quality Guidance Handbook - Onroad - EMFAC 2007 Emission Factors

PM10 and PM2.5 includes exhaust + tire and brake wear emissions

	WIOtor	Vehicle Entrained Road	Silt Loading	Average	PM10	PM2.5
			(sL, g/m2) or	Weight	Emission	Emission
			Silt Content	(W)	Factor	Factor
Vehicle Type	Surface		(s, %) ^a	(tons) ^b	(Ib/VMT) ^c	(Ib/VMT) ^c
Water Truck	Paved	Water TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Water Truck	Unpaved	Water TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Tool Truck	Paved	Tool TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Tool Truck	Unpaved	Tool TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Pickup Truck	Paved	Pickup TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Pickup Truck	Unpaved	Pickup TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Dump Truck	Paved	Dump TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Dump Truck	Unpaved	Dump TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Dump Truck (10 yards)	Paved	ump Truck (10 yards)Pave	0.035	2.7	5.15E-04	0.00E+00
Dump Truck (10 yards)	Unpaved	mp Truck (10 yards)Unpar	7.5	17	2.14E+00	2.14E-01
Dump Truck (20 yards)	Paved	ump Truck (20 yards)Pave	0.035	2.7	5.15E-04	0.00E+00
Dump Truck (20 yards)	Unpaved	mp Truck (20 yards)Unpa	7.5	17	2.14E+00	2.14E-01
6 Ton Truck	Paved	6 Ton TruckPaved	0.035	2.7	5.15E-04	0.00E+00
6 Ton Truck	Unpaved	6 Ton TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Carry-all Truck	Paved	Carry-all TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Carry-all Truck	Unpaved	Carry-all TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Stake Truck	Paved	Stake TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Stake Truck	Unpaved	Stake TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Crew Truck	Paved	Crew TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Crew Truck	Unpaved	Crew TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Low Bed Truck	Paved	Low Bed TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Low Bed Truck	Unpaved	Low Bed TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Maintenance Truck	Paved	Maintenance TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Maintenance Truck	Unpaved	laintenance TruckUnpave	7.5	17	2.14E+00	2.14E-01
Tractor	Paved	TractorPaved	0.035	2.7	5.15E-04	0.00E+00
Tractor	Unpaved	TractorUnpaved	7.5	17	2.14E+00	2.14E-01
Flatbed Truck	Paved	Flatbed TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Flatbed Truck	Unpaved	Flatbed TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Light Truck	Paved	Light TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Light Truck	Unpaved	Light TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Line Truck	Paved	Line TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Line Truck	Unpaved	Line TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Bucket Truck	Paved	Bucket TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Bucket Truck	Unpaved	Bucket TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Concrete Truck	Paved	Concrete TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Concrete Truck	Unpaved	Concrete TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Heavy Duty Truck	Paved	Heavy Duty TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Heavy Duty Truck	Unpaved	Heavy Duty TruckUnpaved	7.5	17	2.14E+00	2.14E-01
Worker Commuting	Paved	Worker CommutingPaved	0.035	2.7	5.15E-04	0.00E+00
Worker Commuting	Unpaved	Vorker CommutingUnpave	7.5	2.7	9.37E-01	9.37E-02
Worker Shuttle	Paved	Worker ShuttlePaved	0.035	2.7	5.15E-04	0.00E+00
Worker Shuttle	Unpaved	Worker ShuttleUnpaved	7.5	2.7	9.37E-01	9.37E-02
Framing Truck	Paved	Framing TruckPaved	0.035	2.7	5.15E-04	0.00E+00
Framing Truck	Unpaved	Framing TruckUnpaved	7.5	2.7	9.37E-01	9.37E-02
0		n Inventory Methodology 7.9, En	trained Paved Road	Dust (1997) fo	r collector roads	З,

		Table	e 45		
-	 			_	

http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-9.pdf Unpaved road silt content from SCAQMD CEQA Handbook, (1993) Table A9-9-E-1 for overburden

^b Average paved on-road vehicle weight in Ventura County from ARB Emission Inventory Methodology 7.9, Entrained Paved Road Dust (1997) Unpaved worker commuting weight on access road assumed to be same as paved road weight

Unpaved weight for other trucks is based on upper limit of 33,000 lbs (16.5 tons) for heavy-duty trucks (SCAQMD CEQA Handbook, (1993) Te ^c Equations:

$EF(paved) = k_p (sL/2)^{0.65} (W/3)^{1.5} - C$	Ref: AP-42, Section 13.2.1, "Paved Rods," November 2006
$EF (unpaved) = k_u (s/12)^a (W/3)^b$	Ref: AP-42, Section 13.2.2, "Unpaved Rods," November 2006

Constants:		
k _p =	0.016	(Particle size multiplier for PM10)
	0.0024	(Particle size multiplier for PM2.5)
C =	0.00047	(Exhaust, brake wear and tire wear adjustme
	0.00036	(Exhaust, brake wear and tire wear adjustme
k _u =	1.5	(Particle size multiplier for PM)
	0.15	(Particle size multiplier for PM2.5)
a =	0.9	for PM10
	0.9	for PM2.5
b =	0.45	for PM10
	0.45	for PM2.5

Table 46Fugitive Dust Emission Factors

Soil Dropping During Excavation

Emission Factor [lb/cu. yd] = 0.0011 x (mean wind speed [mi/hr] / 5)^{1.3} / (moisture [%] / 2)^{1.4} x (number drops per ton) x (density [ton/cu. yd]) Reference: AP-42, Equation (1), Section 13.2.4, November 2006

Parameter	Value	Basis
Mean Wind Speed	12	SCAQMD CEQA Air Quality Handbook (1993), Table 9-9-G, default
Moisture	15	SCAQMD CEQA Air Quality Handbook (1993), Table 9-9-G-1, moist soil
Number Drops	4	Assumption
Soil Density	1.215	Table 2.46, Handbook of Solid Waste Management

PM10 Emission Factor (Uncontrolled)	9.94E-04 lb/cu. yd
Reduction from Watering Twice/Day ^b	0%
Controlled PM10 Emission Factor	9.94E-04 lb/cu. yd
Controlled PM2.5 Emission Factor ^a	2.07E-04 lb/cu. yd
^a PM2.5 emission factor [lb/hr] = PM10 emission factor [lb/hr] x PM2.5 fraction	of PM10
PM2.5 Fraction of PM10 in Construction Dust = 0.208	from Appendix A, Final–Methodology to Calculate Particulate Matter (PM) 2.5
	and PM 2.5 Significance Thresholds, SCAQMD, October 2006
^b Watering is assumed to be used to maintain moist conditions, so no further re	eduction from watering is included.

Emissions [pounds per day] = Controlled emission factor [pounds per cubic yard] x Volume soil handled [cubic yards per day]

Table 46Fugitive Dust Emission Factors

Storage Pile Wind Erosion

Emission Factor [lb/day-acre] = $0.85 \times (\text{silt content } [\%] / 1.5) \times (365 / 235) \times (\text{percentage of time unobstructed wind exceeds } 12 \text{ mph} / 15) \text{ Reference: SCAQMD CEQA Air Quality Handbook } (1993), Table 9-9-E$

Parameter	Value	Basis	
Silt Content	7.5	SCAQMD CEQA Handbook, (1993) Table A9-9-E-1 for overburden	
Pct. time wind > 12 mph	100	Worst-case assumption	
PM10 Emission Factor (Uncontrolled) Reduction from Watering Twice/Day Controlled PM10 Emission Factor Controlled PM2.5 Emission Factor ^a		44.0 lb/day-acre 50% 22.0 lb/day-acre 4.6 lb/day-acre	
^a PM2.5 emission factor [lb/hr] = PM10 emission factor [lb/hr] x PM2.5	5 fraction of	PM10	
PM2.5 Fraction of PM10 in Construction Dust = 0.2	208	from Appendix A, Final–Methodology to Calculate Particulate Matter (PM) 2.5 and PM 2.5 Significance Thresholds, SCAQMD, October 2006	

Emissions [pounds per day] = Controlled emission factor [pounds per acre-day] x Storage pile surface area [acres]

Table 46Fugitive Dust Emission Factors

Bulldozing, Scraping and Grading

Emission Factor [lb/hr] = $0.75 \text{ x} (\text{silt content } [\%])^{1.5} / (\text{moisture})^{1.4}$ Reference: AP-42, Table 11.9-1, July 1998

Parameter	Value	Basis	
Silt Content	7.5	SCAQMD CEQA Handbook, (1993) Table A9-9-E-1 for overburden	
Moisture	15	SCAQMD CEQA Air Quality Handbook (1993), Table 9-9-G-1, moist soil	
PM10 Emission Factor (Uncontrolled)		0.348 lb/hr	
Reduction from Watering Twice/Day 0%			
Controlled PM10 Emission Factor		0.348 lb/hr	
Controlled PM2.5 Emission Factor ^a		0.072 lb/hr	
^a PM2.5 omission factor [lb/br] - PM10 omission factor [lb/br]	v DM2 5 fraction of	PM10	

PM2.5 emission factor [lb/hr] = PM10 emission factor [lb/hr] x PM2.5 fraction of PM10 PM2.5 Fraction of PM10 in Construction Dust = 0.208 from A

from Appendix A, Final–Methodology to Calculate Particulate Matter (PM) 2.5

and PM 2.5 Significance Thresholds, SCAQMD, October 2006

^b Watering is assumed to be used to maintain moist conditions, so no further reduction from watering is included.

Emissions [pounds per day] = Controlled emission factor [pounds per hour] x Bulldozing or grading time [hours/day]

Table 47 Localized Significance Threshold Analysis

LST Analysis for the Compressor Station Site 1 000

Lot Analysis for the Compressor Station Site									
(2 acre site; Nearest Recept	(2 acre site; Nearest Receptor at over 1,000 meters)								
	PM10	PM2.5							
Peak Daily Construction Emissions	107.26	93.18	9.64	4.52					
Peak Daily Operational Emissions	1.98	0.22	0.00	0.33					
NOx and CO LST	8933	271		-					
PM10 and PM2.5 Operational LST		-	139	80					
PM10 and PM2.5 Construction LST		-	34	20					
Significant (Yes/No)?	NO	NO	NO	NO					

LST Analysis for the Substation Site (2 acre site; Nearest Receptor at over 900 meters)

(z acre site; Nearest Recep	tor at ove	1 900 me	ters)	
	CO	NOx	PM10	PM2.5
Peak Daily Construction Emissions	32.40	47.35	15.64	4.52
Peak Daily Operational Emissions	0.00	0.00	0.00	0.00
NOx and CO LST	8933	271	139	80
PM10 and PM2.5 Operational LST		-	139	80
PM10 and PM2.5 Construction LST			34	20
Significant (Yes/No)?	NO	NO	NO	NO

SCAQMD Localized Significance Threshold (LST) Values

		Allowable emissions (lb/day) as a function of receptor distance from Site Boundary													
Pollutant	1 Acre			2 Acre				5 Acre							
Receptor Distance (meters)	25	50	100	200	500	25	50	100	200	500	25	50	100	200	500
CO	590	879	1294	2500	8174	877	1256	1787	3108	8933	1644	2095	2922	4608	11049
NOx	106	107	124	161	254	152	148	160	190	271	228	219	233	256	321
PM ₁₀ Construction	4	12	25	51	131	6	19	32	59	139	12	38	52	79	161
PM ₁₀ Operation	1	3	6	13	32	2	5	8	15	34	3	10	13	19	39
PM _{2.5} Construction	3	4	7	18	74	4	5	9	20	80	6	8	13	26	95
PM _{2.5} Operation	1	1	2	5	18	1	2	2	5	20	2	2	3	7	23

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Scenario ¹	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day
1	0.24	1.27	1.41	0.07	0.20	0.11
2	13.42	71.19	83.60	0.13	8.42	2.03
3	10.67	71.04	48.67	0.11	6.28	2.51
4	17.87	107.26	93.18	0.18	9.64	4.52
5	2.13	11.21	9.80	0.02	1.09	0.62
Peak Daily	17.87	107.26	93.18	0.18	9.64	4.52

Scenario 1 Daily Emissions

Activity	ROG (lb/day)	CO (lb/day)	NO _x (lb/day)	SO _x (Ib/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)
Compressor Station Survey	0.09	0.17	0.18	0.07	0.12	0.08
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04
Total	0.24	1.27	1.41	0.07	0.20	0.11

Scenario 2 Daily Emissions							
	ROG CO NO _x SO _x PN						
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	
Compressor Station Site Clearing	5.69	30.69	32.08	0.05	3.07	0.99	
Compressor Station Site Preparation	7.57	39.40	50.28	0.07	5.28	0.99	
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04	
Total	13.42	71.19	83.60	0.13	8.42	2.03	

Scenario 3 Daily Emissions								
	ROG CO NO _x SO _x PM ₁₀ P							
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Compressor Station Civil	10.51	69.93	47.43	0.11	6.20	2.47		
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04		
Total	10.67	71.04	48.67	0.11	6.28	2.51		

Scenario 4 Daily Emissions								
	ROG CO NO _x SO _x PM ₁₀ PM _{2.5}							
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Compressor Station Mechanical	11.76	73.06	57.14	0.12	6.57	2.80		
Compressor Station Electrical	5.95	33.10	34.80	0.06	2.99	1.68		
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04		
Total	17.87	107.26	93.18	0.18	9.64	4.52		

Scenario 5 Daily Emissions								
	ROG CO NO _x SO _x PM ₁₀ PI							
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Compressor Station Paving	0.18	1.44	0.53	0.00	0.12	0.02		
Compressor Station Fencing	0.27	1.88	0.59	0.00	0.15	0.04		
Compressor Station Landscaping	1.54	6.78	7.45	0.01	0.75	0.52		
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04		
Total	2.13	11.21	9.80	0.02	1.09	0.62		

Table 48-B Peak Daily Substation Site Construction Emissions							
Scenario ¹	ROG (lb/day)	CO (lb/day)	NO _x (lb/day)	SO _x (lb/day)	PM ₁₀ (Ib/day)	PM _{2.5} (Ib/day)	
1	0.31	1.29	1.42	0.15	0.31	0.19	
2	7.25	25.14	47.35	0.06	15.64	4.52	
3	4.25	17.77	16.13	0.02	1.77	1.22	
4	5.84	32.40	26.33	0.05	2.86	1.64	
5	5.84	32.40	26.33	0.05	2.86	1.64	
Peak Daily	7.25	32.40	47.35	0.15	15.64	4.52	

Scenario 1 Daily Emissions

	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)
Substation Survey	0.15	0.18	0.19	0.15	0.23	0.15
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04
Total	0.31	1.29	1.42	0.15	0.31	0.19

Scenario 2 Daily Emissions							
	ROG	СО	NOx	SOx	PM ₁₀	PM _{2.5}	
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	
Substation Grading	7.09	24.03	46.11	0.06	15.56	4.48	
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04	
Total	7.25	25.14	47.35	0.06	15.64	4.52	

Scenario 3 Daily Emissions							
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}	
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	
Substation Civil	3.28	13.13	12.29	0.02	1.39	0.99	
Substation Fencing	0.82	3.54	2.60	0.00	0.30	0.19	
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04	
Total	4.25	17.77	16.13	0.02	1.77	1.22	

Scenario 4 Daily Emissions								
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}		
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Substation MEER	0.18	1.44	0.53	0.00	0.12	0.02		
Substation Electrical	1.69	7.44	5.75	0.01	0.70	0.42		
Substation Wiring	0.27	1.88	0.59	0.00	0.15	0.04		
Substation Transformer	1.54	6.78	7.45	0.01	0.75	0.52		
Substation Testing	0.12	1.03	0.49	0.00	0.07	0.02		
Substation Maintenance	0.18	1.37	1.27	0.00	0.10	0.04		
Substation Paving	1.33	8.84	7.63	0.01	0.69	0.47		
Substation Landscaping	0.38	2.51	1.39	0.00	0.21	0.07		
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04		
Total	5.84	32.40	26.33	0.05	2.86	1.64		

Scenario 5 Daily Emissions								
	ROG	CO	NOx	SOx	PM ₁₀	PM _{2.5}		
Activity	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)		
Substation MEER	0.18	1.44	0.53	0.00	0.12	0.02		
Substation Electrical	1.69	7.44	5.75	0.01	0.70	0.42		
Substation Wiring	0.27	1.88	0.59	0.00	0.15	0.04		
Substation Transformer	1.54	6.78	7.45	0.01	0.75	0.52		
Substation Testing	0.12	1.03	0.49	0.00	0.07	0.02		
Substation Maintenance	0.18	1.37	1.27	0.00	0.10	0.04		
Substation Paving	1.33	8.84	7.63	0.01	0.69	0.47		
Substation Landscaping	0.38	2.51	1.39	0.00	0.21	0.07		
Worker Shuttle	0.16	1.11	1.24	0.00	0.08	0.04		
Total	5.84	32.40	26.33	0.05	2.86	1.64		

Appendix B.2 – Biological Resources

Special Status Plant Species Report

Draft Special-status Plant Species Report

Aliso Canyon Turbine Replacement Project Los Angeles County, California

Prepared for:

Southern California Gas Company

Prepared by:

AECOM

9675 Businesspark Avenue San Diego, California 92131 858.536.5610

Contact: Frank Landis, Senior Botanist

June 2009

TABLE OF CONTENTS

1.0 INT	RODUCTION	1
1.1	Project Description	1
2.0 EXI	STING CONDITIONS	1
3.0 ME	THODS	1
	Literature Review	
	Botanical Surveys	
3.3	Incidental Wildlife Survey	3
4.0 SUI	RVEY RESULTS	3
4.1	Plant Species	3
4.2	Incidental Wildlife Sightings	4
	CUSSION AND FUTURE EFFORTS	4
6.0 RE	FERENCES	6

TABLES

Table 1. Sensitive Plant Data	4
-------------------------------	---

FIGURES

Figure 1. Overall location map within southern California (title to be updated by Manju)**Error!** Bookmark not defined.

Figure 2. Overall location map (title to be updated by Manju)**Error! Bookmark not defined.** Figure 3. Proposed Project Site (title to be updated by Manju)—this may be seven pages long......**Error! Bookmark not defined.**

1.0 INTRODUCTION

A focused special-status plant survey was conducted to support the Aliso Canyon Turbine Replacement (ACTR) project proposed by the Southern California Gas Company (SCGC), a Sempra Energy utility company, for their Aliso Canyon Storage Field in Los Angeles County, California. This project would upgrade power lines to the Aliso Canyon Storage Field in Porter Ranch, California and includes an alignment which traverses adjacent property and concludes in the City of Santa Clarita. A portion of the alignment falls within the Santa Susana Mountains Significant Ecological Area, a designation specific to Los Angeles County. This document provides a floristic inventory of the study area and the potentially sensitive botanical resources both on the site and in the surrounding area in accordance with the Los Angeles County Guidelines for Significant Ecological Areas (2004). This report also presents incidental sightings of sensitive wildlife species detected during the surveys.

1.1 **Project Description**

The Aliso Canyon Storage Field is located in the City of Porter Ranch. The survey included the storage field as well as the electrical alignment in the City of Santa Clarita and Los Angeles County, California.

The proposed project would upgrade power lines and replace existing power poles to the Aliso Canyon Storage Field. The power lines traverse rights-of-way held by Southern California Edison on adjacent properties before connecting to the power poles on the Aliso Canyon Storage Field. Initially, the project considered two routes, the 16kV route, and the 66 kV route. Both routes were surveyed. Subsequent to the field work, SCGC determined that the 66kV route was preferred. Hence, this report only discusses information relevant to the 66kV route. However, the methods section discusses all relevant work performed during this survey.

2.0 Existing Conditions

A summary of the existing conditions for the general vicinity and the study area is presented in the Biological Resources Section of the Proponent's Environmental Assessment prepared for this project. Please refer to that document for descriptions of the existing vegetation communities and specific site characteristics.

3.0 METHODS

The following sections describe the study methods used during the special-status plant surveys.

3.1 Literature Review

For purposes of this report, a plant species is considered sensitive if it is: (1) listed or proposed for listing as threatened or endangered by state or federal agencies; (2) on List 1A (presumed extinct in California), List 1B (considered endangered throughout its range), or List 2 (considered endangered in California but more common elsewhere) of the California Native Plant Society's (CNPS) *Inventory of Rare and Endangered Vascular Plants of California* (CNPS 2009); or (3) considered rare, endangered, or threatened by the State of California (California Department of Fish and Game (CDFG) 2009a) or other local conservation organizations or specialists. Noteworthy plant species are considered to be those that are classified as CNPS List 3 (more information about the plant's distribution and rarity needed) and List 4 (plants of limited distribution) (CNPS 2009).

Prior to conducting the field survey, sensitive plant species that would potentially be present on the site and surrounding areas were identified using the California Natural Diversity Data Base (CNDDB) (CDFG 2009b), and the Inventory of Rare and Endangered Plants on the CNPS website (CNPS 2009). A CNDDB database search was conducted, encompassing a 10-mile radius around the proposed study area and a nine-quadrangle search was conducted in the CNPS database around the U.S. Geological Survey quadrangle in which the proposed project site is located. This search included the Newhall, Whitaker Peak, Warm Springs Mountain, Mint Canyon, San Fernando, Green Valley, Val Verde, Santa Susana, and Oat Mountain quadrangles. A briefing was prepared that contained photos and information of all plant species that could potentially be found on the project site and was distributed to field biologists conducting the surveys. A list of special-status species potentially occurring on the project site and surrounding areas is presented in Appendix 1.

3.2 Botanical Surveys

Special-status plant surveys were conducted for ten days in conjunction with the vegetation community mapping effort. From April 14, 2009 to April 17, 2009, Ms. Julie Niceswanger and Mr. Rocky Brown surveyed the 16kV proposed project site and parts of the 66kV site within SCGC property. From April 20, 2009 to April 23, 2009, Dr. Frank Landis and Mr. Rocky Brown surveyed the remaining 66KV proposed alignment site on lands adjacent to the SCGC property. On June 8 and June 9, 2009, Dr. Landis and Mr. Brown surveyed additional towers on the 66 kV proposed alignment, additional areas within the SCGC property, and rechecked five detections of potential sensitive species to confirm identities.

The study area defined for this survey was limited to 25 meters (approximately 82 feet) on each side of the proposed alignment. Surveyors concentrated their effort around each power pole within the alignment as this area would require the most disturbance during project activities. The span between poles was scanned for appropriate habitat

types to support sensitive plant species and surveyed when accessible. In several cases, the survey area included cliffs that were inaccessible and binoculars were used to make a visual assessment of the habitat. The surveys were conducted by walking meandering transects, recording observed plant species within the study area, and indicating special-status and non-native species. Locations of special-status species were recorded with sub-meter accuracy global positioning system units.

Surveys focused on natural areas however, the wildland-urban interface was surveyed if natural plant communities occurred within the 25 meter survey area. Five poles in urban Santa Clarita were scanned but not surveyed, as the entire 25 meter survey area around each pole was landscaped with ornamental non-native plants and there was a low likelihood for special-status plants to occur within these landscaped areas. An additional four poles positioned within the wildland-urban interface were surveyed due to adjacent natural habitat.

Plant species found within the study area, both sensitive and non-sensitive, were identified and recorded. When the identity of the species was not known in the field, either a sample was collected and pressed or a photograph and notes were taken to aid in the identification. Due to their sensitivity, special-status plants were photographed rather than collected.

Plants were identified to the species level from photographs and specimens and a floral inventory was compiled. Nomenclature follows Calflora (2009) and identification was conducted using the *Jepson Manual* (Hickman, 1993) supplemented by McAuley (1996), Lightner (2006), and Calflora (2009). Family names follow the current APG II system (2009) for flowering plants and Allen et al (2006) for ferns which have been updated since Hickman's publication of the *Jepson Manual* in 1993. Appendix 2 provides a list of all species encountered and includes references to the families found in the *Jepson Manual* (Hickman, 1993) where changes have occurred.

3.3 Incidental Wildlife Survey

During the field surveys, observations of potentially sensitive wildlife species were recorded as they occurred. If surveyors were unfamiliar with a species, pictures and other information were used to identify them in the office.

4.0 SURVEY RESULTS

4.1 Plant Species

In the 66kV portion of the proposed project site, 182 plant species were identified, including lycophytes, ferns, conifers, and flowering plants (Appendix 2). Approximately 82 percent of the species found were growing in natural plant communities, and the rest (16 percent) were growing in the urban-wildland interface where escaped ornamentals

were present. Of the plants found in non-urban plant communities, approximately 25 percent were non-native.

Two sensitive plant species were identified during the survey: slender mariposa lily (*Calochortus clavatus* var. *gracilis*) and Plummer's mariposa lily (*Calochortus plummerae*). Both species are listed on CNPS List 1B.

Over 1,320 slender mariposa lilies were detected around seven towers on June 8 and 9, 2009. The species was initially detected in April prior to blooming, and by June 8, almost all plants had finished flowering. Nonetheless, enough plants were blooming at each site to make a definitive identification, based on pictures and a specimen collected.

Four Plummer's mariposa lilies were found in a single population, east of the current compressor site within the SCGC plant. They are growing in burned chaparral, on a slope roughly 8-10 meters from the roadway.

Although other potential sensitive species were thought to occur on the site, subsequent visits determined that all of these were common species. The list in Appendix 2 has been updated to reflect these identifications.

Species	Location	Number	Count/Estimate
Calochortus clavatus var. gracilis	Tower 12/5	233	Count
Calochortus clavatus var. gracilis	Tower 13/1	40	Count
Calochortus clavatus var. gracilis	Tower 13/2	>300	Estimate
Calochortus clavatus var. gracilis	Tower 13/3	>500	Estimate
Calochortus clavatus var. gracilis	Tower 14/1	186	Count
Calochortus clavatus var. gracilis	Tower 14/2	57	Count
Calochortus clavatus var. gracilis	Tower 14/6	5	Count
Calochortus plummerae	Condenser	4	Count

 Table 1. Sensitive Plant Data

4.2 Incidental Wildlife Sightings

One coast horned lizard (*Phrynosoma coronatum*) was observed at Tower 14/1. The coast horned lizard is listed by CDFG as a species of special concern (CDFG 2009a). On Tower 14/2, one Cooper's hawk (*Accipiter cooperi*) was observed perching and taking flight over the proposed project area. This species is on the CDFG watch list (CDFG 2009a)

5.0 DISCUSSION AND FUTURE EFFORTS

Two sensitive plant species were observed during the 2009 surveys. Both *Calochortus clavatus* var. *gracilis* and *Calochortus plummerae* were identified at sites within the proposed project area. A second survey should be carried out in August, to look for

any late-blooming special-status plants (as noted in Appendix 1) that were not detectable in the current efforts. Once this survey is complete, this report will be updated to incorporate the results of all surveys.

If impacted by the project development these two sensitive species would need to be mitigated. The four *Calochortus plummerae* found are on the outer edge of the proposed project site, on the far side of the road from the compressor plant. They can and should be avoided. The *Calochortus clavatus* var. *gracilis* plants may be be avoided, and the project should be designed to minimize overlap between their habitat and areas directly disturbed by the project.

Mitigation for impacts to *Calochortus clavatus* individuals may include the collection of dormant bulbs and seeds either for transplant to appropriate undisturbed portions of the project site, or for reintroduction to appropriate areas that were disturbed by the project. Additionally, *Calochortus clavatus* has the reputation of being a difficult plant to grow (Gerritsen and Parsons, 2007), so any planting should be assumed to have a low success rate. It is recommended that a Mitigation Plan be developed to provide adequate information about mitigation alternatives.

Depending on the physical characteristics of the soil, it might be possible to use equipment that does not damage the soil in which these plants grow (for instance, by using light weight machinery and using plates to spread the equipment weight across a large surface). There is no precedent for doing this to protect bulbs, and no references that demonstrate how much compaction a buried *Calochortus* bulb might survive have been found in the published literature.. Nonetheless, if it is possible to install the towers without damaging the dormant bulbs in the soil, it would minimize the need for mitigation efforts to the area impacted by the new towers. This might be the cost effective approach.

6.0 REFERENCES

- California Department of Fish and Game (CDFG). 2009a. Special Animals (901 taxa). Sacramento, CA. Natural Heritage Division, California Department of Fish and Game. http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/SPAnimals.pdf (accessed 5/6/2009).
- _____. 2009b. California Natural Diversity Data Base. RareFind 3. Sacramento, CA. Natural Heritage Division, California Department of Fish and Game (accessed 4/10/2009).
- California Native Plant Society (CNPS). 2009. Inventory of Rare and Endangered Plants, version 7-09b. http://cnps.web.aplus.net/cgi-bin/inv/inventory.cgi (accessed 4/10/2009).
- Calflora. 2009. The Calflora database: Information on California plants for education, research and conservation. Berkeley, California: The Calflora Database. http://www.calflora.org/ (accessed 5/8/2009)
- Gerritsen, M.E. and R. Parsons. 2007. *Calochortus: Mariposa Lilies and Their Relatives.* Portland, OR. Timber Press.
- Hickman, J.C. (ed). 1993. *The Jepson Manual: Higher Plants of California*. Berkeley, CA. The University of California Press.
- Lightner, J. 2006. San Diego County Native Plants. Second Edition. San Diego, CA. San Diego Flora.
- McAuley, M. 1996. *Wildflowers of the Santa Monica Mountains. Second Edition.* Canoga Park, CA. Canyon Publishing Company.
- Smith, A.R., K.M. Pryer, E. Schuettpelz, P. Korall, H. Schneider and P. G. Wolf. 2006. A classification of extant ferns. Taxon 55(3):705-731.
- Stevens, P. F. (2009). Angiosperm Phylogeny Website. Version 9, May 2009. http://www.mobot.org/ MOBOT/research/APweb/. (accessed 5/5/2009)

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
Mt. Pinos onion (<i>Allium howellii</i> var. <i>clokeyi</i>)	CNPS List 1B	Great Basin scrub, Pinyon and juniper woodland	Apr-Jun	1300-1850 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, Mt. Pinos onion has a low likelihood of occurring on the proposed project site.
Braunton's milk-vetch (Astragalus brauntonii)	FE, CNPS List 1B	Chaparral, Coastal scrub, Valley and foothill grassland/recent burns or disturbed areas, usually sandstone with carbonate layers	Jan-Aug	4-640 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Braunton's milk-vetch has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 1.5 miles west of the proposed project site.
Nevin's barberry (<i>Berberis nevinii</i>)	FE, CE, CNPS List 1B	Chaparral, Cismontane woodland, Coastal scrub, Riparian scrub/sandy or gravelly soils	Mar-Jun	274-825 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Nevin's barberry has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 7.5 miles east of the proposed project site.
round-leaved filaree (<i>California</i> <i>macrophylla</i>)	CNPS List 1B	Cismontane woodland, Valley and foothill grassland/clay soils	Mar-May	15-1200 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, round-leaved filaree has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 8.5 miles northwest of the proposed project site.
Slender mariposa lily (<i>Calochortus clavatus</i> var. <i>gracilis</i>)	CNPS List 1B	Chaparral, Coastal scrub, Valley and foothill grassland	Mar-Jun	360-1000	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Therefore slender mariposa has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 2 miles north of the proposed project site.

APPENDIX 1. Potentially Occurring Special-status Plant Species for the Aliso Canyon Turbine Replacement Project

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
Plummer's mariposa lily (<i>Calochortus</i> <i>plummerae</i>)	CNPS List 1B	Chaparral, Cismontane woodland, Coastal scrub, Lower montane coniferous forest, Valley and foothill grassland/granitic, rocky areas	May-Jul	100-1700	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. Surveys have found non-blooming <i>Calochortus</i> on-site. Therefore Plummer's mariposa has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 1.5 miles west of the proposed project site.
southern tarplant (<i>Centromadia parryi</i> ssp. <i>australis</i>)	CNPS List 1B	Marshes and swamps(margins), Valley and foothill grassland (vernally mesic), Vernal pools	May-Nov	0-427 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, southern tarplant has a low likelihood of occurring on the proposed project site.
San Fernando Valley spineflower (<i>Chorizanthe parryi</i> var. <i>fernandina</i>)	FC, CE, CNPS List 1B	Coastal scrub(sandy), Valley and foothill grassland	Apr-Jun	150-1220	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. Surveys have found spineflowers on-site. Therefore San Fernando Valley spineflower has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 1.5 miles west of the proposed project site.
Parry's spineflower (<i>Chorizanthe parryi</i> var. <i>parryi</i>)	CNPS List 1B	Chaparral, Cismontane woodland, Coastal scrub, Valley and foothill grassland/sandy or rocky openings	Apr-Jul	270-1220	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. Surveys have found spineflowers on-site. Therefore Parry's spineflower has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 18 miles north of the proposed project site.
Santa Susana tarplant (<i>Deinandra</i> <i>minthornii</i>)	CR,CNPS List 1B	Chaparral, Coastal scrub/rocky areas	Jul-Nov	280-760 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. To date, it has not been found on the proposed project site. Nonetheless, Santa Susana tarplant has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 1.5 miles west of the proposed project site.

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
slender-horned spineflower (<i>Dodecahema</i> <i>leptoceras</i>)	FE, CE, CNPS List 1B	Chaparral, Cismontane woodland, Coastal scrub (alluvial fan)/sandy soils	Apr-Jun	200-760 m	Based on the site description and personal knowledge of the surveyors, suitable habitat for this species does not exist within the proposed project site. Therefore, slender-horned spineflower has a low likelihood of occurring on the proposed project site.
Blochman's dudleya (<i>Dudleya</i> <i>blochmaniae</i> ssp. <i>blochmaniae</i>)	CNPS List 1B	Coastal bluff scrub, Chaparral, Coastal scrub, Valley and foothill grassland/rocky, often clay or serpentinite soils	Apr-Jun	5-450 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Blochman's dudleya has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 9 miles southwest of the proposed project site.
Agoura Hills dudleya (<i>Dudleya cymosa</i> ssp. agourensis)	FT, CNPS List 1B	Chaparral, Cismontane woodland/rocky, volcanic soils	May-Jun	200-500 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Agoura Hills dudleya has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 13.5 miles southwest of the proposed project site.
many-stemmed dudleya (<i>Dudleya multicaulis</i>)	CNPS List 1B	Chaparral, Coastal scrub, Valley and foothill grassland/often clay soils	Apr-Jul	15-790 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Blochman's dudleya has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 13.5 miles southwest of the proposed project site.
San Gabriel bedstraw (<i>Galium grande</i>)	CNPS List 1B	Broadleafed upland forest, Chaparral, Cismontane woodland, Lower montane coniferous forest	Jan-Jul	425-1500 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Therefore, San Gabriel bedstraw has a medium likelihood of occurring on the proposed project site. The nearest documented occurrence of this species is approximately 17 miles north of the proposed project site.

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
Los Angeles sunflower (<i>Helianthus</i> <i>nuttallii</i> ssp. <i>parishii</i>)	CNPS List 1A,	Marshes and swamps (coastal salt and freshwater)	Aug-Oct	10-1675 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, Los Angeles sunflower has a low likelihood of occurring on the proposed project site.
Ross' pitcher sage (<i>Lepechinia rossii</i>)	CNPS List 1B	Chaparral	May-Sep	305-790 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Ross' pitcher sage has a medium likelihood of occurring on the site The nearest documented occurrence of this species is approximately 17 miles northwest of the proposed project site.
Davidson's bush mallow (<i>Malacothamnus</i> <i>davidsonii</i>)	CNPS List 1B	Chaparral, Cismontane woodland, Coastal scrub, Riparian woodland	Mar-Jun	185-855	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. Surveys have found non-blooming <i>Malacothamnus</i> on-site. Therefore Davidson's bush-mallow has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 7.5 miles east of the proposed project site.
Moran's navarretia (<i>Navarretia fossalis</i>)	FT, CNPS List 1B	Chenopod scrub, Marshes and swamps(assorted shallow freshwater), Playas, Vernal pools	Apr-Jun	30-1300 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, Moran's navarretia has a low likelihood of occurring on the proposed project site.
Ojai navarretia (<i>Navarretia ojaiensis</i>)	CNPS List 1B	Chaparral(openings), Coastal scrub(openings), Valley and foothill grasslands	May-Jul	275-620 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, Ojai navarretia has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 13 miles northwest of the proposed project site.

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
Peninsular nolina (<i>Nolina cismontana</i>)	CNPS List 1B	Chaparral, Coastal scrub/sandstone or gabbro soils	May-Jul	140-1275 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, peninsular nolina has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 53 miles west of the proposed project site.
short-joint beavertail (<i>Opuntia basilaris</i> var. <i>brachyclada</i>)	CNPS List 1B	Chaparral, Joshua tree "woodland", Mojavean desert scrub, Pinyon and juniper woodlands	Apr-Jun	425-1800 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, short-joint beavertail has a low likelihood of occurring on the proposed project site.
California orcutt grass (<i>Orcuttia californica</i>)	FE, CE, CNPS List 1B	Vernal pools	Apr-Aug	15-660 m	Based on the site description, suitable habitat for this species does not exist within the proposed project site. Therefore, California orcutt grass has a low likelihood of occurring on the proposed project site.
white rabbit-tobacco (<i>Pseudognaphalium</i> <i>leucocephalum</i>)	CNPS List 2	Chaparral, Cismontane woodland, Coastal scrub, Riparian woodland/sandy, gravelly soils	(Jul) Aug- Nov (Dec)	0-2100 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. To date, it has not been found on the proposed project site. Nonetheless, Santa Susana tarplant has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 10 miles west of the proposed project site.
chaparral ragwort (<i>Senecio aphanactis</i>)	CNPS List 2	Chaparral, Cismontane woodland, Coastal scrub/sometimes alkaline soils	Jan-Apr	15-800 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. However, surveys during the species' blooming period did not detect the species. Nonetheless, chaparral ragwort has a medium likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 8.5 miles northwest of the proposed project site.

Species	Status	Habitat	Blooming Period	Elevation	Likelihood
Greata's aster (Symphyotrichum greatae)	CNPS List 1B	Broadleafed upland forest, Chaparral, Cismontane woodland, Lower montane coniferous forest, Riparian woodland/mesic soils	Jun-Oct	300-2010 m	Based on habitat and topography, apparently suitable habitat exists within the proposed project site. To date, it has not been found on the proposed project site. Nonetheless, Greata's aster has a high likelihood of occurring on the site. The nearest documented occurrence of this species is approximately 7.5 miles east of the proposed project site.

Status Codes:

FE = Federally Endangered; FT = Federally Threatened; CE = State of California Endangered; CT = State of California Threatened;

CR = State of California Rare, CNPS 1A = Presumed Extinct in California; CNPS 1B = Rare, Threatened, or Endangered in California and Elsewhere;

CNPS 2 = Rare, Threatened, or Endangered in California but Common Elsewhere; CNPS 4 = Plants of Limited Distribution

Appendix 2. Plant Species Detected During the Survey

Lycopods

Selaginellaceae (Spike moss family) spike moss (Selaginella bigelovii)

Ferns

Lomariopsidaceae (Climbing holly ferns) boston fern (*Nephrolepis exaltata*)*p

Pteridaceae (Brake family) birdfoot cliffbrake (*Pellaea mucronata*) goldback fern (*Pentagramma triangularis*)

Conifers (Pines and Cypresses)

Cupressaceae (Cypress family) italian cypress (*Cupressus sempervirens*)*p juniper (*Juniperus* sp.)*p giant sequoia (*Sequoiadendron giganteum*)p

Pinaceae (Pine Family) Non-native pine (*Pinus* sp)*p

Angiosperms: Monocots

Agavaceae (Agave Family, part of Liliaceae in Jepson) agave (*Agave* sp.)*p chaparral yucca (*Hesperoyucca whipplei*)

Arecaceae (Palm Family) Mexican fan palm (*Washingtonia robusta*)*p

Asphodelaceae (Asphodel family) aloe (*Aloe* sp.)*p red hot poker (*Kniphofia uvaria*)*p

Cyperaceae (sedge family) umbrella plant (Cyperus involucratus)*

Hyacinthaceae (Hyacinth family, part of Liliaceae in Jepson) soap plant (*Chlorogalum pomeridianum*)

Iridaceae (Iris family) iris (*Iris* sp.)*p blue-eyed grass (*Sisyrinchium bellum*)

Liliaceae (Lily family) Slender mariposa lily (*Calochortus clavatus* var. *gracilis*) Plummer's mariposa lily (*Calochortus plummerae*)

Poaceae (Grass family)

giant ricegrass (Achnatherum coronatum) wild oats (Avena fatua)* ripgut brome (Bromus diandrus)* soft brome (Bromus hordeaceus)* red brome (Bromus madritensis ssp. rubens)* Bermuda grass (Cynodon dactylon)*

quackgrass (*Elytrigia* sp.)* foxtail barley (*Hordeum murinum*)* sprangletop (*Lamarckia aurea*)* giant wild-rye (*Leymus condensatus*) italian ryegrass (*Lolium multiflorum*)* chaparral melic (*Melica imperfecta*) foothill needlegrass (*Nasella lepida*) purple needlegrass (*Nasella lepida*) purple needlegrass (*Nasella pulchra*) fountaingrass (*Pennisetum setaceum*)*p smilo grass (*Piptatherum miliaceum*) Mediterranean grass (*Schismus arabicus*)* rattail fescue (*Vulpia myuros*)*

Themidaceae (Brodiaea family, part of Liliaceae in Jepson) blue dicks (*Dichelostemma capitatum*)

Angiosperms: Eudicots

Adoxaceae (Moschatel family, part of Caprifoliaceae in Jepson) blue elderberry (Sambucus nigra ssp. caerulea)

Aizoaceae (Fig-marigold family) baby sun rose (Aptenia cordifolia)*p

Altingiaceae (Liquidambar family) sweetgum (Liquidambar styraciflua)*p

Amaranthaceae (Amaranth family, includes Chenopodiaceae from Jepson) lamb's quarters (*Chenopodium album*)*

Anacardiaceae (Cashew family) laurel sumac (*Malosma laurina*) sugarbush (*Rhus ovata*) poison oak (*Toxicodendron diversilobum*)

Apiaceae (Celery family) rattlesnake weed (*Daucus pusillus*) snake root (*Sanicula arguta*)

Apocynaceae (Dogbane Family) Narrow leaved milkweed (Asclepias fascicularis) oleander (Nerium oleander)*p

Asteraceae (Aster family)

perezia (Acourtia microcephala) western ragweed (Ambrosia psilostachya) California sagebrush (Artemisia californica) mugwort (Artemisia douglasiana) coyotebush (Baccharis pilularis) mulefat (Baccharis salicifolia) California brickellbush (Brickellia californica) italian thistle (Carduus pycnocephalus)* tocalote (Centaurea militensis)* yellow star thistle (Centaurea solstitialis)* yellow pincushion (Chaenactis prob. Artemisifolia) California thistle (Cirsium occidentale)

horseweed (Convza canadensis) common tarplant (Deinandra fasciculata) bush sunflower (Encelia californica) golden varrow (*Eriophvllum confertiflorum*) California filago (Filago californica) common gumplant (Grindelia camporum) sawtooth goldenbush (Hazardia squarrosa) common sunflower (Helianthus annuus)p telegraph weed (Heterotheca grandiflora) prickly lettuce (Lactuca serriola)* coast goldfields (Lasthenia california) woolly aster (Lessingia filaginifolia) Slender tarweed (Madia gracilis) cliff aster (Malacothrix saxatilis) two-tone everlasting (*Pseudognaphalium bicolor*) fragrant everlasting (Pseudognaphalium canescens) California chicory (Rafinesquia californica) shrubby butterweed (Senecio flaccidus var. douglasii) milk thistle (Silybum marianum) sow thistle (Sonchus oleraceus) silver puffs (Uropappus lindleyi)

Bignoniaceae (Trumpet creeper family) trumpet creeper (Campsis radicans)*p

Boraginaceae (Borage family, includes the Hydrophyllaceae from Jepson) rancher's fireweed (*Amsinckia menziesii* var. *intermedia*) white forget-me-not (*Cryptantha clevelandii*) popcorn flower (*Cryptantha intermedia*) whispering bells (*Emmenanthe penduliflora*) yerba santa (*Eriodictyon crassifolium*) eucrypta (*Eucrypta chrysanthemifolia*) caterpillar phacelia (*Phacelia cicutaria* var. *hispida*) branching phacelia (*Phacelia ramosissima* var. *latifolia*) fern-leaf phacelia (*Phacelia tanacetifolia*) fiesta flower (*Pholistoma auritum*) white fiesta flower (*Pholistoma racemosum*)

Brassicaceae (Mustard family) black mustard (*Brassica nigra*)* western wallflower (*Erysimum capitatum*) mediterranean mustard (*Hirschfeldia incana*)* sweet alyssum (*Lobularia maritima*)*p london rocket (*Sisymbrium irio*)*

Cactaceae (Cactus family) barrel cactus (*Ferocactus* sp.)p indian fig prickly pear (*Opuntia ficus-indica*)* column cactus (*Trichocereus* sp.)*p

Caryophyllaceae (Pink family) windmill pink (*Silene gallica*)* catchfly (*Silene* prob. *multinervia*) chickweed (*Stellaria media*)

Chenopodiaceae (Goosefoot family) Lambsquarters (Chenopodium album)*

Convolvulaceae (Morning glory family, includes Cuscutaceae from Jepson) morning-glory (*Calystegia macrostegia*) bindweed (*Convolvulus arvensis*)* dodder (*Cuscuta californica*)

Crassulaceae (Stonecrop family) jade plant (Crassula argentea)*p lance-leaf live-forever (Dudleya prob. lanceolata)

Cucurbitaceae (Cucumber family) calabazilla (*Cucurbita foetidissima*) wild cucumber (*Marah macrocarpus*)

Ericaceae (Heather family) manzanita (Arctostaphylos sp.)

Euphorbiaceae (Spurge family) rattlesnake mat (*Chamaesyce albomarginata*) petty spurge (*Euphorbia peplus*)*

Fabaceae (Bean family)

common dwarf locoweed (Astragalus didymocarpus) Santa Barbara locoweed (Astragalus trichopodus var. phoxus) spanish clover (Lotus purshianus) coastal lotus (Lotus salsuginosus) deerweed (Lotus scoparius) dove lupine (Lupinus bicolor) bajada lupine (Lupinus concinnus) summer lupine (Lupinus formosus) stinging lupine (Lupinus hirsutissimus) sky lupine (Lupinus nanus) arroyo lupine (Lupinus succulentus) bur clover (Medicago polymorpha)* sour clover (Melilotus indica)* albizia (Paraserianthes lophantha)* rose clover (Trifolium hirtum)* wildcat clover (Trifolium wildenovii) winter vetch (Vicia villosa ssp. villosa)*

Fagaceae (Beech family) coast live oak (*Quercus agrifolia*) valley oak (*Quercus lobata*)

Geraniaceae (Geranium family) filaree (*Erodium cicutarium*)

Grossulariaceae (Gooseberry family) chaparral currant (*Ribes malvaceum*) oak gooseberry (*Ribes quercetorum*)

Juglandaceae (Walnut family) California black walnut (*Juglans californica*)

Lamiaceae (Mint family) horehound (*Marrubium vulgare*)* white sage (*Salvia apiana*) purple sage (*Salvia leucophylla*) black sage (*Salvia mellifera*)

Malvaceae (Mallow family) chaparral bush mallow (*Malacothamnus fasciculatus*) cheeseweed (*Malva parviflora*)*

Nyctaginaceae (Four o'clock family) bougainvillea (*Bougainvillea* sp.)*p wishbone bush (*Mirabilis californica*)

Oleaceae (Olive family) flowering ash (*Fraxinus dipetala*) shamel ash (*Fraxinus uhdei*)*p jasmine (*Jasminum polyanthum*)*p olive (*Olea europaea*)*p

Onagraceae (Evening primrose family) sun cups (*Camissonia californica*) miniature suncup (*Camissonia micrantha*) eleant clarkia (*Clarkia unguiculata*) California fuchsia (*Epilobium canum*)

Orobanchaceae (Broomrape family, part of Scrophulariaceae in Jepson) indian paintbrush (*Castilleja affinis*) California broomrape (*Orobanche californica* ssp. *grandis*)

Paeoniaceae (Peony family) California peony (*Paeonia californica*)

Papaveraceae (Poppy family) collarless poppy (*Eschscholzia caespitosa*) California poppy (*Eschscholzia californica*)

Phrymaceae (Lopseed family, includes part of Jepson's Scrophulariaceae) bush monkeyflower (*Mimulus aurantiacus*) scarlet monkeyflower (*Mimulus cardinalis*) seep monkeyflower (*Mimulus guttatus*)

Plantaginaceae (Plantago family, includes part of Jepson's Scrophulariaceae) white snapdragon (*Antirrhinum coulterianum*) heart-leaf penstemon (*Keckiella cordifolia*)

Platanaceae (Sycamore family) Western sycamore (*Platanus racemosa*)

Polemoniaceae (Phlox family) globe gilia (*Gilia capitata* ssp. *abrotanifolia*) California prickly phlox (*Leptodactylon californicum*)

Polygonaceae (Smartweed family) Turkish rugging (Chorizanthe staticoides) (Appendix 1, continued) longstem buckwheat (Eriogonum elongatum) California buckwheat (Eriogonum fasciculatum) pterostegia (Pterostegia drymarioides) Portulaceae (Purslane family) scarlet pimpernel (Anagallis arvensis)* red maids (Calandrinia ciliata) miner's lettuce (Claytonia perfoliata) Ranunculaceae (Buttercup family) chaparral clematis (Clematis lasiantha) Rhamnaceae (Buckthorn family) hoary leaved ceanothus (Ceanothus crassifolius) hairy ceanothus (Ceanothus oliganthus) holly-leaf redberry (Rhamnus ilicifolia) Rosaceae (Rose family) chamise (Adenostoma fasciculatum) curl-leaf mountain mahogany (Cercocarpus ledifolius var. intercedens) birch-leaved mountain mahogany (Cercocarpus montanus var. glaber) toyon (Heteromeles arbutifolia) rose (Rosa sp.)*p pacific blackberry (Rubus ursinus)*p Rubiaceae (Coffee family) narrow-leafed bedstraw (Galium angustifolium) cleavers (Galium aparine)* Salicaceae (Willow family) fremont cottonwood (Populus fremontii) red willow (Salix laevigata) arroyo willow (Salix lasiolepis) Simaroubaceae (Quassia family) tree of heaven (Ailanthus altissima)*,p Solanaceae (Nightshade family) jimson weed (Datura wrightii) tree tobacco (Nicotiana glauca) white nightshade (Solanum douglasii) purple nightshade (Solanum xantii) Ulmaceae (Elm family) chinese elm (Ulmus parvifolia)*p siberian elm (Ulmus pumila)*p Urticaceae (Nettle family) western nettle (Hesperocnide tenella) stinging nettle (Urtica dioica ssp. holosericea) Verbenaceae (Vervain family) robust vervain (Verbena lasiostachys)

Violaceae (Violet family)

California golden violet (Viola pedunculata)

Legend: * = non-native

p = planted
*p = non-native, planted
*,p = non-native, both planted and growing in wild (Ailanthus)\

Lamiaceae (Mint family) horehound (*Marrubium vulgare*)* white sage (*Salvia apiana*) purple sage (*Salvia leucophylla*) black sage (*Salvia mellifera*)

Malvaceae (Mallow family) chaparral bush mallow (*Malacothamnus fasciculatus*) cheeseweed (*Malva parviflora*)*

Nyctaginaceae (Four o'clock family) bougainvillea (*Bougainvillea* sp.)*p wishbone bush (*Mirabilis californica*)

Oleaceae (Olive family) flowering ash (*Fraxinus dipetala*) shamel ash (*Fraxinus uhdei*)*p jasmine (*Jasminum polyanthum*)*p olive (*Olea europaea*)*p

Onagraceae (Evening primrose family) sun cups (*Camissonia californica*) miniature suncup (*Camissonia micrantha*) eleant clarkia (*Clarkia unguiculata*) California fuchsia (*Epilobium canum*)

Orobanchaceae (Broomrape family, part of Scrophulariaceae in Jepson) indian paintbrush (*Castilleja affinis*) California broomrape (*Orobanche californica* ssp. grandis)

Paeoniaceae (Peony family) California peony (*Paeonia californica*)

Papaveraceae (Poppy family) collarless poppy (Eschscholzia caespitosa) California poppy (Eschscholzia californica)

Phrymaceae (Lopseed family, includes part of Jepson's Scrophulariaceae) bush monkeyflower (*Mimulus aurantiacus*) scarlet monkeyflower (*Mimulus cardinalis*) seep monkeyflower (*Mimulus guttatus*)

Plantaginaceae (Plantago family, includes part of Jepson's Scrophulariaceae) white snapdragon (*Antirrhinum coulterianum*) heart-leaf penstemon (*Keckiella cordifolia*)

Platanaceae (Sycamore family) Western sycamore (*Platanus racemosa*)

Polemoniaceae (Phlox family) globe gilia (*Gilia capitata* ssp. *abrotanifolia*) California prickly phlox (*Leptodactylon californicum*)

Polygonaceae (Smartweed family) Turkish rugging (Chorizanthe staticoides) (Appendix 1, continued) longstem buckwheat (Eriogonum elongatum) California buckwheat (Eriogonum fasciculatum) pterostegia (Pterostegia drymarioides) Portulaceae (Purslane family) scarlet pimpernel (Anagallis arvensis)* red maids (Calandrinia ciliata) miner's lettuce (Claytonia perfoliata) Ranunculaceae (Buttercup family) chaparral clematis (Clematis lasiantha) Rhamnaceae (Buckthorn family) hoary leaved ceanothus (Ceanothus crassifolius) hairy ceanothus (Ceanothus oliganthus) holly-leaf redberry (Rhamnus ilicifolia) Rosaceae (Rose family) chamise (Adenostoma fasciculatum) curl-leaf mountain mahogany (Cercocarpus ledifolius var. intercedens) birch-leaved mountain mahogany (Cercocarpus montanus var. glaber) toyon (Heteromeles arbutifolia) rose (Rosa sp.)*p pacific blackberry (Rubus ursinus)*p Rubiaceae (Coffee family) narrow-leafed bedstraw (Galium angustifolium) cleavers (Galium aparine)* Salicaceae (Willow family) fremont cottonwood (Populus fremontii) red willow (Salix laevigata) arroyo willow (Salix lasiolepis) Simaroubaceae (Quassia family) tree of heaven (Ailanthus altissima)*,p Solanaceae (Nightshade family) jimson weed (Datura wrightii) tree tobacco (Nicotiana glauca) white nightshade (Solanum douglasii) purple nightshade (Solanum xantii) Ulmaceae (Elm family) chinese elm (Ulmus parvifolia)*p siberian elm (Ulmus pumila)*p Urticaceae (Nettle family) western nettle (Hesperocnide tenella) stinging nettle (Urtica dioica ssp. holosericea) Verbenaceae (Vervain family) robust vervain (Verbena lasiostachys)

Violaceae (Violet family)

California golden violet (Viola pedunculata)

Legend:

* = non-native

p = planted
*p = non-native, planted
*,p = non-native, both planted and growing in wild (Ailanthus)\

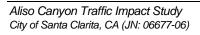
Appendix B.3 – Transportation and Traffic

Traffic Study

5411 Avenida Encinas, Suite 100 Carlsbad, CA 92008

Prepared by:

Scott Sato, P.E. James Santos


Prepared for:

Mr. Gregory Wolffe AECOM 999 Town & Country Road Orange, CA 92868

ALISO CANYON STORAGE FIELD TURBINE REPLACEMENT PROPONENT'S ENVIRONMENTAL ASSESSMENT (PEA) TRAFFIC IMPACT STUDY CITY OF SANTA CLARITA, CALIFORNIA

June 23, 2009

JN:06677-07 SS:JCS:jcs THIS PAGE INTENTIONALLY LEFT BLANK

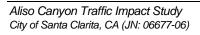
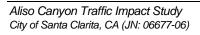


TABLE OF CONTENTS

<u>SECT</u>	ION		<u>PAGE</u>
1.0	INTRO A.	DDUCTION Project Description	1-1
2.0	anal A.	YSIS METHODOLOGY Scenarios 1. Existing Traffic Conditions 2. Existing Plus Ambient Plus Project Traffic Conditions	2-1
	В. С.	 Level of Service Criteria ICU Method for Signalized Intersections 1. Saturation Flow Rate 2. Level of Service Ranges 3. Peak-Periods 4. Peak-Hour 5. Peak-Jour Data Consistency 6. Right Turn Movements 	
	D. E.	HCM Methodology at Signalized Intersections Level of Service Criteria at Study Area Road Segments	
3.0	А. В.	ING CONDITIONS Study Area Intersections Existing Street System 1. Traffic Volumes and Conditions 2. Existing Level of Service	3-1
	D. E.	Existing Roadway Segment Level of Service Public Transit	
4.0	NEAR A.	 TERM TRAFFIC PROJECTION Cumulative Development Traffic 1. Method of Projection 2. Trip Distribution 3. Non-Site Traffic for Study Area 	4-1
	В.	Ambient Growth	
5.0	TRAF A.	 FIC IMPACTS Existing Plus Ambient Growth Plus Cumulative Traffic Conditions 1. Roadway Segment Analysis 2. Intersection Analysis 	5-1
6.0	POTE A. B.	NTIAL IMPACTS AND MITIGATION MEASURES Significance Criteria Impact Analysis	6-1

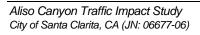
THIS PAGE INTENTIONALLY LEFT BLANK



APPENDICES

TRAFFIC COUNT WORKSHEETS	А
EXISTING CONDITIONS LEVEL OF SERVICE WORKSHEETS	В
TRAFFIC SIGNAL WARRANTS	С
CUMULATIVE TRAFFIC	D
EXISTING PLUS AMBIENT PLUS CUMULATIVE LEVEL OF SERVICE WORKSHEETS	E
EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT LEVEL OF SERVICE WORKSHEETS	F

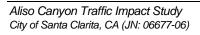
THIS PAGE INTENTIONALLY LEFT BLANK



LIST OF EXHIBITS

EXHIE	BIT	<u>PAGE</u>
1-A	LOCATION MAP	1-2
3-A	EXISTING NUMBER OF THROUGH LANES AND INTERSECTION CONTROLS	3-3
3-B	CITY OF SANTA CLARITA GENERAL PLAN CIRCULATION ELEMENT	3-4
3-C	CITY OF SANTA CLARITA GENERAL PLAN ROADWAY CROSS-SECTIONS	3-5
3-D	EXISTING AM PEAK HOUR INTERSECTION VOLUMES	3-7
3-E	EXISTING PM PEAK HOUR INTERSECTION VOLUMES	3-8
3-F	EXISTING AVERAGE DAILY TRAFFIC (ADT)	3-9
4-A	CUMULATIVE PROJECTS TRAFFIC VOLUMES	4-4
5-A	EXISTING PLUS AMBIENT PLUS CUMULATIVE TRAFFIC VOLUMES	5-2
5-B	EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT TRAFFIC VOLUMES	5-6

THIS PAGE INTENTIONALLY LEFT BLANK



LIST OF TABLES

TABLE		<u>PAGE</u>
2-1	CITY OF SANTA CLARITA LEVELS OF SERVICE, VOLUME TO CAPACITY (V/C) RATIOS & SERVICE VOLUMES FOR URBAN ARTERIAL HIGHWAYS	2-6
3-1	INTERSECTION ANALYSIS SUMMARY FOR EXISTING CONDITIONS	3-10
3-2	ROADWAY SEGMENT ANALYSIS FOR EXISTING CONDITIONS	3-13
5-1	ROADWAY SEGMENT ANALYSIS FOR EXISTING PLUS AMBIENT PLUS CUMULATIVE CONDITIONS	5-3
5-2	INTERSECTION ANALYSIS FOR EXISTING PLUS AMBIENT PLUS CUMULATIVE CONDITIONS	5-4
5-3	ROADWAY SEGMENT ANALYSIS FOR EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT CONDITIONS	5-8
5-4	INTERSECTION ANALYSIS FOR EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT CONDITIONS	5-9

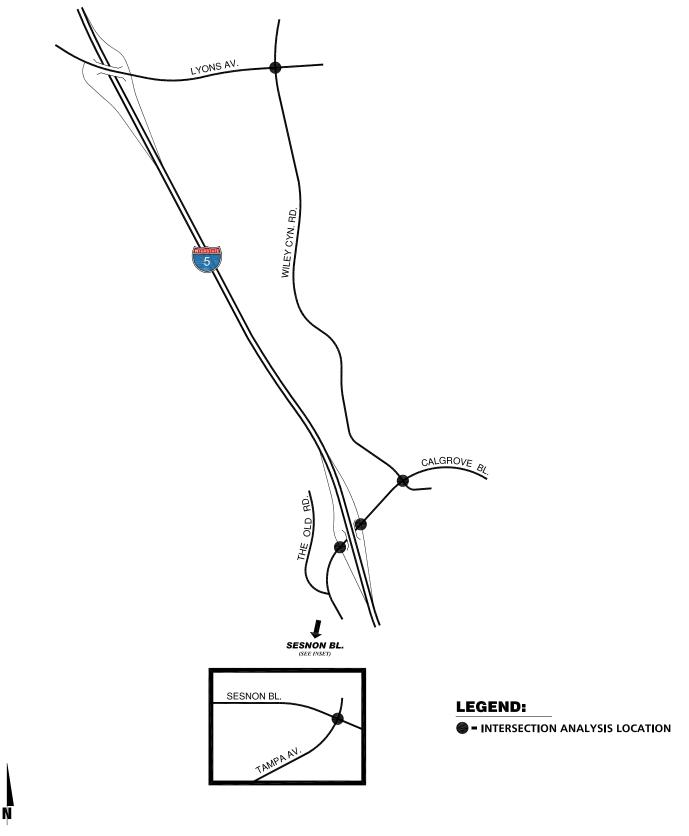
THIS PAGE INTENTIONALLY LEFT BLANK

Aliso Canyon Turbine Replacement Project TRAFFIC IMPACT STUDY CITY OF SANTA CLARITA, CALIFORNIA

1.0 INTRODUCTION

Aliso Canyon is Southern California Gas Company's (SCG) largest underground natural gas storage field and one of the largest in the U.S. The field has 80 Bcf of working storage inventory, 1875 mmcfd of withdrawal capacity, and injection capacity that varies depending on field pressure from 600 mmscfd to 300 mmscfd. Approximately 45% of SCG's total firm injection capacity is provided by Aliso Canyon. The majority of the injection capacity at Aliso Canyon is provided by three jet engine driven centrifugal compressors providing 12,000 nominal horsepower each. These units were installed in the 1970's and have poor engine efficiency due to their use of older technology for the power turbine and compressor design. The complete turbine control system was upgraded to an Allen Bradley PLC based system in 1998. As storage services are a critical part of SCG's hourly, daily, and seasonal supply/demand balance equation, it is imperative that Aliso Canyon Storage Field remains highly reliable. This project consists of an upgraded replacement and expansion of the existing compression equipment.

A. <u>Project Description</u>


The purpose of this traffic study is to evaluate the traffic impacts associate with the proposed Aliso Canyon Turbine Replacement Project. However, since the project itself will not generate a significant amount of trips, the term "Project" in this analysis refers to the conditions associated with the activities due to construction. Specifically these include:

- 1. A potential southbound closure on Wiley Canyon Road, south of Lyons Avenue.
- 2. Provision of a shuttle service to accommodate 150 construction workers to the site.

Exhibit 1-A illustrates the traffic analysis study area.

A. <u>Scenarios</u>

In accordance with the City of Santa Clarita's Traffic Impact Report Guidelines (1997), this study has analyzed the following scenarios:

1. Existing Traffic Conditions

The existing conditions refer to the conditions which take into account the existing traffic counts, taken in April and May 2009, and existing lane configurations at study area intersections and roadway segments.

2. <u>Existing Plus Ambient Plus Project Traffic Conditions</u>

Existing plus project traffic conditions includes the project traffic and ambient growth, which is added to the existing volumes. Existing geometry and intersection controls are analyzed first, then with mitigation, where required.

B. Level of Service Criteria

Level of Service (LOS) is a professional industry standard by which the operating conditions of a given roadway segment or intersection are measured. The level of service criteria utilized in this report is consistent with the standards outlined in the City of Santa Clarita's Traffic impact Report Guidelines. For all signalized study area intersections, Intersection Capacity Utilization (ICU) methodology is utilized to assess the operation of a signalized intersection. To calculate ICU, the volume of traffic using the intersection is compared with the capacity of the intersection. ICU is usually expressed as a percent, which represents that portion of the hour required to provide sufficient capacity to accommodate all intersection traffic if all approaches operate at capacity. For unsignalized intersections, the HCM methodology was utilized to calculate the level of service. The HCM method calculates the level of service based on intersection delay.

C. ICU Calculation Method for Signalized Intersections:

The study area signalized intersections have been evaluated based on the ICU methodology with the following assumptions.

- Saturation Flow Rate Saturation flow value of 1,750 vehicles per lane per hour for intersections for through and turning lanes.
- 2. Level of Service Ranges

The following thresholds are used in assigning a letter value to the resulting LOS:

LOS	CRITICAL VOLUME TO CAPACITY RATIO	DESCRIPTION
А	0.00 - 0.60	Excellent - Vehicl delays less than one cycle length and no approach phase is fully utilized
В	0.61 - 0.70	<u>Very Good</u> - An occassional approach phase is fully utilized; drivers being to feel somewhat restricted within groups of vehicles
С	0.71 - 0.80	<u>Good</u> - Occassionally drivers may be delayed through more than one signal cycle length and back-ups may develop behind turning vehicles
D	0.81 - 0.90	Fair - Delays may be substantial during portions of the peak hours, but adequate gaps may occur to prevent excessive backups
Е	0.91 - 1.00	Poor - Represents saturation of intersection. Motorists experience delays of several cycle lengths
F	> 1.00	Failure - Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles through the intersection. Tremendous delays with increasing queue lengths

Source: City of Santa Clarita Circulation Element

3. Peak-Periods

Weekday peak-hour analysis periods are defined as follows:

7:00 to 9:00 AM 4:00 to 6:00 PM

4. Peak-Hour

The highest one-hour period in both the AM and PM peak periods, as determined by four consecutive 15-minute count periods are used in the ICU calculations. Both AM and PM peak hours are studied.

5. Peak-Hour Data Consistency

Variations in peak-hour volumes can affect LOS calculations because they vary from dayto-day. To minimize these variations, no counts are taken on Mondays, Fridays, holidays or weekends.

6. Right Turn Movements

If the distance from the edge of the outside through lane is at least 19 feet and parking is prohibited during the peak period, right turning vehicles may be assumed to utilize this "unofficial" right turn lane. Otherwise, all right turn traffic is assigned to the through lane. If a right turn lane exists, right turn activity is checked for conflicts with other critical movements. It is assumed that right turn movements are accommodated during non-conflicting left turn phases (e.g., northbound right turns during westbound left turn phase), as well as non-conflicting through flows (e.g., northbound right turn movements and north/south through flows). Right turn movements become critical when conflicting movements (e.g., northbound right turns, and eastbound through flows) represent a sum of V/C ratios which are greater than the normal through/left turn critical movements.

If a free right turn lane exists (right turns do not have to stop for the signal), a flow rate of 1,750 vehicles per hour per lane is assumed. The V/C ratio of the right turn lane is reported but not included in the sum of the critical V/C ratios.

D. <u>HCM Methodology at Unsignalized Intersections</u>

For unsignalized intersections, the <u>2000 Highway Capacity Manual</u> (HCM) (Transportation Research Board Special Report 209) is utilized to calculate the level of service. The HCM defines level of service as a qualitative measure which describes operational conditions within a traffic stream, generally in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. The criteria used to evaluate LOS (Level of Service) conditions vary based on the type of roadway and whether the traffic flow is considered interrupted or uninterrupted.

The level of service is typically dependent on the quality of traffic flow at the intersections along a roadway. The HCM methodology expresses the level of service at an intersection in terms of delay time for the various intersection approaches. The HCM uses different procedures depending on the type of intersection control. The levels of service determined in this study are determined using the HCM methodology.

The study area intersections with stop control on the minor street have been analyzed using the unsignalized intersection methodology of the HCM. For these intersections, the calculation of level of service is dependent on the occurrence of gaps occurring in the traffic flow of the main street. Using data collected describing the intersection configuration and traffic volumes at the study area locations, the level of service has been calculated. The level of service criteria for this type of intersection analysis is based on total delay per vehicle for the worst minor street movements.

The levels of service are defined for the HCM methodology:

	AVERAGE TOTAL DELAY PER VEHICLE (SECONDS)
LEVEL OF SERVICE	UNSIGNALIZED
А	0 to 10.00
В	10.01 to 15.00
С	15.01 to 25.00
D	25.01 to 35.00
E	35.01 to 50.00
F	50.01 and up

E. Level of Service Criteria at Study Area Road Segments

Level of service at the study area road segments is determined utilizing the City of Santa Clarita's volume to capacity at urban arterial highways. Table 2-1 shows the average daily traffic volume (ADT) thresholds, roadway capacities and levels of service for each roadway classification type.

TABLE 2-1

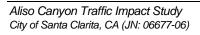
CITY OF SANTA CLARITA LEVELS OF SERVICE (LOS), VOLUME TO CAPACITY (V/C) RATIOS & SERVICE VOLUMES FOR URBAN ARTERIAL HIGHWAYS

LEVEL	V/C		AVE	RAGE DAIL	Y TRAFFIC	SERVICE VO	LUMES
OF SERVICE	RATI O	DESCRIPTION	8-LANE DIVIDED	6-LANE DIVIDED	4-LANE DIVIDED	4-LANE UNDIVIDED	2-LANE UNDIVIDED
A	<u><</u> 0.36	<u>Free Flow</u> - low volumes; little or no delay throughout the day or during peak hours	48,000	36,000	24000 (28,000)	16,000	5,000
В	<u><</u> 0.54	<u>Stable Flow</u> - relatively low volumes; acceptable delays experienced throughout the day; some peak hour congestion	54,000	40,400	27000 (32,000)	18,000	7,500
С	<u><</u> 0.71	<u>Stable Flow</u> - relatively low volumes; acceptable delays experienced throughout the day; some peak hour congestion.	60,000	45,000	30000 (36,000)	20,000	10,000
D	<u><</u> 0.87	<u>Approaching Unstable Flow</u> - poor, yet tolerable delays experienced throughout the day. Peak hours may experience significant congestion and delays.	66,000	49,500	33000 (40,000)	22,000	12,500
E	<u><</u> 1.00	<u>Unstable Flow</u> - heavy congestion and delays experienced throughout the day and during the peak hours. Volumes at or near capacity.	72,000	54,000	36000 (44,000)	24,000	15,000
F	>1.00+	<u>Forced flow</u> - both speeds and flow of traffic can drop to zero. Stoppages may occur for long periods with vehicles backing up from one intersection through another. (Referred to as "gridlock" condition).	This cond	•		eakdown and doe service volumes	es not have a

Augmented intersection: Will add 15% to the above roadway capacity. Note: (XX,XXX) = Capacity for Limited Access on 4-Lane Divided Arterial

Source: City of Santa Clarita General Plan Circulation Element, 1997

The City of Santa Clarita Traffic Impact Report Guidelines summarizes the generally accepted level of service (LOS) criteria. The Guidelines have established a LOS "C" as acceptable level of operation for residential and industrial areas and LOS "D" for commercial, freeway ramps and CBD's. It is assumed that a final V/C between 0.80-0.89 with an increase equal to or greater than 0.02 with project (when compare to without project conditions) is considered a project impact. Similarly, a final V/C between 0.90 or more with an increase equal to or greater than 0.01 with project (when compare to without project conditions) is considered a project impact.



For road segments, the impact criteria stipulates an increase in 3% or more in any peak hour volume due to project generated traffic.

The traffic analysis tool, Traffix R4 (2008) has been utilized to analyze the AM and PM peak hour conditions for the study area intersections. It should be noted that Traffix is a traffic analysis tools which utilizes the methodologies outlined in the 2000 Highway Capacity Manual (HCM).

THIS PAGE INTENTIONALLY LEFT BLANK

3.0 EXISTING CONDITIONS ANALYSIS

A. <u>Study Area Intersections</u>

The study area consists of the following intersections, as previously shown on Exhibit 1-A:

Interstate 5 SB Ramps (NS) at:

Calgrove Boulevard (EW)

Interstate 5 NB Ramps (NS) at:

Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

- Lyons Avenue (EW)
- Calgrove Boulevard (EW)

Tampa Avenue (NS) at:

• Sesnon Avenue (EW)

In addition to the above intersections, the following road segments have been analyzed:

Lyons Avenue:

Between I-5 NB Ramps and Wiley Canyon Road

The Old Road:

• West of I-5 SB Ramps

Calgrove Boulevard:

Between I-5 NB Ramps and Wiley Canyon Road

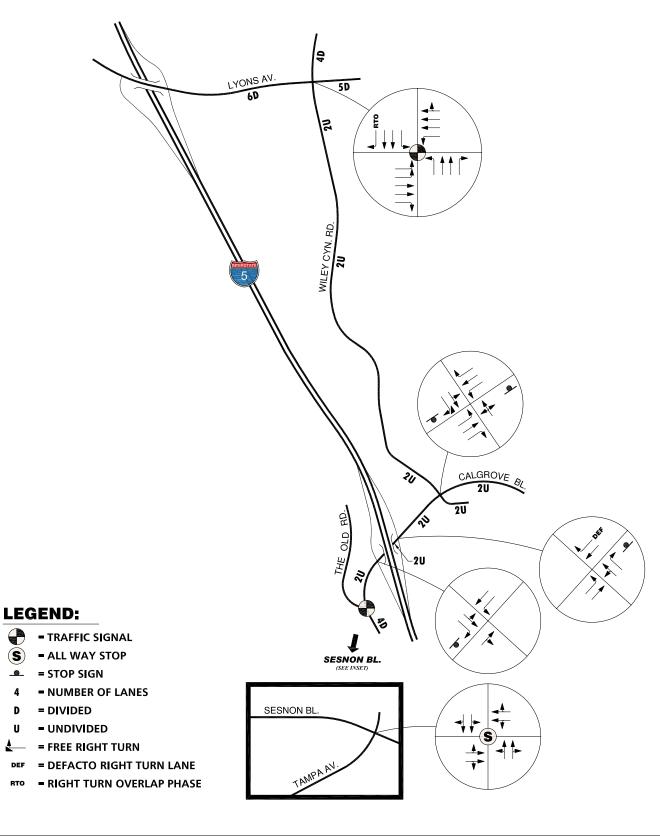
Wiley Canyon Road:

• South of Lyons Avenue

Exhibit 3-A identifies the existing roadway conditions for study area roadways, including the number of through traffic lanes for existing roadways and the existing intersection controls.

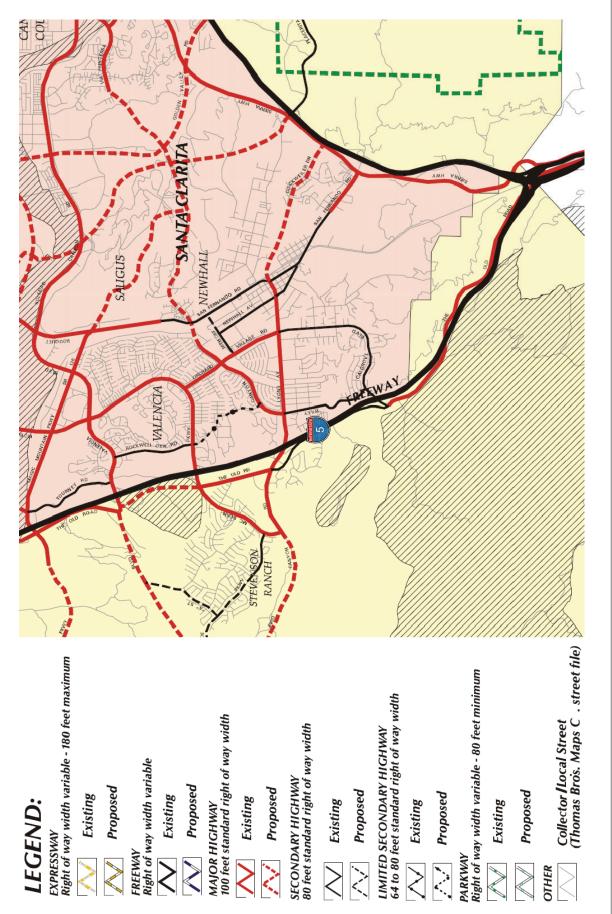
B. <u>Existing Street System</u>

The currently adopted City of Santa Clarita General Plan Circulation Element is shown on Exhibit 3-B. The City of Santa Clarita General Plan roadway cross-sections are illustrated on Exhibit 3-C. The following is a description of the existing street system listed in the study area:


<u>The Old Road</u> is classified as a Major Arterial Highway in the currently adopted City of Santa Clarita General Plan Circulation Element. The Old Road provides north-south travel parallel to the Interstate 5 freeway. Under the General Plan Circulation Element, a Major Highway is designated to have at least six-lanes, divided, with no-on-street parking. It is currently constructed as a four-lane divided roadway south of Calgrove Boulevard with a posted speed limit of 55 mph.

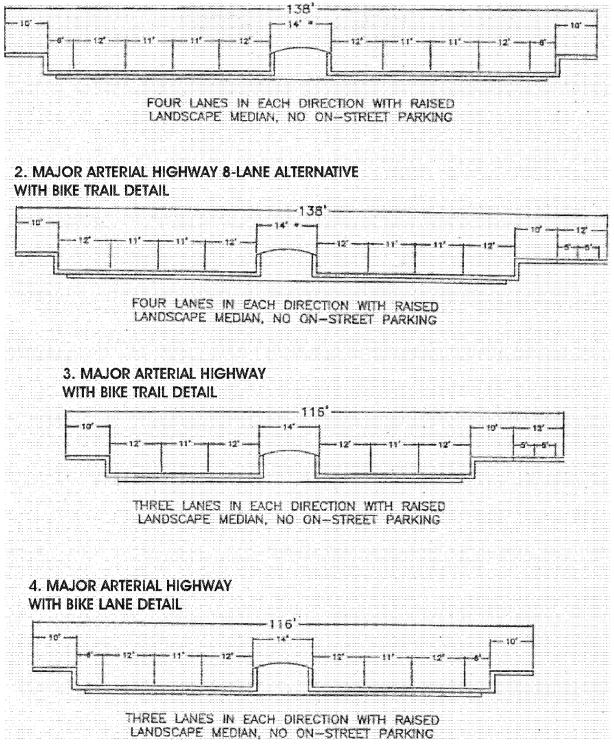
<u>Wiley Canyon Road</u> is located east of Intestate 5 and provides parallel north-south travel parallel to the Interstate 5. Wiley Canyon Road is classified as a Major Arterial Highway in the currently adopted City of Santa Clarita General Plan Circulation Element north of Lyons Avenue. South of Lyons Avenue to Calgrove Boulevard, Wiley Canyon Road is classified as a Secondary Highway. Under the General Plan Circulation Element, a Major Highway is designated to have at least six-lanes, divided, with no-on-street parking. North of Lyons Avenue, Wiley Canyon Road is currently constructed as a four-lane divided roadway with parallel northbound and southbound bike lines. A Secondary Highway is designated as a four-lane divided roadway with no on-street parking. South of Lyons Avenue to Calgrove Boulevard, Wiley Canyon Road is currently constructed as a two-lane undivided roadway with intermittent on-street parking. Speed limits along Wiley Canyon range from 25 mph to 35 mph from Lyons Avenue to Calgrove Boulevare to Calgrove Boulevard to the south.

Lyons Avenue provides east-west travel and classified as a Major Arterial Highway in the currently adopted City of Santa Clarita General Plan Circulation Element from The Old Road to Sierra Highway. Under the General Plan Circulation Element, a Major Highway is designated to have at least six-lanes, divided, with no-on-street parking. Within the study area, Lyons Avenue is currently constructed as a five to six-lane divided roadway with a posted speed limit of 40 mph. Bike lanes are provided along Lyons Avenue east of Wiley Canyon Road.


EXHIBIT 3-A EXISTING NUMBER OF THROUGH LANES AND INTERSECTION CONTROLS

Ń

EXHIBIT 3-B CITY OF SANTA CLARITA GENERAL PLAN CIRCULATION ELEMENT



Aliso Canyon Turbine Replacement Project County of Los Angeles, CA (JN - 6677:07)

URBAN CROSSROADS

CITY OF SANTA CLARITA GENERAL PLAN ROADWAY CROSS-SECTIONS

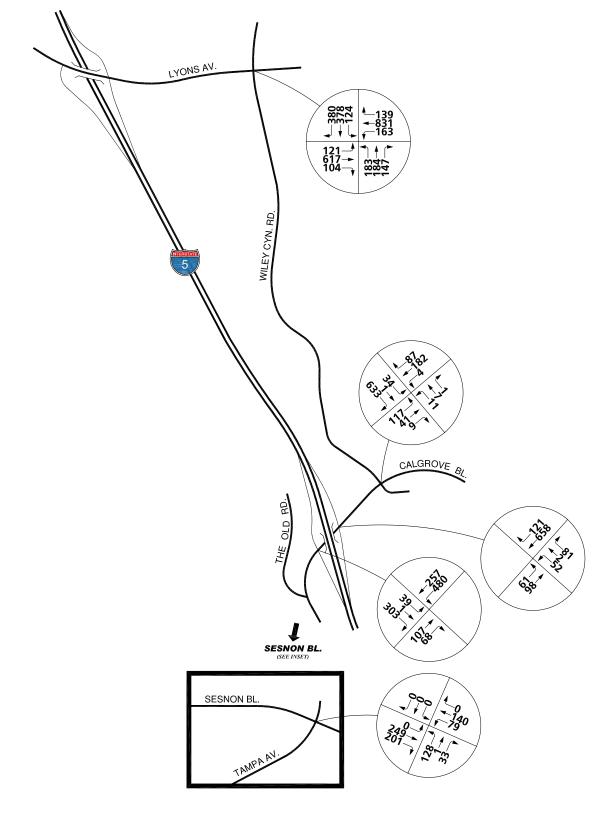
1. MAJOR ARTERIAL HIGHWAY 8-LANE ALTERNATIVE WITH BIKE LANE DETAIL

<u>Calgrove Boulevard</u> provides east-west travel and classified as a Secondary Highway in the currently adopted City of Santa Clarita General Plan Circulation Element. Under the General Plan Circulation Element, a Secondary Highway is designated as a four-lane divided roadway with no on-street parking. South of Lyons Avenue to Calgrove Boulevard, Wiley Canyon Road is currently constructed as a two-lane undivided roadway with a posted speed limit of 45 mph. Bike lanes are provided along Calgrove Boulevard east of Wiley Canyon Road. West of Interstate 5, Calgrove Boulevard terminates at The Old Road and becomes Valley Street east of Wiley Canyon Road.

C. <u>Analysis of Existing Conditions</u>

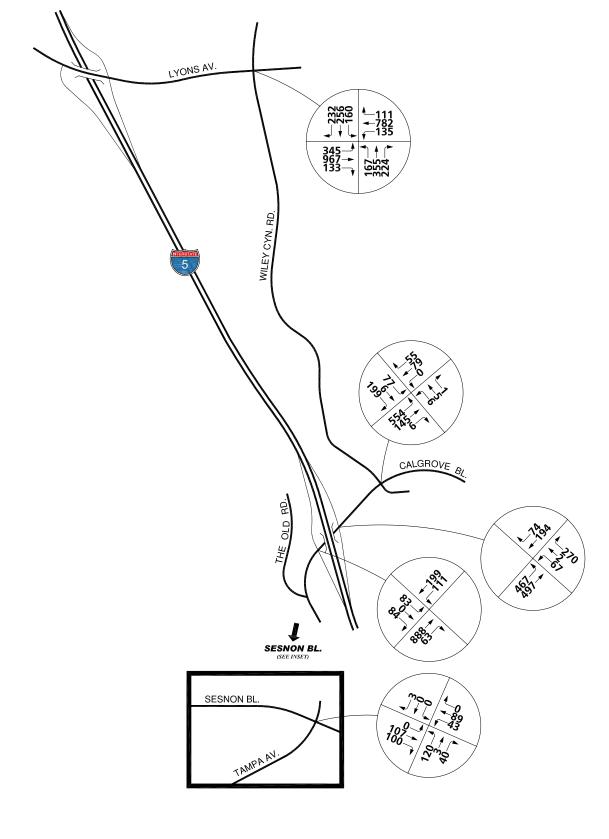
1. <u>Traffic Volumes and Conditions</u>

The existing AM and PM peak hour turning movement counts are shown on Exhibits 3-D and 3-E, respectively. The intersection movement counts were taken on a typical weekday in the AM (7:00 to 9:00 AM) and PM (4:00 to 6:00 PM) peak periods. The turning movement counts were performed in April and May 2009. Traffic count worksheets are included in Appendix "A".

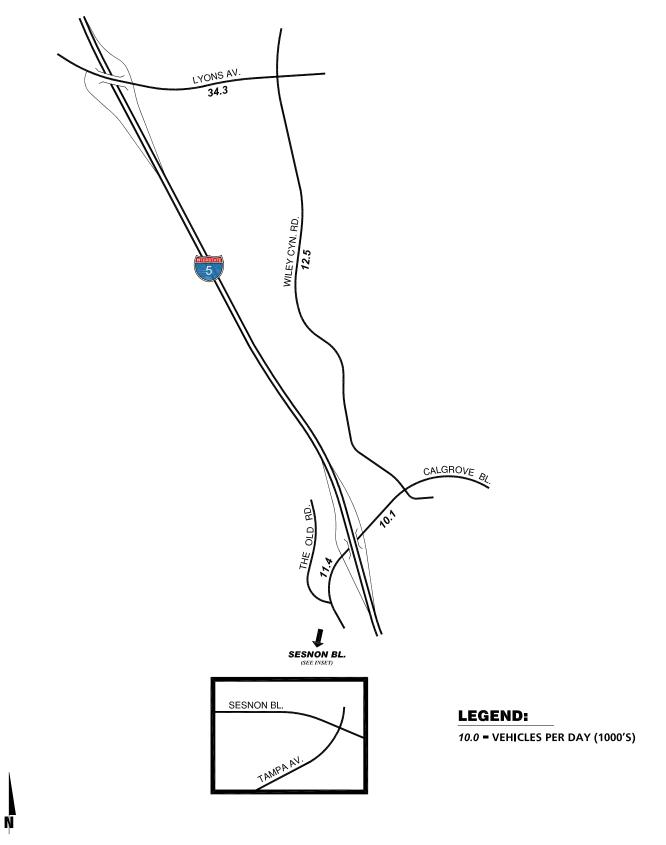

Existing average daily traffic (ADT) volumes on arterial highways throughout the study area are shown on Exhibit 3-F. Existing ADT volumes are based upon collected daily traffic data. Existing ADT counts are included in Appendix "A".

2. Existing Intersection Level of Service

Existing peak hour traffic operations have been evaluated for the study area intersections using the HCM methodology. The results of this analysis are summarized in Table 3-1, along with the existing intersection geometrics and traffic control devices at the analysis locations. For existing traffic conditions, the following study area intersections are currently operating with an unacceptable level of service during the peak hours:


EXHIBIT 3-D EXISTING AM PEAK HOUR INTERSECTION VOLUMES

Ń


EXISTING PM PEAK HOUR INTERSECTION VOLUMES

Ń

EXHIBIT 3-F EXISTING AVERAGE DAILY TRAFFIC (ADT)

TABLE 3-1

INTERSECTION ANALYSIS FOR EXISTING CONDITIONS

		INTERSECTION APPROACH LANES															
	TRAFFIC	NORTH- BOUND			SOUTH- BOUND			EAST- BOUND			WEST- BOUND			ICU/DELAY (SECS.) ²		LEVEL OF SERVICE	
INTERSECTION	CONTROL ³	L	т	R	L	Т	R	L	т	R	L	т	R	AM	PM	АМ	PM
Interstate 5 SB Ramps (NS) at:																	
Calgrove Boulevard (EW)	CSS	0	0	0	0.5	0.5	1	0	1	0	1	1	0	56.0	4	F	F
Interstate 5 NB Ramps (NS) at:																	
Calgrove Boulevard (EW)	CSS	0.5	0.5	1	0	0	0	1	0	0	0	1	1	21.8	4	С	F
Wiley Canyon Road (NS) at:																	
Lyons Avenue (EW)	TS	1	2	1	1	2	1>	2	2	1	1	3	0	0.727	0.720	С	С
Calgrove Boulevard (EW)	CSS	0	1!	0	0.5	0.5	1>>	1	1	1	1	1	1	14.4	4	В	F
Tampa Avenue (NS) at:																	
Sesnon Avenue (EW)	AWS	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	13.0	8.8	В	А

² Per City of Santa Clarita Traffic Impact Report Guidelines, the ICU method is used to determine signalized intersection level of service. For unsignalized intersections, the intersection delay has been calculated using the HCM methodology. Delay and level of service calculated using the following analysis software: Traffix, Version 8.0 (2008) Intersection level of service shown is based on the V/C for intersections with traffic signals. For intersections with cross street stop control, the delay in seconds and level of service for worst individual movement (or movements sharing a single lane) are shown.

³ TS = Traffic Signal CSS = Cross Street Stop AWS = All Way Stop

⁴ -- = Delay High, Intersection Unstable, LOS "F"

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 1-2

¹ When a right turn is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes.

L = Left; T = Through; R = Right; 1! = Shared left-through-right lane; 0.5 = Shared Lane; > = Right Turn Overlap Phase

Interstate 5 SB Ramps (NS) at:

• Calgrove Boulevard (EW)

Interstate 5 NB Ramps (NS) at:

• Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

• Calgrove Boulevard (EW)

HCM calculation worksheets for existing conditions are provided in Appendix "B".

Under existing conditions, the following study area intersections appear to meet the minimum criteria to warrant a traffic signal based on peak hour warrants:

Interstate 5 SB Ramps (NS) at:

• Calgrove Boulevard (EW)

Interstate 5 NB Ramps (NS) at:

• Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

• Calgrove Boulevard (EW)

Tampa Avenue (NS) at:

• Sesnon Boulevard (EW)

Traffic signal warrant worksheets are included in Appendix "C".

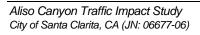
D. Existing Roadway Segment Level of Service

Table 3-2 presents the results of the existing roadway segment analysis. As shown in Table 3-2, the study area road segments are currently operating with acceptable levels of service.

E. <u>Public Transit</u>

The study area is currently served by Santa Clarita Transit. Within the study area identified in this study, Lyons Avenue is the only roadway currently serviced by Santa Clarita Transit Routes #4, #5, #6 and #14. Bus stops are located along Lyons Avenue, east of the I-5 NB ramps and east of Wiley Canyon.

TABLE 3-2


ROADWAY SEGMENT	GENERAL PLAN ROAD CLASSIFICATION	EXISTING NUMBER OF LANES	LOS E CAPACITY ¹	EXISTING ADT ²	VOLUME / CAPACITY	LOS
Lyons Avenue:						
 Between I-5 NB Ramps and Wiley Canyon Road 	Major Arterial	6-Lane Divided	54,000	34,288	0.63	С
The Old Road:						
West of the I-5 SB Ramps	Major Arterial	4-Lane Divided	36,000	11,366	0.32	А
Calgrove Boulevard:						
Between I-5 NB Ramps and Wiley Canyon Road	Secondary Highway	2-Lane Undivided	15,000	10,081	0.67	С
Wiley Canyon Road: South of Lyons Avenue 	Secondary Highway	2-Lane Undivided	15,000	12,529	0.84	D

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 1-3

¹ Roadway capacities derived from the City of Santa Clarita General Plan Circulation Element. Per City of Santa Clarita Circulation Element, LOS "D" is "an accepted, though undesirable, condition." Therefore, the volume to capacity ratios are based on Level of Service "E".

² Average Daily Traffic (ADT) expressed in vehicles per day. Existing ADT values were obtained from empirical data. See Appendix "A".

THIS PAGE INTENTIONALLY LEFT BLANK

4.0 NEAR TERM TRAFFIC PROJECTION

To assess the potentially significant impacts of the project, future traffic volumes along the study area are determined by adding traffic generated by approved and/or currently pending development projects and ambient growth to existing traffic volumes.

A. <u>Cumulative Development Traffic</u>

1. <u>Method of Projection</u>

To assess the near term traffic conditions that is anticipated in conjunction with construction activities, existing traffic is combined with traffic from other surrounding development. Cumulative projects in the study area were identified in the City of Santa Clarita, the City of Los Angeles, and the County of Los Angeles. The research indicates that the following 18 cumulative developments are currently planned in the study area:

- 1. Downtown Newhall Specific Plan
- 2. North Newhall Specific Plan
- 3. South Santa Clarita Sphere of Influence Amendment, Annexation, and Prezone
- 4. Gate King Industrial Park
- 5. Placerita Canyon Sewer Backbone
- 6. Tract PM 60792
- 7. Tract 53653
- 8. BFI-Sunshine Canyon Landfill
- 9. Tract 50242
- 10. Tract 52905
- 11. Tract 52796
- 12. Env-2007-3572-MND
- 13. Tract 60913
- 14. Env-2008-5060-ND
- 15. Env-2008-3312-MND
- 16. Env-2006-5624-EAF
- 17. Env-2008-570-EAF
- 18. Env-2007-5288-MND

Near term traffic volumes projections include traffic generated by approved and "reasonably foreseeable pending projects that are expected to influence the study area." Some of the cumulative projects identified above are either too far away to add traffic to the study area intersections, do not generate a significant amount of traffic (i.e. a wireless telecommunications facility), or will not be developed by the time construction activities are completed. Based on this criteria, the following four developments have been included in the near term analysis along with a three (3) percent annual growth rate.

- 1. Tract 53653 186 single family residential units
- 2. Tract 50242 8 single family residential units
- 3. Tract 52905 37 single family residential units
- 4. Tract 52796 102 single family residential units

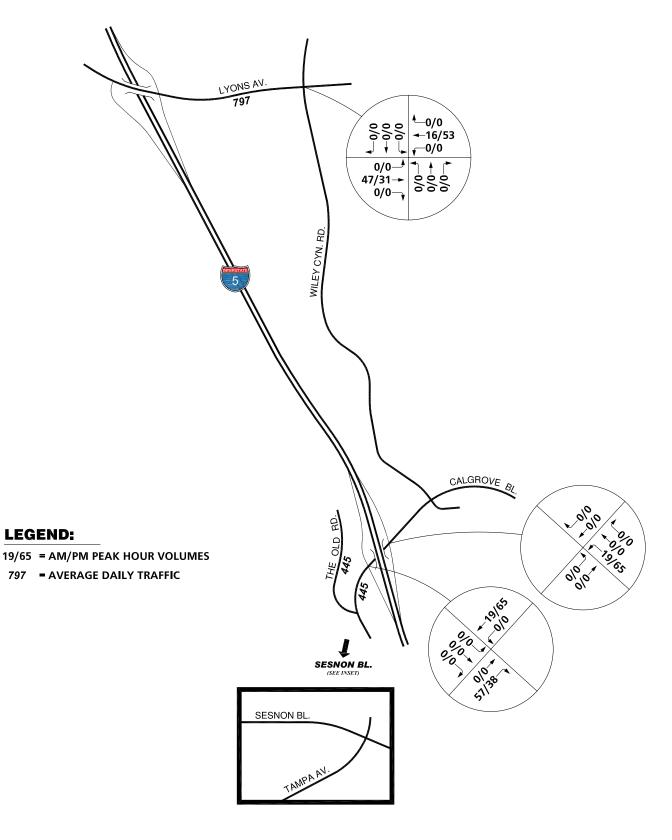
These projects are anticipated to generate a total of approximately 3,187 trip ends per day with 249 AM peak hour trips and 337 PM peak hour trips. The trip rates and trip generation estimates are presented in a tabular format in Appendix "D".

2. <u>Trip Distribution</u>

Trip distribution represents the directional orientation of traffic to and from the cumulative projects. Trip distribution is heavily influenced by the geographical location of the site, the location of commercial uses in the general region and the proximity to the regional freeway system.

Trip distribution for this study has been based upon near term (2010) conditions and those highway facilities representing the completion time frame for the proposed road improvements. The directional distribution and assignment of the cumulative development traffic is included in Appendix "D".

3. Non-Site Traffic for Study Area


The cumulative AM and PM peak hour turning movements and ADT are shown on Exhibit 4-A.

B. <u>Ambient Growth</u>

In addition to the traffic from the cumulative projects described above, an ambient growth rate has been added to existing volumes. This ambient growth rate accounts for traffic flowing through the study area that is not directly accounted for from known projects. The City of Santa Clarita indicates that a 3 percent per year rate is appropriate.

CUMULATIVE PROJECTS TRAFFIC VOLUMES

Ń

5.0 TRAFFIC IMPACTS

This section of the report describes the results of the level of service analysis for the study area intersections and roadway segments for existing plus ambient growth plus cumulative conditions – with and without the project-related construction traffic. Additional recommendations to address potential impacts are also discussed.

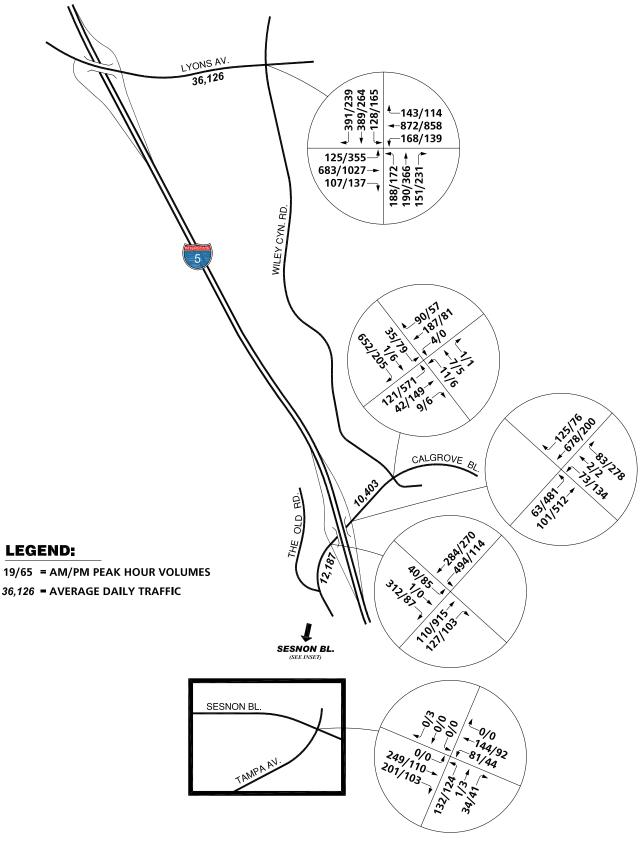
A. Existing Plus Ambient Growth Plus Cumulative Traffic Conditions

The traffic generated for the cumulative projects has been added to existing volumes, in addition to an ambient growth rate. The cumulative development traffic has been distributed to the existing, asbuilt roadway network. These assumptions have been used to analyze the study area roadway segments and intersections.

1. Roadway Segment Analysis

The study area roadway segments were analyzed with the traffic generated from the cumulative projects and ambient growth added to existing traffic volumes. Existing plus ambient growth plus cumulative average daily traffic (ADT) volumes on arterial highways throughout the study area are shown on Exhibit 5-A.

Table 5-1 details the results of the existing plus ambient growth plus cumulative projects segment analysis. As shown in Table 5-1, with the addition of the ambient growth and cumulative traffic, the roadway segments are anticipated to continue to operate with an acceptable LOS.


2. Intersection Analysis

The intersections were analyzed with the traffic generated from the ambient growth and cumulative projects added to existing traffic volumes. The existing plus ambient plus cumulative AM and PM peak hour turning movement counts are shown on Exhibit 5-A.

Existing plus ambient growth plus cumulative intersection level of service analysis results are shown in Table 5-2. As shown in Table 5-2, for existing plus ambient growth plus

EXHIBIT 5-A EXISTING PLUS AMBIENT PLUS CUMULATIVE PROJECT TRAFFIC VOLUMES

Ń

TABLE 5-1

ROADWAY SEGMENT	GENERAL PLAN ROAD CLASSIFICATION	EXISTING NUMBER OF LANES	LOS E CAPACITY ¹	EAC ADT ²	VOLUME / CAPACITY	LOS
Lyons Avenue:						
Between I-5 NB Ramps and Wiley Canyon Road	Major Arterial	6-Lane Divided	54,000	36,114	0.67	С
The Old Road:						
West of the I-5 SB Ramps	Major Arterial	4-Lane Divided	36,000	12,152	0.34	А
Calgrove Boulevard:						
Between I-5 NB Ramps and Wiley Canyon Road	Secondary Highway	2-Lane Undivided	15,000	10,383	0.69	С
Wiley Canyon Road:						
 South of Lyons Avenue 	Secondary Highway	2-Lane Undivided	15,000	12,905	0.86	D

ROADWAY SEGMENT ANALYSIS FOR EXISTING + AMBIENT + CUMULATIVE CONDITIONS

² Average Daily Traffic (ADT) expressed in vehicles per day. See Appendix "A".

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 1-3 (2)

¹ Roadway capacities derived from the City of Santa Clarita General Plan Circulation Element. Per City of Santa Clarita Circulation Element, LOS "D" is "an accepted, though undesirable, condition." Therefore, the volume to capacity ratios are based on Level of Service "E".

TABLE 5-2

		INTERSECTION APPROACH LANES ¹															
	TRAFFIC		NORTH- BOUND		-	SOUTH- BOUND			EAST- BOUND			WEST BOUN		ICU/DELAY (SECS.) ²			EL OF VICE
INTERSECTION	CONTROL ³	L	т	R	L	т	R	L	Т	R	L	т	R	AM	PM	АМ	РМ
Interstate 5 SB Ramps (NS) at:																	
Calgrove Boulevard (EW)	CSS	0	0	0	0.5	0.5	1	0	1	0	1	1	0	72.4	4	F	F
Interstate 5 NB Ramps (NS) at:																	
 Calgrove Boulevard (EW) 	CSS	0.5	0.5	1	0	0	0	1	0	0	0	1	1	24.7	4	С	F
Wiley Canyon Road (NS) at:																	
Lyons Avenue (EW)	TS	1	2	1	1	2	1>	2	2	1	1	3	0	0.761	0.748	С	С
 Calgrove Boulevard (EW) 	CSS	0	1!	0	0.5	0.5	1>>	1	1	1	1	1	1	14.7	4	В	F
Tampa Avenue (NS) at:																	
Sesnon Avenue (EW)	AWS	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	13.4	8.8	В	А

INTERSECTION ANALYSIS FOR EXISTING + AMBIENT + CUMULATIVE CONDITIONS

¹ When a right turn is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes.

L = Left; T = Through; R = Right; 1! = Shared left-through-right lane; 0.5 = Shared Lane; > = Right Turn Overlap Phase

³ TS = Traffic Signal CSS = Cross Street Stop AWS = All Way Stop

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 5-3

² Per City of Santa Clarita Traffic Impact Report Guidelines, the ICU method is used to determine signalized intersection level of service. For unsignalized intersections, the intersection delay has been calculated using the HCM methodology. Delay and level of service calculated using the following analysis software: Traffix, Version 8.0 (2008) Intersection level of service shown is based on the V/C for intersections with traffic signals. For intersections with cross street stop control, the delay in seconds and level of service for worst individual movement (or movements sharing a single lane) are shown.

⁴ -- = Delay High, Intersection Unstable, LOS "F"

cumulative traffic conditions, the following study area intersections are anticipated to continue to operate with unacceptable levels of service (LOS "E" or worse) during the peak hours:

Interstate 5 SB Ramps (NS) at:

Calgrove Boulevard (EW)

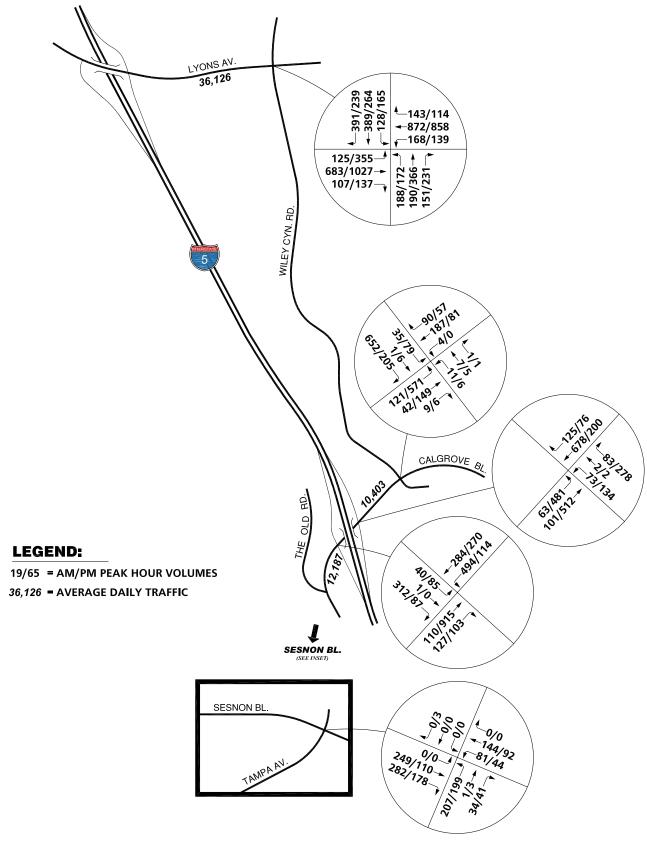
Interstate 5 NB Ramps (NS) at:

Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

Calgrove Boulevard (EW)

Existing plus ambient growth plus cumulative project intersection operations worksheets are provided in Appendix "E".


C. Existing Plus Ambient Growth Plus Cumulative With Project-Related Construction Traffic Conditions

The traffic generated from the ambient growth and cumulative developments has been added to existing volumes. It has been assumed that the project may consist of a lane closure for the southbound through traffic at the intersection of Wiley Canyon Road/Lyons Avenue. In addition, approximately 150 construction workers are expected to access the site driveway off of Senson Boulevard (just west of Tampa Avenue). However, a shuttle service consisting of 15 shuttles is proposed at a parking lot (to be determined) near the 118 Freeway to minimize the number of trips at the Sesnon Blvd/Tampa Ave. intersection. For a typical day, the site is also expected to have 7 construction vehicle trips per day and 1 material delivery truck trip per day during non-peak hours.

A passenger car equivalency (PCE) factor has been applied to the large, oversized vehicles for operational analysis purposes. A PCE factor is defined as an equivalency value applied to a large vehicle to equate it's characteristics to those of a passenger car. PCE values generally range from 1.0 (for passenger cars) to 3.0 (very large slow moving trucks) depending on the vehicle's

EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT TRAFFIC VOLUMES

Aliso Canyon Turbine Replacement Project County of Los Angeles, CA (JN - 6677:13)

Ń

size, weight, maneuverability, and speed. The PCE values for the vehicles to/from the site on a typical day would be as follows:

15 Shuttles (1.5 PCE) = 22.5 PCE, say 23 PCE 7 construction vehicles (2.5 PCE) = 17.5 PCE, say 18 PCE <u>1 materials delivery truck (2.5 PCE) = 2.5 PCE, say 3 PCE</u> Total = 44 PCE

For the purposes of the evaluation conducted for this PEA, it has been assumed that a worst case condition of 75 PCE's to/from the site would occur during the AM and PM peak hour. These assumptions have been used to analyze the study area roadway segments and intersections to ensure a conservative, worst case condition. Exhibit 5-B illustrates the daily, AM peak hour, and PM peak hour traffic volumes associated with this condition.

Roadway Segment Analysis

The study area roadway segments were analyzed with the traffic generated from the ambient growth and cumulative projects added to existing traffic volumes. Table 5-3 summarizes the results of the existing plus ambient growth plus cumulative "with project related conditions" segment analysis. As shown in Table 5-3, with the addition of ambient and cumulative traffic, the roadway segments are anticipated to continue to operate with acceptable LOS at the study area road segments.

1. Intersection Analysis

The intersections were analyzed with the traffic generated from the ambient growth and cumulative projects added to existing traffic volumes. Existing plus ambient growth and cumulative with project-related conditions intersection level of service analysis results are shown in Table 5-4. As shown in Table 5-4, the study area intersections are anticipated to operate with acceptable levels of service (LOS "D" or better) during the peak hours, except for the following locations:

Interstate 5 SB Ramps (NS) at:

Calgrove Boulevard (EW)

TABLE 5-3

ROADWAY SEGMENT ANALYSIS FOR EXISTING + AMBIENT + CUMULATIVE + PROJECT CONDITIONS

ROADWAY SEGMENT	GENERAL PLAN ROAD CLASSIFICATION	EXISTING NUMBER OF LANES	LOS E CAPACITY ¹	EAC ADT ²	VOLUME / CAPACITY	LOS
Lyons Avenue:						
Between I-5 NB Ramps and Wiley Canyon Road	Major Arterial	6-Lane Divided	54,000	36,114	0.67	С
The Old Road:						
West of the I-5 SB Ramps	Major Arterial	4-Lane Divided	36,000	12,152	0.34	А
Calgrove Boulevard:						
Between I-5 NB Ramps and Wiley Canyon Road	Secondary Highway	2-Lane Undivided	15,000	10,383	0.69	С
Wiley Canyon Road:						
 South of Lyons Avenue 	Secondary Highway	2-Lane Undivided	15,000	12,905	0.86	D

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 1-3 (3)

¹ Roadway capacities derived from the City of Santa Clarita General Plan Circulation Element. Per City of Santa Clarita Circulation Element, LOS "D" is "an accepted, though undesirable, condition." Therefore, the volume to capacity ratios are based on Level of Service "E".

² Average Daily Traffic (ADT) expressed in vehicles per day.

TABLE 5-4

		INTERSECTION APPROACH LANES ¹															
	TRAFFIC		NORTH- BOUND		-	SOUTH- BOUND		EAST- BOUND		WEST- BOUND			ICU/DELAY (SECS.) ²			L OF	
INTERSECTION	CONTROL ³	L	Т	R	L	Т	R	L	Т	R	L	Т	R	АМ	РМ	AM	PM
Interstate 5 SB Ramps (NS) at:																	
 Calgrove Boulevard (EW) 	CSS	0	0	0	0.5	0.5	1	0	1	0	1	1	0	72.4	4	F	F
Interstate 5 NB Ramps (NS) at:																	
 Calgrove Boulevard (EW) 	CSS	0.5	0.5	1	0	0	0	1	0	0	0	1	1	24.7	4	С	F
Wiley Canyon Road (NS) at:																	
Lyons Avenue (EW)	TS	1	2	1	1	2	1>	2	2	1	1	3	0	0.800	0.773	D	С
 Calgrove Boulevard (EW) 	CSS	0	1!	0	0.5	0.5	1>>	1	1	1	1	1	1	14.7	4	В	F
Tampa Avenue (NS) at:																	
Sesnon Avenue (EW)	AWS	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	0.5	1.5	0	18.6	9.9	С	А

INTERSECTION ANALYSIS FOR EXISTING + AMBIENT + CUMULATIVE + PROJECT CONDITIONS

¹ When a right turn is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes.

L = Left; T = Through; R = Right; 1! = Shared left-through-right lane; 0.5 = Shared Lane; > = Right Turn Overlap Phase

³ TS = Traffic Signal CSS = Cross Street Stop AWS = All Way Stop

T:\Jobs_06600_06677\EXCEL\[06677-01 Rep Tables.xls]T 5-4

² Per City of Santa Clarita Traffic Impact Report Guidelines, the ICU method is used to determine signalized intersection level of service. For unsignalized intersections, the intersection delay has been calculated using the HCM methodology. Delay and level of service calculated using the following analysis software: Traffix, Version 8.0 (2008) Intersection level of service shown is based on the V/C for intersections with traffic signals. For intersections with cross street stop control, the delay in seconds and level of service for worst individual movement (or movements sharing a single lane) are shown.

⁴ -- = Delay High, Intersection Unstable, LOS "F"

Interstate 5 NB Ramps (NS) at:

Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

Calgrove Boulevard (EW)

Existing plus ambient plus cumulative plus project service level calculation worksheets are provided in Appendix "F".

D. Near Term With and Without Project-Related Conditions - Level of Service Comparison

The results of the road segment and intersection levels of service analysis indicate the effects of the project-related conditions from a level of service standpoint. The near term with and without the project-related conditions level of service at the study area road segments and intersections are compared.

1. Roadway Segment Level of Service Comparison

The study area roadway segments levels of service are anticipated to operate acceptably for near term conditions with the additional traffic due to construction workers and a southbound lane closure on Wiley Road. Therefore, a significant impact is not anticipated.

2. Intersection Level of Service Comparison

The project is expected to add traffic to the intersection of Sesnon Blvd/Tampa Ave. and potentially cause a lane closure along Wiley Canyon Road (just south of Lyons Avenue). The intersections levels of service at these two locations during the peak hours are expected to operate acceptably. The following intersections are expected to operate at unacceptable service levels with or without the project-related activities:

Interstate 5 SB Ramps (NS) at:

• Calgrove Boulevard (EW)

Interstate 5 NB Ramps (NS) at:

Calgrove Boulevard (EW)

Wiley Canyon Road (NS) at:

•

Calgrove Boulevard (EW)

Since the project is not anticipated to add traffic or reduce the capacity of these intersections, the project is not anticipated to cause an impact.

,

6.0 POTENTIAL IMPACTS AND MITIGATION MEASURES

This section summarizes the potential traffic impacts associated with the near-term cumulative conditions in conjunction with the construction activities of the proposed project.

A. <u>Significance Criteria</u>

The following significance criteria are based on the CEQA Guidelines. A project is determined to cause a potentially significant impact if it would:

- Cause an increase in traffic , which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections);
- Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways;
- Result in change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g. farm equipment);
- Result in inadequate parking capacity; or
- Conflict with adopted policies, plans or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).

B. Impact Analysis

Would the project cause an increase in traffic, which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?

LESS THAN SIGNIFICANT WITH MITIGATION

The project is expected to shuttle approximately 150 construction workers from an off-site parking area to the site. In addition, the operations would also consist of 7 construction vehicle trips per day and 1 material delivery truck trip per day during non-peak hours to/from the site. For analysis purposes, a very conservative estimate of 75 round trips per hour was assumed. It is more likely that the actual number of passenger car equivalent trips to/from the site would be less than the 75 PCE's analyzed, but this provides a "worst case" condition. The increase in traffic associated with these additional trips has been evaluated at the intersection of Tampa Avenue/Sesnon Boulevard. Based on the intersection operations, this location is anticipated to operate at acceptable service levels with the additional trips. Therefore, no significant impacts are anticipated.

The project should ensure that a shuttle program is instituted to reduce the amount of individual construction workers to the site.

Would the project exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?

LESS THAN SIGNIFICNT

A temporary lane closure on Wiley Canyon Road may be required as part of the construction activities. Based on the level of service analysis, the intersection of Wiley Canyon Road/Lyons Avenue is expected to operate at acceptable levels in conjunction with the lane closure.

Would the project result in change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks?

NO IMPACT

No operating airports or heliports are within a close proximity of the project. Helicopters would not be used during project construction. Therefore, the project would not include any features that would disrupt or affect air traffic.

Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g. farm equipment)?

LESS THAN SIGNIFICANT WITH MITIGATION

A temporary lane closure on Wiley Canyon Road may be required as part of the construction activities. In order to minimize short-term construction-related impacts on local traffic, and potential traffic safety hazards, a traffic control plan should be prepared in accordance with the latest version of SCE's WATCH manual.

Would the project result in inadequate parking capacity?

LESS THAN SIGNIFICANT WITH MITIGATION INCORPORATION.

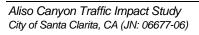
The project is anticipated to involve a lane closure along Wiley Canyon Road, south of Lyons Avenue. However, since parking is currently not allowed on this segment of roadway, no impact to the parking capacity on Wiley Canyon Road is expected.

The project is also anticipated to shuttle construction workers between an off-site parking area and the site. In order to ensure that a parking deficiency does not occur, a site should be chosen that demonstrates that excess parking will be available to accommodate the construction workers.

Would the project conflict with adopted policies, plans or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

NO IMPACT.

The project would not conflict with adopted policies, plans, or programs that support alternative transportation in the project area since no physical alterations to alternative transportation facilities would occur.



THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

TRAFFIC COUNT WORKSHEETS

TDSSW, Inc. **Event Counts**

EventCount-290 -- English (ENU)

Datasets: Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12801] Lyons Ave - Btwn I-5 N/B Ramps & Wiley Canyon Rd 2 - East bound Added to totals. (1) 4 - West bound Excluded from totals. (0) 13:18 Tuesday, April 28, 2009 => 11:54 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\1280101May2009.EC0 (Base) A570G7NP MC56-1 [MC55] (c)Microcom 07/06/99 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 58230 / 60316 (96.54%)

In profile:

* Tuesday, April 28, 2009=9836 (Incomplete), 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
-	-	-	-	-		1	~		-	-	-	-	-	1210	1417	1516	1620	1210	966	795	510	374	218	
-			-	-	-	-	-	-	_	_	-	-	-	278	386	392	502	323	259	237	149	114	84	37
~	-		-	-	-	-	-	-	-			-	-	292	331	344	400	296	258	191	140	97	53	25
				-		-	-	-	-	-	-	-	-	314	360	376	359	302	244	184	106	90	52	29
-			-	_	-	_	_	-	-				-	326	340	404	359	289	205	183	115	73	29	20

* Wednesday, April 29, 2009=17127, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
						333																		
37	18	15	10																				86	
25	14	18	8	7	40	42	147	223	165	207	245	278	268	282	355	360	365	328	239	198	132	108	55	42
29	16	9	8	11	40	99	213	208	204	204	228	278	278	355	316	351	385	333	225	195	129	97	56	28
20	11	10	9	28	45	125	273	239	207	243	260	276	307	364	330	410	416	312	232	171	132	73	39	18
AM Pea	ak 114:	5 - 124	5 (1071	I), AM I	PHF=0	.96 PM	l Peak	1700 -	1800 ((1516),	PM PI	HF=0.9	1											

* Thursday, April 30, 2009=2352 (Incomplete), 15 minute drops

		J JJ		·,		(···		P • • • • •	,,																
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	_	
128	55	53	34	49	138	347	719	829	**	**	-	-	-	-	-	-	-	-	-	-			_		
40	20	15	6	10	31	53	121	220	-	-	-	-	-	_	-	-	-	-	-				-	-	•
42	6	14	9	9	27	58	151	207	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	20	13	7	12	36	107	187	200		-	-	-	-	-	-	-	-	-	-	-		-	-	-	•
18	9	11	12	18	44	129	260	202			-			-	-	-	-	-	-	-	-	-	-	-	-

٠,

TDSSW, Inc. Event Counts

EventCount-291 -- English (ENU)

<u>Datasets:</u> Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12801] Lyons Ave - Btwn I-5 N/B Ramps & Wiley Canyon Rd 2 - East bound Excluded from totals. (0) 4 - West bound Added to totals. (1) 13:18 Tuesday, April 28, 2009 => 11:54 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\1280101May2009.EC0 (Base) A570G7NP MC56-1 [MC55] (c)Microcom 07/06/99 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 58230 / 60316 (96.54%)

* Tuesday, April 28, 2009=8212 (Incomplete) , 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	İ200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
-	-	-	-	-	-	-	-	-		**	-	-	-	-	1105	1149	1222	1300	1107	879	642	434	237	137	
-	-		-		-	-	-	-	-	-	-		-	-	258	311	280	338	278	247	197	133	76	50	24
	-		-	-	-	-	_	_	_	-	-			-	279	334	291	341	299	229	161	120	72	34	18
	-								-	-	-	-	-	-	296	253	337	322	269	194	148	101	49	23	10
	-				-	-	_	_	_	-	-	-	-	-	272	251	314	299	261	209	136	80	40	30	13

* Wednesday, April 29, 2009=17161, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	65	38	24	43	121	425	695	1010	1204	925	902	1118	1236	1108	1072	1238	1138	1284	1101	840	675	494	277	128	
-	24	12	6	8	11	76	121	195	391	240	208	260	310	292	276	314	269	306	289	216	165	148	102	47	25
	18	14	3	13	25	82	141	221	343	259	225	290	307	295	262	282	286	336	269	227	189	114	64	27	15
	10	7	11	11	38	118	194	252	231	215	220	266	323	268	283	326	267	314	264	191	179	142	60	24	19
	13	5	4	11	47	149	239	342	239	211	249	302	296	253	251	316	316	328	279	206	142	90	51	30	10
1	AM Pea	sk 0730) - 083	0 (1328	8), AM	PHF=0	.85 PI	I Peak	1700 -	1800	(1284),	PM Pł	IF=0.9	6											

* Thursday, April 30, 2009=3541 (Incomplete), 15 minute drops

		., - r		,				P1010	,,.~			~ ~ ~												
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	_
69	54	28	48	100	394	651	990	1207		**	-	_	-	-	-	-	-	-	-	-	-	-		
25	12	7	9	13	62	138	199	356	-	-	-	-	-	-	-	-	-	-	· –	-	-			-
15	14	8	13	14	85	140	197	341	-	-		-	-			-		-	-	-	-	-	-	-
19	18	7	11	29	118	163	260	235	-		-	-	-	-	-	-	-	-	-		-	-	-	-
10	10	6	15	44	129	210	334	275	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
	0000 69 25	0000 0100 69 54 25 12	0000 0100 0200 69 54 28 25 12 7	0000 0100 0200 0300 69 54 28 48 25 12 7 9 15 14 8 13 19 18 7 11	0000 0100 0200 0300 0400 69 54 28 48 100 25 12 7 9 13 15 14 8 13 14 19 16 7 11 29	0000 0100 0200 0300 0400 0500 69 54 28 48 100 394 25 12 7 9 13 62 15 14 8 13 14 85 19 16 7 11 29 118	0000 0100 0200 0300 0400 0500 0600 69 54 28 48 100 394 651 25 12 7 9 13 62 138 15 14 8 13 14 85 140 19 16 7 11 29 118 163	0000 0100 0200 0300 0400 0500 0600 0700 69 54 28 48 100 394 651 990 25 12 7 9 13 62 138 199 15 14 8 13 14 85 140 197 19 18 7 11 29 118 163 260	0000 0100 0200 0300 0400 0500 0600 0700 0800 69 54 28 48 100 394 651 990 1207 25 12 7 9 13 62 138 199 356 15 12 7 9 13 62 138 199 356 15 14 8 13 14 85 140 197 341 19 18 7 11 29 118 163 260 235	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 69 54 28 48 100 394 651 990 1207 25 12 7 9 13 62 138 199 356 - 15 14 8 13 14 85 140 197 341 - 19 18 7 11 29 118 163 260 235 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 69 54 28 48 100 394 651 990 1207 25 12 7 9 13 62 138 199 356 - - 15 14 8 13 14 85 140 197 341 - - 19 18 7 11 29 118 163 260 235 - -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 69 54 28 48 100 394 651 990 1207 25 12 7 9 13 62 138 199 356 15 14 8 13 14 85 140 197 341 - 19 18 7 11 29 118 163 260 235 -	69 54 28 48 100 394 651 990 1207 <	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 69 54 28 48 100 394 651 990 1207 - <	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1100 1200 1300 1400 1500 1600 1700 1800 69 54 28 48 100 394 651 990 1207 - <	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1100 1200 1300 1400 1500 1600 1700 1800 1900 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1200 1300 1400 1500 1600 1700 1800 1900 2000 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0500 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 69 54 28 48 100 394 651 990 1207 -	0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 69 54 28 48 100 394 651 990 1207 -

TDSSW, Inc. **Event Counts**

EventCount-298 -- English (ENU)

Datasets: Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12802E] Calgrove Blvd - Btwn I-5 N/B Ramps & Wiley Canyon Rd 2 - East bound Added to totals. (1) 0 - Unused or unknown Excluded from totals. (0) 13:47 Tuesday, April 28, 2009 => 11:47 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\12802E01May2009.EC0 (Base) A5613NK0 MC56-1 [MC55] (c)Microcom 07/06/99 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 8251 / 8304 (99.36%)

* Tuesday, April 28, 2009=3166 (Incomplete) , 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
							~				÷-,	-	-	313	376	504	604	505	313	203	184	108	56	
-	-	-	-	-	-	-	_	-	-	-	_	_	_	62	92	107	127	132	82	55	51	31	17	10
-	-	-	_	-	-	-	-	-	-	-	-	-	-	60	94	116	156	130	78	52	45	32	13	10
-		-		-	-	-	-	-	-	-	-	-	-	89	84	137	153	113	74	54	42	21	13	6
-	-	-	_	-	-	-		-	-	-	-	-	-	102	106	144	168	130	79	42	46	24	13	7

* Wednesday, April 29, 2009=4636, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	33	16	12	6	8	22	65	148	140	116	154	166	207	260	313	390	529	597	519	309	266	187	120	53	
_	10	2	3	1	2	6	14	34	38	27	32	47	51	68	75	96	116	128	138	93	76	42	42	15	11
	10	3	4	3	0	6	14	28	34	28	39	40	49	63	70	89	135	141	130	82	66	57	24	12	4
	6	5	2	1	0	6	16	40	40	24	43	39	47	59	74	103	139	139	126	71	65	48	38	11	5
	7	6	3	1	6	4	21	46	28	37	40	40	60	70	94	102	139	189	125	63	59	40	16	15	7
A	M Pea	ik 114	5 - 124	5 (187)	, AM P	HF=0.9	92 PM	Peak	1715 - 1	1815 (6	507), Pi	M PHF	=0.80												

reday April 30, 2009–449 (Incomplete) 15 minute di

ł	* Thu	rsda	y, Ap	ril 30	, 200	9=44	9 (Ind	comp	lete)	, 15 r	ninut	e dro	ps												
	0000			0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	27	20	17	7	10	27	60	127	154	+	+	+	1			-	-	-	~	-	-	-	***	***	-
	11	7	7	3	1	6	8	22	37	-		-	-	-			-	-	-			-	-		-
	4	3	4	1	3	1	12	33	38	-	-	-	-	-		-		-			-		-	-	-
	5	5	2	2	3	10	13	38	43	-			-	-		-	-	-	-				-		
	7	5	4	1	3	10	27	34	36	-		-	-	-		-	-	-	-			-		-	-

TDSSW, Inc. Event Counts

EventCount-293 -- English (ENU)

In profile:

Datasets:	
Site:	[12802W] Calgrove Blvd - Btwn I-5 N/B Ramps & Wiley Canyon Rd
Input A:	0 - Unused or unknown Added to totals. (1)
Input B:	0 - Unused or unknown Excluded from totals. (0)
Survey Duration:	13:48 Tuesday, April 28, 2009 => 11:51 Friday, May 01, 2009
File:	Z:\mcdata\Crossroads\2009\128\12802W01May2009.EC0 (Plus)
Identifier:	M278T7ZB MC56-6 [MC55] (c)Microcom 02/03/01
Algorithm:	Event Count
Data type:	Axle sensors - Separate (Count)
Profile:	
Filter time:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009
Name:	Factory default profile
Scheme:	Count events divided by two.
Units:	Non metric (ft, mi, ft/s, mph, lb, ton)

* Tuesday, April 28, 2009=1765 (Incomplete), 15 minute drops

Events = 9442 / 9484 (99.56%)

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
-	-				-	-	-	-		-	-	-	-	242	229	285	243	229	203	124	103	71	36	
_	-	_	_	-	-	· —	-	-	-	-	-	-	-	55	66	71	58	63	46	39	30	20	12	8
					-	-		-	-		-		-	58	48	66	56	52	56	27	27	22	12	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	64	60	72	59	57	57	39	24	18	5	3
-	-	-	-	-	-	-	-	-	-			-		65	55	76	70	57	44	19	22	11	7	3

* Wednesday, April 29, 2009=5445, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
15	10	6	15	41	246	558	776	599	307	270	222	241	223	241	257	280	288	289	196	139	104	79	43	
8	1	1	2	2	34	92	207	190	76	61	63	67	51	51	74	73	65	76	50	37	21	17	12	4
1	2	4	4	9	57	123	209	160	90	87	55	66	62	70	55	79	81	72	53	41	30	23	7	6
3	2	0	4	17	68	160	189	150	67	66	60	55	54	51	72	64	69	77	44	38	33	26	5	5
3	5	1	5	13	87	183	171	99	74	56	44	53	56	69	56	64	73	64	49	23	20	13	19	3

AM Peak 0645 - 0745 (788), AM PHF=0.94 PM Peak 1715 - 1815 (299), PM PHF=0.92

* Thursday, April 30, 2009=2232 (Incomplete) , 15 minute drops

		,		, _ , _					/ >			- 1												
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
18	13	11	16	55	256	514	772	577	~**		-	-	-	-	-	-	-	-	-		-	-	_	
4	1	3	2	6	35	87	193	205	-	-	-	-	-	-	-	-	-	-	-	-	-	-		 -
6	7	6	2	7	47	121	239	151	-		-		-				-		-				-	
5	3	0	7	20	70	120	187	131			-	-	-	-	-	-		-	-		-	-	-	-
3	2	2	5	22	104	186	153	90			~	-	-	-		-	-	-	-	-	-	-	-	

·.

TDSSW, Inc. Event Counts

EventCount-294 -- English (ENU)

Datasets: Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12803N] Wiley Canyon Rd - S/O Lyons Ave 1 - North bound Added to totals. (1) 0 - Unused or unknown Excluded from totals. (0) 13:34 Tuesday, April 28, 2009 => 11:53 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\12803N01May2009.EC0 (Plus) M508KRAN MC56-6 [MC55] (c)Microcom 02/03/01 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 10982 / 11311 (97.09%)

* Tuesday, April 28, 2009=3598 (Incomplete) , 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	-	-	-		-	-	-	-	-	-	_	· –	-	-	422	492	581	659	545	420	203	134	95	47	
-	-	-	_	—	_	_	-	1	-	-	-	-	-	-	86	126	145	149	155	119	57	33	29	16	11
		-	-		-		-			-					111	116	133	161	133	109	51	37	32	11	5
	-	-	-	-	-	-	-	-	-	-	-				126	121	167	165	122	94	53	28	22	9	8
	_	-	-	-				-	-	-				-	99	129	136	184	135	98	42	36	12	11	9

* Wednesday, April 29, 2009=6348, 15 minute drops

							,																	
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
33	3 17	6	10	21	74	175	398	359	309	263	310	331	319	417	490	571	625	616	396	293	171	99	45	
11	11 4 1 1 2 10 25 63 150 91 54 77 82 78 99 138 146 149 175 120 89 45 24 14 6 5 5 3 5 4 19 38 64 87 78 68 71 96 78 123 117 146 141 173 111 67 52 24 14 9																							
5	5 5 3 5 4 19 38 64 87 78 68 71 96 78 123 117 146 141 173 111 67 52 24 14 9																							
8	3 4	1	2	4	18	53	108	61	64	61	102	79	88	94	119	141	152	137	96	67	36	27	6	3
<u> </u>) 4	1	2	11	27	59	163	61	76	80	60	74	75	101	116	138	183	131	69	70	38	24	11	6
AM Pe	ak 073	0 - 083	0 (508)	, AM P	HF=0.7	78 PM	Peak	1730 - 1	1830 (6	683), Pi	M PHF	=0.93												

* Thursday, April 30, 2009=1036 (Incomplete), 15 minute drops

1110	กรนส	у, м µ	111 90	', 200	3=10	30 (m	COUL	hiere	, ເວ	110110	ue ui	υµs													
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	_	
24	24	10	7	18	62	169	351	371	-	-	-	-	-	-	-	-	-	-	-	-	-				
6	6	5	3	3	8	27	47	147	-	-	-	-	-	-	-	-	-	-				-		-	
9	9	3	1	6	10	27	57	93			••••	~	-	-	-	-	-	-	-	-	-	_	-	-	
3	8	1	1	3	14	44	98	48	-	-	-	-	-	-	-	-					-				
6	1	1	2	6	30	71	149	83	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

TDSSW, Inc. Event Counts

EventCount-295 -- English (ENU)

,

Datasets: Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12803S] Wiley Canyon Rd - S/O Lyons Ave 3 - South bound Added to totals. (1) 0 - Unused or unknown Excluded from totals. (0) 13:35 Tuesday, April 28, 2009 => 11:50 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\12803S01May2009.EC0 (Plus) 1387F8VW MC56-6 [MC55] (c)Microcom 02/03/01 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 10836 / 11137 (97.30%)

* Tuesday, April 28, 2009=2992 (Incomplete) , 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
_	-	_	-	-	-	-	-	-	-	-	-	-	-	373	384	452	420	418	328	239	205	122	51	
-	-	1	-	-	-	-	-	-	-	-	-	-	-	96	94	112	118	114	69	69	69	42	25	11
			-			-	-	-		-				103	106	101	100	106	94	48	54	36	11	3
-	-	-	-	-	-	-	-	-	-	-	-			78	86	119	108	102	89	68	48	18	7	7
-	-	-	-	-	-	-	-		-	-	-	-	-	96	98	120	94	96	76	54	34	26	8	2

* Wednesday, April 29, 2009=6181, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	23	13	12	12	32	140	353	649	530	241	228	261	283	273	370	390	441	457	463	329	300	194	116	71	
	11	4	2	1	2	20	52	135	181	56	47	53	68	70	102	101	102	105	132	91	62	47	38	22	11
	3	4	5	2	6	34	83	172	149	75	60	56	61	66	96	91	93	119	120	67	80	49	40	19	12
	7	1	2	4	12	42	112	157	117	58	54	75	76	64	68	100	123	108	116	90	88	42	20	18	5
	2	4	3	5	12	44	106	185	83	52	67	77	78	73	104	98	123	125	95	81	70	56	18	12	4
4	M Pea	ik 071	5 - 081	5 (695)	, AM P	HF=0.9	94 PM	Peak	1745 - 1	1845 (4	193), Pl	M PHF	=0.93												

*	Thu	rsda	y, Ap	ril 30	, 200	9=16	62 (Ir	ncom	plete),15	minu	ite dr	ops												
	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	_
	32	19	14	9	37	133	328	607	483	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	11	4	5	2	4	18	54	126	179	-	-		-	-	—	-	_	1	-	-	-	<u> </u>	. –		-
	12	8	3	1	4	21	84	170	123	-					-	-	-	-	-	-	-	-	-	-	-
	5	3	1	1	12	36	75	157	105	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4	4	5	5	17	58	115	154	76	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-

÷

TDSSW, Inc. Event Counts

EventCount-296 -- English (ENU)

[12804] The Old Road - W/O I-5 S/B Ramps
2 - East bound Added to totals. (1)
4 - West bound Excluded from totals. (0)
13:58 Tuesday, April 28, 2009 => 11:49 Friday, May 01, 2009
Z:\mcdata\Crossroads\2009\128\1280401May2009.EC0 (Plus)
M293M05F MC56-6 [MC55] (c)Microcom 02/03/01
Event Count
Axle sensors - Separate (Count)
14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009
Factory default profile
Count events divided by two.
Non metric (ft, mi, ft/s, mph, lb, ton)
Events = 19429 / 20088 (96.72%)

* Tuesday, April 28, 2009=3985 (Incomplete) , 15 minute drops

000	00 (0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	-	-					-	-	-	-	-	-	-	-	309	464	787	960	729	331	138	114	72	81	
	-	-	-	1	-	-	-	-	-	-		-	-	-	59	98	200	212	240	94	41	21	17	25	9
		-	-	-	-	-	-	-	-	-	-	-	-	-	83	95	175	253	198	85	34	27	30	27	12
	-	-	-	-	-		-	-	-	-	-	-	-	-	68	117	211	243	145	85	34	29	15	18	5
		-	-	-	-	-	-	-	-	-	-	-	-	-	99	154	201	252	146	67	29	37	10	11	15

* Wednesday, April 29, 2009=6034, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
41	26	20	20	18	66	104	181	158	191	204	233	233	238	305	459	842	1088	804	343	212	131	67	50	
9	0	6	0	3	12	20	40	49	40	35	56	80	54	67	87	182	235	267	106	73	44	19	12	7
12	7	8	6	4	14	17	31	39	49	45	57	64	75	73	95	217	290	194	103	55	28	23	14	6
5	14	4	11	7	23	31	58	36	54	58	69	49	57	79	131	225	261	209	84	48	32	21	13	1
15	5	2	3	4	17	36	52	34	48	66	51	40	52	86	146	218	302	134	50	36	27	4	11	3
AM Pe	ak 113(0 - 123	0 (264)	, AM P	HF=0.8	32 PM	Peak 1	715 - 1	1815 (1	120), F	PM PH	F=0.93												

* Thursday, April 30, 2009=575 (Incomplete), 15 minute drops

	11 3 4 4	ארי ינ	111 00	, 200	0-01	5 (min	տոր	10107	,	minu		,pa													
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300		
17	11	6	5	16	46	110	179	185	-	-	-	-	-	-	-	-	-	-	-	-	-			-	
7	4	1	3	1	3	14	27	51	-	-		-	-	-		-	-	-		-	-			-	
6	2	3	1	2	13	25	64	48	-	-	-							-	-	-	-		-	-	
1	2	1	1	6	12	30	38	46	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
3	3	1	0	7	18	41	50	40	-	-	-	-	-	-	-	-		-	-	-	-	-		-	

÷

TDSSW, Inc. Event Counts

EventCount-297 -- English (ENU)

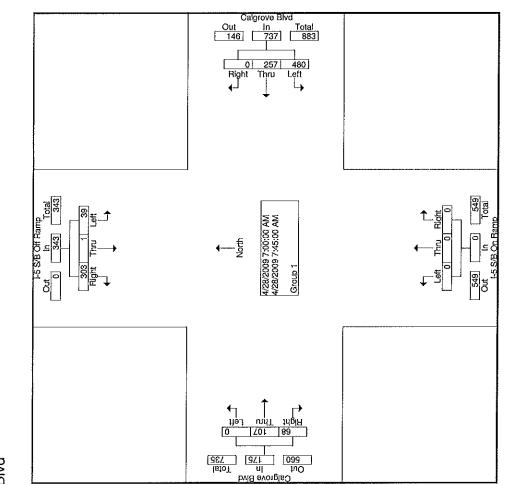
Datasets: Site: Input A: Input B: Survey Duration: File: Identifier: Algorithm: Data type:	[12804] The Old Road - W/O I-5 S/B Ramps 2 - East bound Excluded from totals. (0) 4 - West bound Added to totals. (1) 13:58 Tuesday, April 28, 2009 => 11:49 Friday, May 01, 2009 Z:\mcdata\Crossroads\2009\128\1280401May2009.EC0 (Plus) M293M05F MC56-6 [MC55] (c)Microcom 02/03/01 Event Count Axle sensors - Separate (Count)
<u>Profile:</u> Filter time: Name: Scheme: Units: In profile:	14:00 Tuesday, April 28, 2009 => 9:00 Thursday, April 30, 2009 Factory default profile Count events divided by two. Non metric (ft, mi, ft/s, mph, lb, ton) Events = 19429 / 20088 (96.72%)

* Tuesday, April 28, 2009=1717 (Incomplete) , 15 minute drops

0	000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	-	-				-	-	-	-	-	-	-	-	-	261	308	298	288	168	149	73	89	56	27	
	- "	-	-	-	-	-	-	-	-	-	-	-		1	56	72	73	71	50	41	16	23	19	7	3
	-		-	-	-	-	-	-	-	-	-	-			60	88	62	87	44	31	19	28	12	5	7
	-	-	-	-	-		-		-				-	-	72	68	59	80	35	40	22	18	19	4	2
		-	-	-	-	-	-		-	-	-	-	-	-	73	80	104	50	39	37	16	20	6	11	1

* Wednesday, April 29, 2009=5332, 15 minute drops

_	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	13	11	9	9	21	153	554	863	553	259	242	236	279	266	305	300	312	347	226	131	99	70	46	28	
	3	2	0	3	2	12	92	201	169	71	68	68	66	70	66	73	65	88	. 55	43	25	18	16	5	5
	7	1	3	1	2	29	117	238	170	72	74	51	65	85	85	76	81	97	52	20	27	21	10	6	5
	2	5	4	3	11	54	165	214	134	65	42	55	75	54	67	77	76	76	53	30	27	14	13	9	3
	1	3	2	2	6	58	180	210	80	51	58	62	73	57	87	74	90	86	66	38	20	17	7	8	1
ļ	M Pea	ak 0700	080 - 0	0 (863)	, AM P	HF=0.9	91 PM	Peak 🗄	630 -	1730 (3	i51), Pi	M PHF:	±0.90												


* Thursday, April 30, 2009=1785 (Incomplete), 15 minute drops

	ngau	y,p		, 200		u) vo	100011	hiere	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111		opa												
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
14	9	. 4	10	19	175	497	686	371	-	-	-	-	_	-	-	-	-	-	-			**	~	
5	3	2	0	2	14	94	181	125	-	-	-	-	_	-	-	-	-	-		~	-	-		-
5	1	0	2	5	34	127	214	95					-	-			-	-			-	-	-	_
3	3	1	4	6	50	123	173	95	_	-	_	_	_	_	_	_	_	-	-	-	-		-	-
1	2	1	4	6	77	153	118	56	-	-	-	-		-	-	-	-	-	-	-		-	_	_

: 09128040 : 00128040 : 4/28/2009 : 1		. Int. Total		310		•		274	ľ	3 2258			Int. Total		1255	326	0.962
		Inclu. Total	800	310	311	1255	N 80	274	1001	2256	6 . 66		App. Total		175	35	52 0.841
File Name Site Code Start Date Page No		Exclu. Total	0.	- 0	0,	-	- c	0.	-	2	0.1		1t		89	38.9 17	6
P Sta Sta		App. Total	30	88	49	1/5 1/5	6 4	4	157	332	14.7	Calgrove Blvd Eastbound					
	5	Peds	00	00	0	э с	ə a	0,	-	÷		Calg Calg	Thru		107	61.1 18	33
	Calgrove Blvd Eastbound	Right	7 1	- 1	18	χ χ	202	45	<u>t</u> g	127	38.3 5.6		Left		0	0.0	007:30
	Сщ	Thru	55 55	<u>e</u> 8	ਜ਼	<u>)</u> 8	2 53	53 ¢	88	205	61.7 9.1		App. Total		0	0	0
	-	Left	00	00	0	-	00	00	0	0	0.0						
18		App. Total	00	00	00		00	00		0	0.0	I-5 S/B On Ramp Northbound	Right		0	0.0	٥
8-18	amp	Peds	0,	- 0	0	- <	00	00	0	-		-5 S/B (North	Thru		0	0.0	0
5040 6) 76	I-5 S/B On Ramp Northbound	Right	00	00	0		00	00		0	0.0		Left		00	0.0	6:45:00 AM 0
/, Inc 154 0A 92 X (86	12 S/ P	Thru	00	00	0		00	00		0	0.0						
TDSSW, Inc. PO Box 1544 akeside, CA 9204 -8495 Fax (866)		Left	00	00	0		00	00		0	0.0		App. Total		737	205	205 0.899
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818 Groups Printed- Group 1		App. Total	183 205	195	154		145	172	580	1317	58.4	Bivd und	Right		00	00	0
19) 3	q	Peds	00	0			00	00		0		Calgrove Blvd Westbound	Thru		257	80 80	80
(6.	Calgrove Blvd Westbound	Right	00	0			00	00		0	0.0	ö-					
	₹ O O	Thru	83 8	8.8	25	107	44	8 8 8	194	451	34.2 20.0		Left		480	125	07:15 125
		Left	125 125	<u>18</u>			38	109 5	386	866	65.8 38.4		App. Total	-	343	86	108 0.794
Blvd		App. Total	88 88 88	88	108	2 2	2 G	6	264	607	26.9	du	ŧ			81 81	06
jrove	d up	Peds	00	0	0		00	00	0	0		S/B Off Ran Southbound	Right	1 of 1	303	δω	U)
ر Calc	I-5 S/B Off Ramp Southbound		75 81	21	90	5	76	4 %	207	510	84.0 22.6	I-5 S/B Off Ramp Southbound	Thru	- Peak	C C	20	0
& Dr Parisi 278 1ps &	H5 S/F Sou	Thru Right	- C	0	0		- 0		m		0.7		Left	:0 08:45 ℃	68,	էտ -	45 18
Jear : M. I D1-22 Ran		Left -	б r.	9 0	80 g	6 4	<u>9</u>	დ. დ. დ	54	93	15.3 4.1		Ð	07:00 to (or it. 07:45 le 1 or
Weather: Clear & Dry Counted by: M. Parish Board No: D1-2278 Loc: I-5 S/B Ramps & Calgrove Blvd			07:00 07:15	07:30	07;45 Total		08:15	08:30 08:45	Total		Apprcn % Total %		Start Time	Peak Hour From 07:00 to 08:45 - Peak Intersection 07:00		07:15 Volume	Peak Factor High Int. Volume Peak Factor

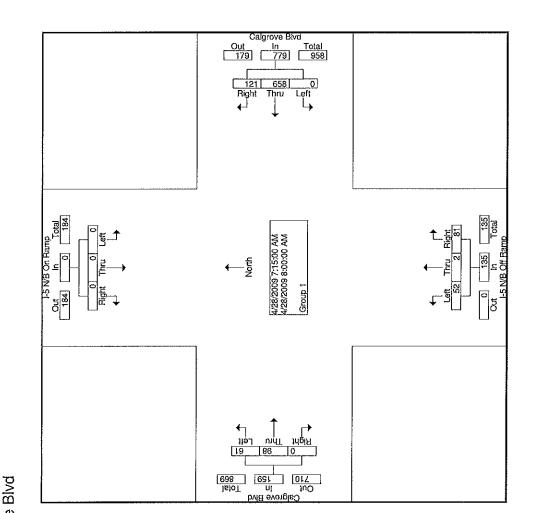
Weather: Clear & Dry Counted by: M. Parish Board No: D1-2278 Loc: I-5 S/B Ramps & Calgrove Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

File Name : 09128040 Site Code : 00128040 Start Date : 4/28/2009 Page No : 2

Weather: Clear & Dry Counted by: C. Hust Board No: D1-2278 Loc: I-5 N/B Ramps & Calgrove Blvd
--

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818


File Name : 09128030 Site Code : 00128030 Start Date : 4/28/2009 Page No : 1

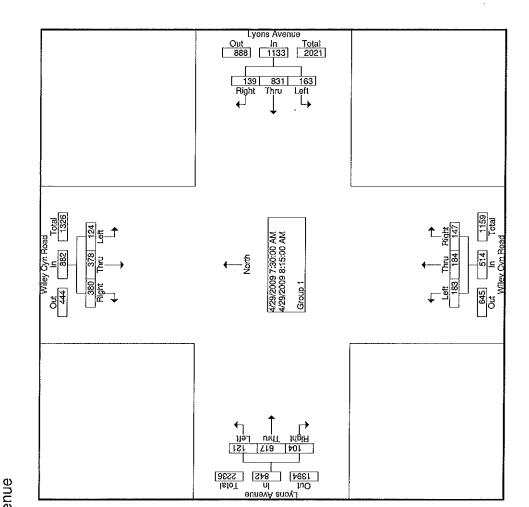
			Int. Total		264	273	274	255	1066	271	239	240	159	606	1975			
			Inclu. Total	ļ	264	273	274	255	1066	271	239	240	159	606	1975		100.0	
			Exclu. Total		0	0	0	0	0	0	0	0	0	0	0		0.0	G
			App. Total		34	53	4	50	148	45	4	48	5	156	304		15,4	Calgrove Blvd
	p.	0	Peds	0.1	0	0	0	0	0	¢	Q	¢	0	0	0			Calg
	Calgrove Blvd	Eastbound	Right 1	0.1	0	0	0	0	0	¢	¢	0	0	0	0	0.0	0.0	
	Calc	Ш	Thru	0.1	17	÷	22	36	86	59	g	37	÷	110	196	64.5	0°0	
			Left	1.0	17	2	6	4	62	16	F	÷	ω	46	108	35.5	5.5	
			App. Total		22	g	42	80 73	125	32	28	8	37	127	252		12.8	1-5 N/B Off Ramp
	amp	g	Peds	1.0	0	0	0	0	0	0	0	0	0	0	0			5 N/B Off Rai
- 9	I-5 N/B Off Ramp	Northbound	Right	0.1	16	20	26	24	62	18	48	14	22	72	151	59,9	7.6	-
5 5 5	Ż;	Z	Thru	1.0	0	-	0	0	-	-	0	0	2	m	4	- 9	0.2	
Groups Primed- Group 1			Left	0.1	9	<u>ы</u>	16	F	45	<u>1</u> 3	<u>p</u>	16	<u>ღ</u>	22	97	38.5	4,9	
arout			App. Total		208	217	<u>19</u>	177	262	194	167	162	103	626	1419		71.8	Blvd
	[Vd	p	Peds	0.1	0	0	0	0	0	0	0	0	0	0	0			Calgrove Blvd
	Calgrove Blvd	estbour	Right	1.0	ង	8	с С	33	100	43	ង	<u>1</u>	17	97	197	13.9	10.0	ö-
	Cal	2	Thru	1 .0	186	195	168	144	693	151	145	147	86	529	1222	86.1	61.9	
			Left	0,1	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	
Ì			App. Total		0	0	0	0	0	0	0	0	0	0	0		0.0	du
	amp	2	Peds	1.0	0	0	0	0	o	0	0	0	0	0	0			I-5 N/B On Ramp Solutishering
	I-5 N/B On Ramp	ounoguinos	Right	1.0	0	0	Ò	0	0	0	0	0	0	0	0	0.0	0.0	1-5 N/E
	ΖΥ Υ	6	Thru	1.0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	
			Left	1.0	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	-
			Start Time	Factor	02:00	07:15	07:30	07:45	Total	08:00	08:15	08:30	08:45	Total	Grand Total	Apprch %	Total %	

	Int. Total			1073		274	0.979			
	App. Total			159		41			50	0.795
Calgrove Blvd Eastbound	Right			0	0.0	0	•		C	0
Calgro Eastt	Thru			88 88	61.6	8			36	3
	Left	-		61	38.4	19	•	07:45	14	2
	App. Total			135		42			42	0.804
ff Ramp ound	Right			0	60.0	26			26	Ì
I-5 N/B Off Ramp Northbound	Thru			¢1	τ. Γ	G			c	1
	Left			52	38.5	16		07:30	9	2
	App. Total			779		191			217	0.897
e Blvd ound	Right			121	15.5	53			22	
Calgrove Blvo Westbound	Thru			658	84.5	168			195	-
	Left			0	0.0	0		07:15	0	
	App. Total			0		0		-	0	
dmd ound	Right	of 1		0	0.0	0			0	
I-5 N/B On Hamp Southbound	Thru Right	- Peak 1		0	0.0	0			0	
	Left	30 to 08:45	37:15	0	0.0	0		5:45:00 AN	Volume 0	
	Start Time	Peak Hour From 07:00 to 08:45 - Peak 1 of 1	Intersection 07:15	Volume	Percent	07:30 Volume	Peak Factor	High Int. (Volume	Peak Factor

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

> Weather: Clear & Dry Counted by: C. Hust Board No: D1-2278 Loc: I-5 N/B Ramps & Calgrove Blvd

File Name : 09128030 Site Code : 00128030 Start Date : 4/28/2009 Page No : 2


09128020 00128020 4/29/2009 1		Totol					963	800	622 673	3063	5784			Int. Total		3371	950	0.887	
** ** ** **		Inclu. Total	520	555	719	2701	950	795	617 660	3031	5732	99.1		App. Total		842	214	249 0.845	-
File Name Site Code Start Date Page No		Exclu. Total	1	~	4 CL	20	13	0 U	ហថ	32	52	0.9	9.7	Right		2;	12.4 38	52	
P Sta		App.	121	142	195	707	214	184	197 197	787	1494	26.1	Lyons Avenue Eastbound	ц Ц				2	
	enue	Peds	0	-	00	-	4	ო	~ ~	1	42		Ц С Ш	Thru		59	146	197	
	Lyons Avenue	Right	P	25	24 S	169	38	32	3 5	110	179	12.0 3.1		Left		121	30	07:45 30	
	<u>ح</u> ا	Thru			153	1			140 148			72.9 19.0		App. Total		514	166	166 0.774	
		Left				102			2 6			30.1	g				o —		
8		App. Total	22	<u>8</u>	66 147	356	166	102	53	417	773	13.5	Wiley Cyn Road Northbound	Right		4	41 41	41	
68-18	Road	Peds	0	0	2	r o	S	0	00	- G	11		Wiley (North	Thru		184 25 0	52.0 62	62	
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 90-8495 Fax (866) 76	Group 1 Wiley Cyn Road Northhound	Right			89 8 8				16 74	ľ.		29.2 3.9		Left		183 26.6	83 83	08:00 63	
TDSSW, Inc. PO Box 1544 eside, CA 92 495 Fax (866	Groups Printed- Group 1 Wiley Cy Northe	Thru			8 8 4	-			8 1			37.3		App. Total	-	1133	322	322 0.880	-
DSS DBc Sside, 195 F	ups Prir	Left			8 8 N				4 g	Ĺ		33.5 4.5		ΔĻ		÷	()	0.0	
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818	00	App. Total	178	150	972 972	859	322	280	182 204	988	1847	32.2	venue	Right		139	2.42	54	
619) 3	ns Avenue ecthound	Peds			0 N				• «C	*	20		Lyons Avenue Westbound	Thru	-	831	223	223	
÷	Lyons Avenu Weethound	·		9, 10		86			4 1	-		3.6		Left		163	45	45	
		4	135			617			146			24.0						08:00	
		Left	24		54				20			4 4 7 7		App. Total		882	248	248 0.889	
venue		App. Total	169	205	902 206	179	248	523	183 179	839	1618	28.2	Road	Right		380 73 1	119	119	
A su	Road	Peds		00	→	4			N	2 2	6		Wiley Cyn Road Southbound		ak 1 of 1	ωo	66	66	
an k Lyo	Wiley Cyn Road Southbound	Right	28 26	883	5 2 7	292	119	88	N 80	397	689	42.0 12.0	Wile	Thru	45 - Pe	378	F	0)	
ar & D Tillm 2278 1 Rd 8	II.N S	Thr	95		5		66 50		24	314		12.3		Left	:00 to 08: 07-30	124	30	08:00 30	
Cle OT-D1-S		Left	9		± 89	96	30		85 K			0.0		ime	am 07:0		ume		
Weather: Clear & Dry Counted by:S. Tillman Board No: D1-2278 Loc: Wiley Cyn Rd & Lyons Avenue		Start Time	07:00	07:15	07:45	Total	08:00	08:15	08:45	Total	Grand Total	Total %		Start Time	Peak Hour From 07:00 to 08:45 - Peak Intersection 07:30		08:00 Volume	Peak Factor High Int. Volume Peak Factor	

ι

Weather: Clear & Dry Counted by:S. Tillman Board No: D1-2278 Loc: Wiley Cyn Rd & Lyons Avenue

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

File Name : 09128020 Site Code : 00128020 Start Date : 4/29/2009 Page No : 2

Loc: Wiley Cyn Rd & Calgrove Blvd Weather: Clear & Dry Counted by: C. Parish Board No: D1-1429

Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818 TDSSW, Inc. PO Box 1544

File Name : 09128010 Site Code : 00128010 Start Date : 4/30/2009 Page No : 1

		Int. Total		246	309	261	250	1066	310	222	224	166	927	1993					Int. Total	
-		Inclu. Total		245	307	261	249	1062	310	202	224	166	927	1989	1	99.8		-	App. Total	
)		Exclu. Total		-	· N	0	-	4	C		0	0	0	4		0.2	B			_
ני ג י		App. Total		28	ဗ္ဂ	42	40	149	46	46	2.15	4	190	339		17.0	Calgrove Blvd	Eastbound	r Right	
	q <u>C</u> q	Peds	1.0	0	0	0	*	-	0	0	0	0	0	-			Calo	ц	Thru	
	Calgrove Blvd Eastbound	Right	0.1	0	က	0	2	7	2	0	0	0	ഗ	4	3.5	0.6			Left	
	ш О О	Thru	0.1	œ	10	ഗ	7	8	19	16	61	16	70	0 1 0	29.5	5.0			App. Total	3
		Left	1.0	50	26	35	31	112	25	27	36	27	115	227	67.0	11.4				-
		App. Total		4	ŋ	e	S	17	9	n	0	~ -	10	27		1.4	Valley Oak Ct	Northpound	Right	
	nd Ç	Peds	0.1	0	0	0	0	0	0	0	0	0	0	0			Valley		Thru	
up 1	Valley Oak Cl Northbound	Right	1.0	0	0		0	,	0	0	0	0	0	، ر	3.7	0.1			Left	_
ed-Gr	e V N	Thru	0.1	0	0	-	2	က	4	***	0	0	വ	ß	29.6	0.4			0.0	5
Groups Printed- Group 1		Left	1.0	4	ŝ	*	e	<u>က</u>	~	2	0		υ	<u>8</u>	66.7	0.9			App. Total	
Grou		App. Total		36	25	ŝ	70	229	80	4	4	40	208	437		22.0	e Blvd	n n	Right	
	Blvd Ind	Peds	1.0	-	0	0	0	ო	0	0	0	0	0	ო			Calgrove Blvd	VV CS UT	Thru	-
	Calgrove Blvd Westbound	Right	1.0	÷	1 0	20	99 99	4	21	~	ę	14	22	129	29.5	6.5				
	< °	Thru	1.0	25	2	37	8	150	57	37	8	26	154	304	69.6	15.3			Left	
		Left	1.0	0	0	2	0	01	N	0	0	0	0	4	0.0	0.2			App. Total	
		App. Total		177	199	157	134	667	178	134	125	82	519	1186		59.6	Road	2	Right	
	n Road Ind	Peds	1.0	0	o	0	0	0	0	0	0	0	0	0			Wiley Canyon Road			2 C
, ,	Wiley Canyon Road Southbound	Right	0.1	173	192	155	124	<u>4</u> 8	162	122	109	7	464	1108	93.4	55.7	Wiley (3	Thru	2 2
	Wiley	Thru	 0	0	0	o	0	0	-	0	ო	-	ഗ	Ś	0 4	0.3			Left	00 -1 0
		Left	1.0	4	~	N.	위	ន	15	4	Ω	9	50	73	6.2	3.7			ime	10.00
		Start Time	Factor	02:00	07:15	07:30	07:45	Total	08:00	08:15	08:30	08:45	Total	Grand Total	Apprch %	Total %			Start Time	Deals Llaux Evens 07.00 to 00.15

Start Time

Peak Hour From 07:00 to 08:45 - Peak 1 of 1

310 0.909

46 0.908

2

е С

08:00 25

6 0.792

0

4

| 08:00 2

80 0.853

2

57

2 08:00

199 0.839

192

0

1127

167 46

0.4.0 0.4.0

41 24.6 19

117 70.1 25

- 0 2 - 0

36.8 4

11 57.9 2

31.9 21

182 66.7 57

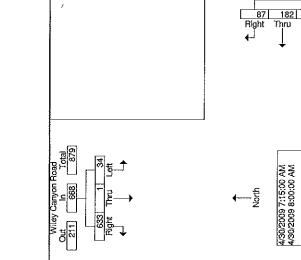
4 1 1

633 94.8 162

<u>.</u>.

Intersection 07:15 Volume 34 Percent 5.1 08:00 Volume 15 Peak Factor 15 Volume 7 Peak Factor 7

178


668

273 80

ဖ ဂ္

Weather: Clear & Dry Counted by: C. Parish Board No: D1-1429 Loc: Wiley Cyn Rd & Calgrove Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

Calgrove Blvd ln 273

Total 349

4 Left

Group 1

រាប្ប

Calgrove Blvd

ររូ៦ៗ Z

[993] Tolal

11

33 Total

19

Out 17

t Fight

Ę

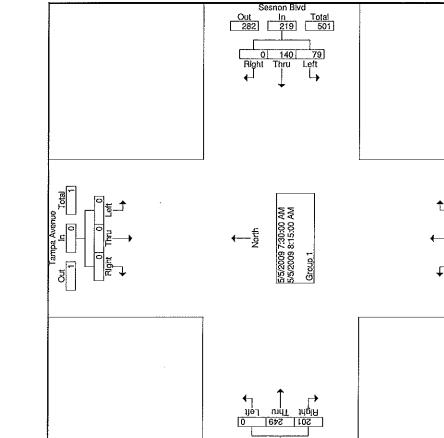
Out 76

ſ

File Name : 09128010 Site Code : 00128010 Start Date : 4/30/2009 Page No : 2

Weather : Clear & Dry	Counted By: M. Parish	⊭: D1-1431	Loc: Loc: Tampa Ave & Sas
Weather : C	Counted By:	Board #: D1-1431	Loc: Loc: Ta

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818


File Name : 09128050 Site Code : 00128050 Start Date : 5/5/2009 Page No : 1

с: С	amp	a Av	ہ م	asnol	Loc: Loc: Tampa Ave & Sasnon Blvd	_														Paç	Page No		
ł										Group	s Printe	Groups Printed- Group 1	up 1										
		∿ ⊈ ⊥	Tampa Avenue Southbound	enue			Se	Sesnon Blvd Westbound	p p			Tan No	Tampa Avenue Northbound	nue 7d			ÿщ	Sesnon Blvd Eastbound	n g				
Start Time	Left	Thru	Thru Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right F	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1,0	1.0	1.0	1.0				
g	0	2	0	2	2	12	4	2	0	28	5	0	ິນ	-	10	0	27	25	0	52	e	92 92	95
រ	-	0		0	ଷ	얻	₽ 13	0	0	25	9		ო	0	4	0	46	24	0	2	0	111	F.
07:30	0	0	0	2	¢	თ	17	¢	¢	26	17	0	ω	-	25	0	45	35	0	80	ო	131	134
8	0	0	0	0	0	13	ដ	0	0	35	ผ	0	ഹ	2	26	0	99	28	0	94	0	155	157
Total	-	~	-	4	4	46	99	2	0	114	ដ្ឋ		ភ	4	75	0	184	112	0	296	8	489	497
08:00	¢	0	0	0	0	28	37	0	0	65	38	0	12	0	50	0	100	94	0	194	0	309	309
2	0	0	0	0	0	53	25	0	0	8	5	-	œ	0	5	0	38	4	0	82	0	236	236
õ	0	0	-	0		ę	18	N	0	8	53	2	~	2	32	0	g	9	¢	54	0	117	119
ΰ	o	-	0	4		4	12	2	0	26	ŝ	0	8	ო	9	0	5	25	ഹ	46	14	89	103
Total	0	-	-	4	N	62	131	4	2	214	121	ς	35	ഹ	159	0	182	194	ഹ	376	16	751	767
Grand Total	-	ო	N	ŝ	G	125	197	9	2	328	174	4	56	ი	234	0	366	306	5	672	24	1240	1264
Apprch %	16.7	50.0	33.3		1	38.1	60.1	1.8			74.4	1.7	23.9			0.0	54.5	45.5					
%	0.1	0.2	0,2		0.5	10.1	15.9	0.5		26.5	14.0	0.3	4.5		18.9	0.0	29.5	24.7		54.2	1.9	98,1	
			Tam	Tampa Avenue	e,			<i>s</i> -	Sesnon Blvd	3Vd				Tampa	Tampa Avenue				Sest	Sesnon Blvd	-		
			50	sournoanna				~	Westbound	Ind				North	Northbound		_		Цâ	Eastbound			

	App. Int. Total			450 831		194 309	0.672		194	0.580
n Blvd ound	Right			201	44.7	94			94	
Sesnon Blvd Eastbound	Thru	.		249	55.3	100			100	
	Left	-		0	0.0	0		08:00	0	
	App. Total			162		50				0.664
Fampa Avenue Northbound	Right			g	20.4	12			Ø	
Tampa Northi	Thru			÷	0.6	0			•	
	Left			128	79.0	38		08:15	52	
	App. Total			219		65			93	0.589
Sesnon Blvd Westbound	Right			0	0.0	0			0	
Sesno Westt	Thru			140	63.9	37			64 2	
E	Left			62	36.1	28		08:15	52	
	App. Total			0		0	_		0	
ampa Avenue Southbound	Right	of 1		0	0.0	0			0	
South	Thru Right	5 - Peak 1		0	0.0	0		V	0	
	Left	:00 to 08:45	07:30	0	0.0	0		High Int. 6:45:00 AM	0	
	Start Time Left	Peak Hour From 07:00 to 08:45 - Peak 1 of 1	Intersection 07:30	Volume	Percent	08:00 Volume	Peak Factor	High Int.	Volume	Peak Factor

Weather : Clear & Dry Counted By: M. Parish Board #: D1-1431 Loc: Loc: Tampa Ave & Sasnon Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

442 Total

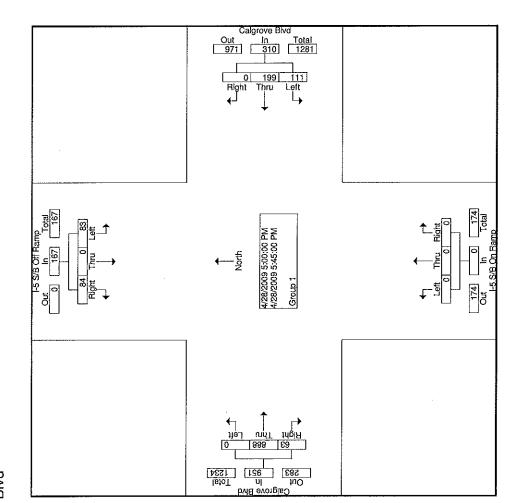
280 Out 162

E C M L E

Right 33

128

File Name : 09128050 Site Code : 00128050 Start Date : 5/5/2009 Page No : 2


Sesnon Bivd Sesnon Bivd

Total 817

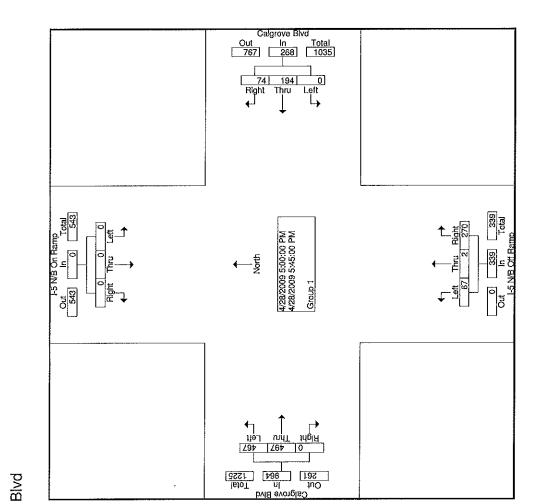
09128041 00128041 4/28/2009 1						5 1147			380		3 2576	ß		Int. Total		1428	402	0.888
		Inclu.	235	241	Ř	1145	Ŕ	40	380	1428	2573	99.9		App.		951	282	282 0.843
File Name Site Code Start Date Page No		Exclu. Total	0	0	N C		D	0	0,		n	0.1	9	Ĕ	_	8	6.6 15	
Pa Stie		App. Total	167	17	218	751	177	282	268 33 28	951	1702	66.1	Calgrove Blvd Eastbound					
	,d	Peds	0	0	- c	,0	0	0	00		0		Calgi Eas	Thru		888	93.4 267	267
	Calgrove Blvd Eastbound	Right P	21	20	20 C	78	8	15	<u>8</u>	18 18	141	ຕີ ດີ		Left		0	0.0	17:15 0
	йя О	Thru	146	151	007 176	673	159	267	520 520	888	1561	91.7 60.7		App.	-	0	0	
		Left	0	00	ə c	0	0	0	00		0	0.0		۹ F	•			
Ω		App. Total	0	00	- c	0	0	0	00	0	0	0.0	-5 S/B On Ramp Northbound	Right		00	0.0	0
8-181	amp nd	Peds	0	00	- c	0	0	0	00		0		-5 S/B C North	Thru		00	0	0
2. 4 2040 36) 76	- Soup I -5 S/B On Ramp Northbound	Right	0	00	- -	0	0	0	00		0	0.0		Left		00	00	3:45:00 PM 0
V, Inc 7154 CA 99 X (86	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thru	0	00	00	0	¢	0	00	0	0	0.0				0	4	
TDSSW, Inc. PO Box 1544 keside, CA 920 8495 Fax (866)	Northb	Left	0	00	00	0	0	0	00	0	0	0.0		App. Total		310	74	81 0.957
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818		App. Total	37	48	2 <u>1</u> 8	271	75	74	8.6	310	581	22.6	e Blvd und	Right		00	00	0
19) 3	Blvd	Peds	0	00	00	0	0	0 1	00	0	0		Calgrove Blvd Westbound	Thru		199	202	43
(9	Calgrove Blvd Westbound	Right	0	00	00	0	0	0 0	00	0	0	0.0						ŝ
	°,	Thru	16	6 10	3 8	150	58	с С	\$ {	199	349	60.1 13.6		Left		111	201	17:45 3
		Left	3	ងខ	39	철	17	22	88	111	232	5,0 5,0 5,0		App. Total		167	46	47 0.888
Blvd		App. Total	3	ର୍ଷ ଚ	38	123	42	40	84	167	290	11.3	ę.	4		40	2 00	ល្អ
Jrove	d p	Peds	0	00	10	2	0	00	⊃ , -	-	б		S/B Off Rar Southbound	Right	1 of 1	84 50 3	5	
h Calç	I-5 S/B Off Ramp Southbound	Right F	15	<u>ې</u>	17	57	27	58	4 1J	84	141	5.5 5.5	I-5 S/B Off Ramp Southbound	Thru	5 - Peak	000	0	0
& Dr Parisl 278 nps 8	1-5 S/F Sol	Thru F	0	00	0	0	0	0 0	00	0		00		Left	to 17:45 00	83	18	45 32
Clear :: M. 01-22		Left	16	<u>φ</u> <u>φ</u>	<u>9</u>	66	ភ្	20 C	e 8	ß	149	2.8 2.8		<u>o</u>	16:00 to 1 n 17:00			or nt. 17:45 le 3 or 3
Weather: Clear & Dry Counted by: M. Parish Board No: D1-2278 Loc: I-5 S/B Ramps & Calgrove Blvd		Start Time	16:00	16:15 16:30	16:45	Total	17:00	GL:/L	17:45	Total		Total %		Start Time	Peak Hour From 16:00 to 17:45 - Peak 1 of Intersection 17:00	Volume	17:15 Volume	Peak Factor High Int. Volume Peak Factor

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

Weather: Clear & Dry Counted by: M. Parish Board No: D1-2278 Loc: I-5 S/B Ramps & Calgrove Blvd

;

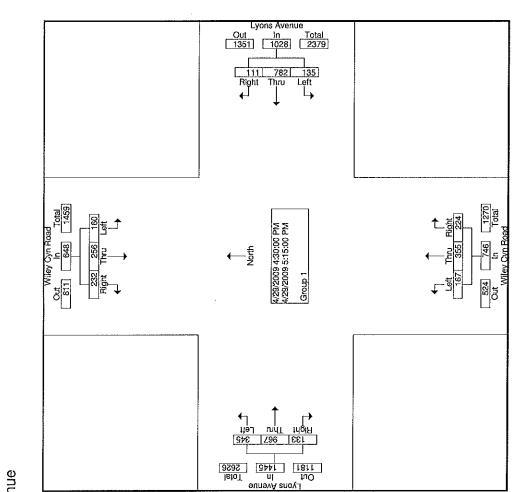
File Name : 09128041 Site Code : 00128041 Start Date : 4/28/2009 Page No : 2


09128031 00128031 4/28/2009		lnt. I Total			9 379				402		*	4 2915	0		Int. Total		1571	2	434 0 905		
** ** ** **		Inclu. Total		27.	379	372	5 2	335	402 402	434	157	2914	100.0		App. Total		964	-	272	272	0.886
File Name Site Code Start Date Page No	F	Exclu. Total	1		00				00		0		0.0	lvd d	Right	-	c	0.0	o	0	
E to to a		App. Total		135 161	28	208	C7 /	199	545 545	272	964	1689	58.0	Calgrove Blvd Eastbound			ħ	. u	4	4	
	p. p.	Peds	1.0	00	00		.	00	00	0	0	0		шő С	Thru		49	51.6	4	144	
	Calgrove Blvd Eastbound	Right	0.1	00	00		- C	00	00	0	0	000	0.0		Left		467	48.4	128	17:45 128	
	ша Са	Thru	1.0	82 23	9 to	108	0/0	5 2 2 2 2	12	144	497	873 51.7	30.0		App. Total		339	}	32		0.921
		Left	1.0	38	114	9 <mark>6</mark>		ភូមិ ទំ	118	128	467	816 48.3	28.0								Ö
ω		App. Total		56 70	6/	200	000	2 2	38	92	339	637	21.9	ff Ramp ound	Right		270	79.6	71	7	
38-181	Ramp nd	Peds	1.0	00	00		· د	00	00	0	0	0		I-5 N/B Off Ramp Northbound	Thru		2	0.6		.	
c. 14 56) 76 56) 76	I-5 N/B Off Ramp Northbound	Right	1.0	4 C	82	227	3	00 77	5 2	71	270	497 78.0	17.1		Left		67	19.8	20	45 20	
N, In ×15/× CA 9 ax (86	122	Thru	1,0	0	- 0	~ ~	, ,	00) •··•	***	CI	0.8 0.8	0.2		ç g	-	268		2	70 17:45	21
TDSSW, Inc. PO Box 1544 akeside, CA 9204 -8495 Fax (866)		Left	1.0	∓ ₹	i - i	ន្លខ	3	₽₽	2 23	20	67	135 21.2	4.6		App. Total		26			1~	0.957
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818 Groups Printed- Group 1		App. Total		85	62	300		5 7 6	629	70	268	588	20.2	e Blvd ound	Right		74	27.6	20	20	
619) (e Blvd	Peds	1.0		0				00					Calgrove Blvd Westbound	Thru		194	72.4	20	50	
\sim	Calgrove Blvd Westbound	I Right		2 K				0 0 0 0 0			74	26.4 26.4			Left		0	0.0	0	o ي	
		격			ល ខ្លួន - ០			0 4 7 4 7			194	432				_	0			0 17:45	
σ		- Left							00		0		0.0		App. Total		Ū		-	0	
e Blv		App. Total									<u> </u>	0	0.0	amp nd	Right	-	0	0.0	5	0	
algrov	Ramp und	Peds	- -	00	00		> (0	0	0	0		I-5 N/B On Ramp Southbound	r. P	ak 1 of	0	0,0	5	0	
s Ca	I-5 N/B On Ramp Southbound	iα.	1.0	00	00			00	0	٥	0	0.0	0.0	-5 N So	Thru	45 - Pe		0.0		M	
r & D Hust 2278 amps	ν ΓΩ Γ	Thru	1.0	00	00		o c	00	0	0	0	0.0	0.0		Left	:00 to 17: 17:00	0	0.0	>	3:45:00 PM 0	
通 2 2 2 2 2 2 3 2 5 3 5 5 5 5 5 5 5 5 5 5		Left	0. F	00	00) c		0	0	0	0.0	0.0		ime	m 16:0 tion 1		Percent			ctor
Weather: Clear & Dry Counted by: C Hust Board No: D1-2278 Loc: I-5 N/B Ramps & Calgrove Blvd		Start Time	Factor	16:00 16:15	16:30	16:45 Total		17:15	17:30	17:45	Total	Grand Total Apprch %	Total %		Start Time	Peak Hour From 16:00 to 17:45 - Peak 1 of 1 Intersection 17:00	Volume	Perc	Peak Factor	High Int. Volume	Peak Factor

.

Weather: Clear & Dry Counted by: C Hust Board No: D1-2278 Loc: I-5 N/B Ramps & Calgrove Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818


File Name : 09128031 Site Code : 00128031 Start Date : 4/28/2009 Page No : 2

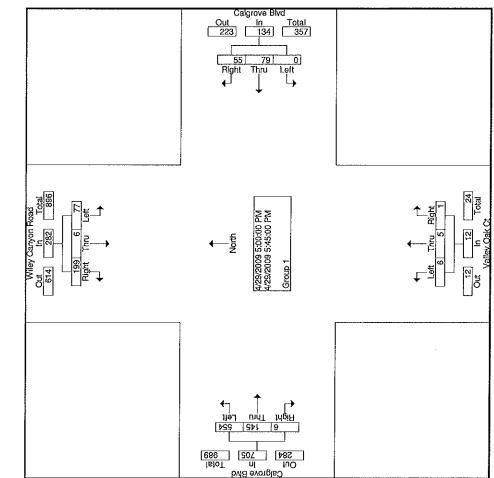
09128021 00128021 4/29/2009		Int. Total							899 1038		7675				Int. Total		3867		1046	0.324	
** ** ** **		Inclu. Total	883	555 668	1046	3741	941	981	895 1016	3833	7574		98.7		App. Total	-	1445		423		423 0.854
File Name Site Code Start Date Page No		Exclu. Total	17 k	0 1	10	8	4	ω·	4 2	38	101		1.3	0				2	0		04
File Site Pag		App. Total	325	324 324	423	1433	342	356	383 244 283	1425	2858		37.7	Lyons Avenue Eastbound	Right		13	8'S	ব	•	4
	e _	Peds	цл с	- თ	0	ω	0	0	⊃ 4	4	2			Lyons Eas	Thru		967	66.9	291		LAZ
	Lyons Avenue Eastbound	Right P		8 8	40	126	25	88	8 6	129	255	8°0	3.4		Left		345	23.9	92	16:45	N R
	μ	Thru	219	888 888	291	991	215	235	270 270	926	1917	67.1	25.3		App. Total	-	746	1	//1		0.937
		Left	75	88	92	316	102	8	011 76	370	686	24.0	9,1								ö
ω		App. Total	14	199	177	724	180	190	8 <u>8</u>	731	1455		19.2	Wiley Cyn Road Northbound	Right		224	30.0	60	ç	90
8-181	Road	Peds	4 ÷	±ω	9	ဓ	ო	(N (ين ر م	50	50			Wiley O	Thru		355	47.6	7	L C	ß
2040 2040 36) 76	Wiley Cyn Road Northbound	Right	49 1	38	60	233	46	ដ្ឋ	84	190	423	29.1	5.0 2		Left		167	22.4	46	ő	ŝ
V, Inc × 154 × 154 × (86 × (86	N N	Thru	88 8	2 K	71	327	102	66	2 86 7 86	365	692	47.6	9.1		aí Dí	-				16:30	 0
TDSSW, Inc. PO Box 1544 akeside, CA 9204 -8495 Fax (866) Groups Printed- Group 1		Left	4 5	7 88 1	46	164	32	51	3 R	176	340	23.4	4.5		App. Total		1028	ŗ	2/4	ç	0.839
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818 Groups Printed- Group 1		App. Total	202	215	274	959	253	280	22	1047	2006	1	26.5	/enue	Right		111	20.8 8.0	R	100	Î.
19) 3	enue	Peds	4 0			-	-	¢1 +	- 4	ω	27			Lyons Avenue Westbound	Thru		782	1.87	2 2		277
(6	Lyons Avenue Westbound	Right	24	56	33	117	28	51 52	ន	105	222	1.1. 1.1.	6) N	7							2
	<u>د د</u>	Thru	145 5	35	210	669	191	523	207	797	1496	74.6	19.8		Left		135	20		17:1	
		Left	ខ្លួខ្ល	38	35	1	8	8] 4	145	288	14.4			App. Total		648	4 7 7	2/1	64 F	0.942
venue		App. Total	159 133	161	172	625	166	149	169	630	1255	2	16.6	Road	Right	1	232	50.0 60	00	C S	8
ns A	Road	Peds	C	1 +	~	9			5 N	9	12			Wiley Cyn Road Southbound	- - -	ak 1 of			t	E.	ţ
איז זמח ג Lyc	Wiley Cyn Road Southbound	Right	59 49	2 22	80	221	5 4 1			253	474	37.8	0.3 2	Vile S	Thru	45 - Pe	256	5	-	4	-
ar & D . Tillm 22278 1 Rd &	Nil S	Thru	20 20 20			240	55		57		471				Left	:00 to 17: 16-30	160	7.47 V 0	t 1	16:45 48	f
v Cyr - Cyr S		Left	4 %			164	37			146	310				Lime	om 16:0		Volume	actor		actor
Weather: Clear & Dry Counted by: S. Tillman Board No: D1-2278 Loc: Wiley Cyn Rd & Lyons Avenue		Start Time	16:00	16:30	16:45	Total	17:00	31:71 05:71	17:45	Total	Grand Total	Appren %	1 OTal %		Start Time	Peak Hour From 16:00 to 17:45 - Peak 1 of 1 Intersection 16:30		Tercent 16-45 Volume	Peak Factor	Higt	Peak Factor

Weather: Clear & Dry Counted by: S. Tillman Board No: D1-2278 Loc: Wiley Cyn Rd & Lyons Avenue

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

• •

File Name : 09128021 Site Code : 00128021 Start Date : 4/29/2009 Page No : 2

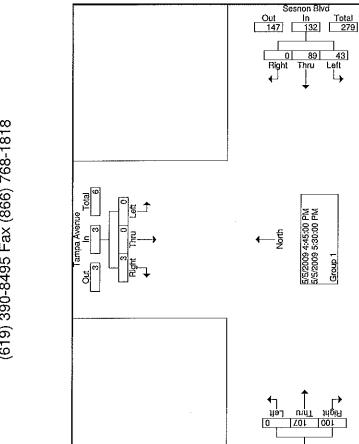

011 0011 009		Int. Total	Į	246	288	262 267			<u>.</u>	12	284	30	2199	>				otal]	1133		317	4		
: 09128011 : 00128011 : 4/29/2009												ľ	•		o,			Int. Total		, –		317	0.89		
		Inclu. Total	-	24	28	262	1063		38	88	282 7 1 2	1133	2196	i	6 [.] 66			App.		705		210		210	0.839
File Name Site Code Start Date Page No		Exclu. Total		0	0	00		o c		-	5 0	n N	60)	0.1		_ع	Right		9 9	0.9	0		0	
Page Site		App. Total		133	161	166	625		507	001	2/1	705	1330)	60.6		Calgrove Blvd Eastbound	Rig	_						
	g	Peds	1.0	0	0	00		> c	> c	-	- c	0	c)			Calgr Eas	Thru		145	20.6	42		42	
	Calgrove Bivd Eastbound	Right P	1.0	0	C1 (0 0	14	r c	>	° C	nc	G	01	0.8	0.5			Left		554	78.6	168	7.45	168	
	ш О О	Thru	1.0	27	ខ្ល	8 K	117	6	h u b c	88	¥ 4	145	262	19.7	11,9			App. Total		12		2			0.750
		Left	0.1	106	130	137 137	504	100			5 2 8 8 8 8	554	1058	79.5	48.2			× ۲						Ċ	0.0
ω		App. Total		2	-	⊃ ,	4	- r) (°	0 -	4 0	12	16 1		0.7		Valley Oak Ct Northbound	Right			8.3			0	
8-181	ΰp	Peds	1.0	0	0		0) c	o c	5 0	00	0	0	,			Valley (Northt	Thru		ŝ	41.7	0		-	
6) 76	Valley Oak Ct Northbound	Right	1.0	0	0 0	00	0	, c	• c	>	>		، ،	6.3	0.0			Left		9	50.0	-	0	ę	
v, Inc 154 CA 92 X (86	N N	Thru	1.0	-	0 (- c	~	، ر	10	4 4	- 0	ß	7	43.8	0.3								17:30		
TDSSW, Inc. PO Box 1544 akeside, CA 9204 -8495 Fax (866)		Left	1.0	 -	(00	0	۱	• •	- c	° ≁	9	ω	50.0	0.4			App. Total		134		34		39	0.85
TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818	1 D	App. Total		36	8 5	35	146	ac D	8	10	88	134	580		12.8		e Blvd ound	Right	-	55	41.0	12		18	
19) 3	Blvd Ind	Peds	1.0	Ģ) (ə 0	0	c	• c	0	> ന	m	ę				Calgrove Blvd Westbound	Thru		67	59.0	ដ		21	
(6	Calgrove Blvd Westbound	Right	1.0	9 2 2	4 -	- -	68 83	¢	С С	2 q	<u>9</u> 언	55	123	43.9	5.6		0		-	0				0	
	ů>	Thru	1.0	ន រ	4 C	김	11	17	ę	5 2	<u>-</u> 8	52	156	55.7	7.1			Left			Ó		17:30		<u> </u>
		Left	1.0	0 0	⊃ ,	- 0	-	C		o	00	0	÷	0.4	0.0			App. Total		282		7		80 7 89 0	0.001
e Blvd		App. Total		25	8 6	60 99	288	62	8	88	35	282	570		26.0	-	n Hoad nd	Right	-	199	70.6	48		62	
grove	n Road und	Peds	1.0	0 0	- c	00	0	C	C		00	0	0				Wiley Canyon Road Southbound		ak 1 of			ო		N	
sh Sh Cal	Wiley Canyon Road Southbound	Right	1.0	ខ្ល	ទ្ធព	44	211	44	62	47	}	199	410	71.9	18.7		Wiley (Thru	45 - Pe	Ŷ	ં				
r & D Paris 1429 Rd &	Wiley S	Thru	1.0	- 1	- •		4	-	~		ററ	Ģ	10	1.8	0.5			Left	5:00 to 17: 17:00	11	27.3	20	17:15	16	
Clea D1-1 Cyn		Left	1.0	ភ	<u>v</u> 4	24 ²	73	17	16	74	31	17	150	26.3	6.8	$\left \right $		ime	m 16:0(tion 1		sent	ine Actor		ume otor	
Weather: Clear & Dry Counted by: C. Parish Board No: D1-1429 Loc: Wiley Cyn Rd & Calgrove Blvd		Start Time	Factor	16:00	10.13	16:45	Total	17:00	17:15	17-30	17:45	Total	Grand Total	Apprch %	Total %			Start Time	Peak Hour From 16:00 to 17:45 - Peak 1 of Intersection 17:00	Volume	Percent	1/:45 Volume	High Int.	Volume Peak Factor	5 100 1

A-25

Weather: Clear & Dry Counted by: C. Parish Board No: D1-1429 Loc: Wiley Cyn Rd & Calgrove Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

File Name : 09128011 Site Code : 00128011 Start Date : 4/29/2009 Page No : 2



	09128051	5/5/2009				Total	ļ	ļ		128				117			965				Int. Total		505		, 132 , 273	0.856		
		•••				Inclu. Total		114	007 077	127	452	132	129	117	125	503	955		0.06		App. Total	-	207		60		0863	
	File Name Site Code	Start Date	Page No			Exclu. Total			r- ¥	- +-	4	2	-	0	с С	Q	10		0.L		Ħ		8	ę	1		27	
ļ	Site	Sta	Pac	,		App. Total		42	88	2 2 2 2 2 2	165	60	5 5	47	51	203	368		38.5	Sesnon Blvd Eastbound	Right			48.3				
					مح	Peds	1.0	0	э с	00	0	2	~	0		4	4			Ses	Thru		107	51.7	g		88 83	
					Sesnon Blvd Eastbound	Right	1.0	26	4 Ç	27	62	27	ន	8	8	6	170	46.2	17.8		Left		0	0.0	0	17:00	0	
					°уш	Thru	1.0	16	2 2	58	86	ŝ	R	24	g	112	198	53.8	20.7		App. Total	-	1 <u>8</u>		40	-	47 0 867	-
						Left	1.0	0	00	00	0	0	0	0	0	0	0	0.0	0.0								C	,
	8					App. Total		36	25	37	157	40	47	68 9	.	169	326		34.1	ampa Avenue Northbound	Right		40	24,5	ω		ω	
	8-181				nue nd	Peds	1.0	 ,	+-		4	0	0	0.	-	-	ഹ			Tampa Northt	Thru		ო	1.8	0		0	
; ; ;	2040 36) 76			up 1	Fampa Avenue Northbound	Right	1.0		<u></u>	- 2	52	ø	ထ	<u>6</u>	2	4	92	28.2	9.6		Left		120	73.6	32	5	88	
	CA 98			ed-Gro	Tar T	Thru	1.0	- «	- C	ი	4	0	0	0	Э	0	4	1.2	0.4		<u>.</u>	-				17:15	<u> </u>	
6	95 Fa			Groups Printed- Group 1		Left	1.0	22		৪ প্র	101	32	66	27	5	129	230	70.6	24.1		App. Total		132		31		37 0.892	1
Ĺ.	Lakeside, UA 92040 (619) 390-8495 Fax (866) 768-1818			Group		App. Total		35	3 %	88	128	31	37	83	55	123	257		26.9	pyg	Right		0	0.0	0		0	
	i9) 3(дà	Peds	1.0	о (5 C	00	0	0	0	0 1	5	0	0			Sesnon Blvd Westbound	Thru		89	67.4	20		27	
	(61				Sesnon Blvd Westbound	Right	1.0	00	- c	0	0	0	0	0 0		0	0	0.0	0.0	د تە ا		-						
					Se	Thru	1.0	ខ្ល	24	22	86	20	27	ងខ	3	6	177	68.9	18.5		Left		4	32.6		17:15	0 C	
						Left	1.0	<u>연</u> -	ŧ ¢	14	42	1	6	α (א	88	80	31.1	8.4		App. Total	_	ო				1 0.750	-
			~			App. Total		c	> c	، -	2	-	0	, . (2	4		0.4	9	ŧ		<i>с</i> о	o.				
			<u>В</u>		nue d	Peds	1.0	00		, o	0	0	0	0,	- -	-	F			Tampa Avenue Southbound	Right	<1 of 1		100.0				
	~		asnot		Tampa Avenue Southbound	Right I	1.0	C		، -	N	-	0	¢		N	4	0 0	0,4	Tamp Soul	Thru	5 - Peal	0	0.0	0		0	
2	A Lust Hust	<u>_</u>	8 8 0		Tan So	Thru	0.F	00		0	0	0	0	00	-	0	0	0.0	0.0		Left	:00 to 17:4	20	0.0	0	16:45	0	
č		1-140	a Ave			Left	1.0	00		, o	0	0	0	00	- 	9	0	0.0	0.0		це	16:00		ţ	e c		e re	
	Counted By: C. Hust	Board #: D1-143	Loc: Tampa Ave & Sasnon Blvd			Start Time	Factor	16:00 16:40	16:30	16:45	Total	17:00	17:15	17:30	C+: /	l otal	Grand Total	Apprch %	Total %		Start Time	Peak Hour From 16:00 to 17:45 - Peak 1 of Intersection 16:45	Volume	Percent	17:00 Volume Peak Factor	High Int.	Volume Peak Factor	

TDSSW, Inc. PO Box 1544

Weather : Clear & Dry Counted By: C. Hust Board #: D1-1431 Loc: Tampa Ave & Sasnon Blvd

TDSSW, Inc. PO Box 1544 Lakeside, CA 92040 (619) 390-8495 Fax (866) 768-1818

File Name : 09128051 Site Code : 00128051 Start Date : 5/5/2009 Page No : 2

Group 1

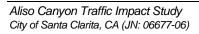
ուկ<u>1</u> Հ01

265non Blvd

Out 212

0

Total 419


306 Total

143 163 Out In

Right 40

APPENDIX B

EXISTING CONDITIONS LEVEL OF SERVICE WORKSHEETS

EXAM

.

EXAM			[M-	on may	4, Z	009 13	:34:02				Page	2-1
ALISO (CANYON	TUR	BINE R	Exis	ting	TRAFFI Condit k Hour	ions	CT AN	ALYSIS	(JN 0	6677)	
			Level (\		
***********	2000 HC ******										****	******
Intersection **********	#100 I	-5	SB (NS)/ CAL	GROVE	BLVD.	(EW)					
Average Delay												
	Nort L -	Т	- R	Ŀ	- T	- R	L	→ Т	- R	L	- Т	– R
Control:		p S:	ign	S	top S	ign	Un	contr	olled	Un	contr	olled
Lanes:	0 0	0	0 0	0 :	1 0	0 1	0	0 0	1 0	1 .	01	0 0
Volume Module	e:											
Base Vol: Growth Adj:		0			$1 \\ 1.00$		0	1.00			257 1.00	
Initial Bse:		0	0	39							257	1.00
User Adj:	1.00 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.96 0	.96	0.96	0.96	0.96	0.96		0.96		0.96	0.96	0.96
	0	0	0	41								0
Reduct Vol:		0		0	0 1	0	0 0	0	0		0	0
FinalVolume:	0	0		41	1 	315	U 	111	71		267	
Critical Gap				11			11			11		
			xxxxx	6.4	6.5	6.2	XXXXX	xxxx	xxxxx	4.1	xxxx	xxxxx
Critical Gp:x FollowUpTim:x	xxxxx x	xxx	xxxxx	3.5	4.0	3.3	xxxxx	xxxx	xxxxx	2.2	xxxx	XXXXX
										[]		1
Capacity Modu				1 4 1 0	1	0.65				100		
Cnflict Vol:									XXXXX			XXXXX
Potent Cap.:							XXXX		XXXXXX			XXXXX XXXXX
Move Cap.: Volume/Cap:						0.41			XXXXX			XXXXX
Level Of Serv	vice Mo	dule	e:				, ,					
2Way95thQ:											XXXX	XXXXX
Control Del:x											XXXX	XXXXX
LOS by Move:						В		*				*
Movement:											- LTR	
Shared Cap.:							XXXX					XXXXX
SharedQueue:x										XXXXX		
Shrd ConDel:x Shared LOS:	* xxxx	XXX *	XXXXX *	56.0 F	XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXX *
ApproachDel:				Ľ	17.8	*					xxxxx	
ApproachLOS:	171717	*			C C		212	*			*	
*********	*****	****	*****	******	-	*****	******	*****	*****	******	****	******
Note: Onene r	enorte	d is	the t	umber	of ca	ars net	r lane					

Note: Queue reported is the number of cars per lane.

ALISO (CANYO	N TUR	BINE RI	Exis	ting	TRAFFI Condit k Hour		CT AN	ALYSIS	(JN 0	6677)	
****		HCM U	Level (nsignal	lized i	Metho	d (Bas	e Volu	me Al	ternat		****	*****
Intersection *********			•					* * * * *	*****	*****	****	*****
Average Delay	y (se	c/veh *****): ******							rvice: ******		
Approach: Movement:	L ·	- Т	ound - R	Ъ	- T	– R	\mathbf{L}	- T	– R	Ŀ	- т	– R
Control: Rights:		top S	ign ude	S	top S:		Un	contr		Un		olled
Lanes:			0 1				1					
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj:	52 1.00 52 1.00	2	81	0 1.00 0 1.00	0 1.00 0 1.00 0.98	0 1.00 0 1.00 0.98	61 1.00 61 1.00		0 1.00 0 1.00	0 1.00 0 1.00	658 1.00	121 1.00 121 1.00
PHF Volume:	53 0 53	2 0 2	83 0 83	0 0 0	0 0 0	0 0 0	62 0 62	100 0 100	0 0	0 0	672 0 672	-
Critical Gap Critical Gp: FollowUpTim:	Modu 6.4 3.5	le: 6.5 4.0	6.2 3.3	xxxxx xxxxx	xxxx xxxx	xxxxx xxxxx	4.1	xxxx xxxx	xxxxx xxxxx	xxxxx xxxxx	xxxx	xxxxx xxxxx
Capacity Modu Cnflict Vol: Potent Cap.: Move Cap.: Volume/Cap:	ile: 959 288 271 0.20	1020 238 221 0.01	100 961 961 0.09	xxxx xxxx xxxx xxxx xxxx	xxxx xxxx xxxx xxxx	××××× ××××× ×××××	796 835 835 0.07	xxxx xxxx xxxx xxxx	xxxxx xxxxx xxxxx xxxx	xxxx xxxx xxxx xxxx xxxx	xxxx xxxx xxxx xxxx	xxxxx xxxxx xxxxx xxxx
Level Of Serv 2Way95thQ: Control Del:> LOS by Move: Movement: Shared Cap.: SharedQueue: Shrd ConDel: Shared LOS: ApproachDel: ApproachLOS:	rice N xxxx xxxxx LT - 269 0.8 21.8 C	4odule xxxx * LTR xxxx xxxx xxxx 4 14.2 B	e: 0.3 9.1 A - RT xxxxx xxxxx xxxxx xxxxx *	×××× × LT ×××× × ×××× × ×××× × ×	XXXX XXXX - LTR XXXX XXXX XXXX XXXX XXXX XXXX X	XXXXX XXXXX - RT XXXXX XXXXX XXXXX X	0.2 9.7 A LT ×××× ××××× × ××××× ×	XXXX XXXX - LTR XXXX XXXX XXXX XXXX XXXX XXXXX X	XXXXX XXXXX - RT XXXXX XXXXX XXXXX X	XXXX XXXXX LT XXXX XXXXX XXXXX XXXXX XXXXX XXXXX XXXX	***** * - LTR **** * * * *	XXXXX XXXXX - RT XXXXX XXXXX XXXXX *
Note: Queue r ************									*****	*****	*****	******

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

.

EXAM					09 13:					-	
ALISO	CANYON TUR		PLACE Exis	MENT 1 ting (: IMPA		·			
		Level C								~\	
LUU ********	1(Loss as (*****	∠yc⊥e ⊥ ******	*****	סן ו∈ ל*****	******	DdSe *****	******	8 AIL81	.nativ	⊌) ★★★★★	******
Intersection									*****	*****	* * * * * * *
Cycle (sec):	10	00			Critic	al Vo	l./Cag	5.(X):		0.	727
Loss Time (s	1(ec): : e: :	10			Averaç	e Del	ay (se	ec/veh)	:	XXXX	xxx
Optimal Cycl	e:	54			Level	Of Se	rvice	:			С
**************************************	*********** North B							****** ound		***** est Bo	
Approach: Movement:	L - T	– R	L ·	~ Т	- R	L	- Т	- R	L ·	→ Т	→ R
			1		!						
Control: Rights: Min. Green: Y+R:	Protect	ted	P	rotect	ed	P	rotect	ed.	P	roteci	ted
Rights:	Inclu	ıde	~	OVI	0	•	Inclu	ide	0	Inclu	ude
Min. Green:		1 0	1 0	4 0	4 0	1 0	1 0	4 0	4 0	1 0	· U
I+R: Lanes:	$4.0 \ 4.0 \ 1 \ 0 \ 2$	4.0	4.0	4.0	4.0	4.0	4,U 0 2	4.U 0 1	4.0	4.0 0 2	4.0
Lanes:			1			1		1	1		
Volume Modul	•	1	1		,	,			•		
Base Vol:	183 184	147	124	378	380	121	617	104	163	831	139
Growth Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		147	124	378	380	121	617	104	163	831	139
User Adj:		1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:		0.89		0.89	0.89		0.89			0.89	0.89
PHF Volume:		166	+	426	428	136		117	184	- + ·	157
Reduct Vol:		0	0	-	0	0	-	0	0	-	0
Reduced Vol:		166 1.00	140	426 1.00	428 1.00	136			184	937 1.00	157 1.00
PCE Adj: MLF Adj:		1.00		1.00	1.00		$1.00 \\ 1.00$	1.00		1.00	1.00
FinalVolume:		166		426	428	136		117	184		157
OvlAd Vol:					360						
		l			·!						
Saturation F											
Sat/Lane:				1750		1750				1750	
Adjustment:			1.00		1.00		1.00			1.00	
	1.00 2.00	1.00		2.00	1.00		2.00 3500			2,57	
Final Sat.:	1/20 3200	UCII			1750					4498	
Capacity Ana			1		- 1	1		.1	1		1
	0.12 0.06		0.08	0.12	0.24	0.04	0.20	0.07	0.11	0.21	0.21
OvlAdjV/S:					0.21		-	-	_		
Crit Moves:					****		* * * *		****		
*****	*********	******	*****	*****	*****	*****	*****	*****	* * * * * *	*****	******

EXAM			M	on may	4, 2	009 13	:34:02				Paye	5-1
ALISO	CANYO	N TUR	BINE RI	Exis	ting (Condit		CT AN	ALYSIS	(JN 0	6677)	
				A	M Pea	k Hour						
			Level (of Ser	vice (Comput	ation	Renor	 r			
	2000 1		nsigna.							ive)		
*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****	****	******
Intersection ***********										*****	****	******
Average Dela *********	*****	*****	*****	*****	* * * * *	*****	*****	* * * * *	*****		****	******
Approach: Movement:	Ŀ・	- T	– R	L ·	– T	– R	Ъ	- T	- R	L ·	- T	– R
Control:												
Rights:		Incl	ude		Iano	re		Incl	ude		Incl	ude
Lanes:	0 (0 1!	0 0	0	1 0	0 1	1	0 1	0 1	1	01	01.
Volume Modul	e:											
	11				1	633					182	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:				34					-		182	
User Adj:	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00		1.00	
PHF Adj:		0.91	0.91	0.91	0.91	0.00		0.91	0.91	0.91	0.91	0.91
PHF Volume:		8	1		1	0	129					
Reduct Vol:	0	0	0	0	0	0	0 129	0	0	0	0	0
FinalVolume:	12	8	1	37	1	0	129	45	10		200	
	•											
Critical Gap	Modu.	Le:	<i>c</i> 0		<i></i>	~ ~	4 1			4 1		
Critical Gp:		6.5	6.2	/.1	6.5	6.2	4.1	XXXX	XXXXX	4.1		
FollowUpTim:	3.5	4.0	3.3	3.5	4.0	3.3	2.2	XXXX	XXXXX	2.2		
Capacity Mod				11			(]			11		I
Cnflict Vol:		607	45	521	521	200	296	xxxx	*****	55	xxxx	XXXXX
Potent Cap.:				469					XXXXXX			XXXXX
Move Cap.:			1030						XXXXX			XXXXX
Volume/Cap:		0.02				0.00			XXXX			XXXX
Level Of Ser												
2Way95thQ:				XXXX	XXXX	XXXXX	0.3	xxxx	XXXXX	0.0	xxxx	XXXXX
Control Del:	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	8.1	xxxx	XXXXX	7.3	XXXX	XXXXX
LOS by Move:	*	*	*	*	*	*	A	*			*	*
Movement:	$LT \cdot$	- LTR	– RT	LT ·	- LTR	– RT	LT ·	- LTR	- RT	LT ·	- LTR	- RT
Shared Cap.:			XXXXX							xxxx		
SharedQueue:			XXXXX		XXXX	xxxxx	xxxxx	xxxx	XXXXX	xxxxx	XXXX	xxxxx
Shrd ConDel:	xxxxx	14.4	xxxxx							XXXXX		
Shared LOS:	*	в	*	в	*	*	*	*	*	*	*	*
ApproachDel:		14.4			14.3		x	xxxxx		XX	XXXXX	
ApproachLOS:		в			В			*			*	
*******	*****	*****	******	*****	*****	******	*****	*****	* * * * * *	*****	*****	******
					~		-					

Note: Queue reported is the number of cars per lane.

,

MITIG8 - EXAM	1	Т.	nu may	14, 4	2009 10	5:31:3	4			rage	1-1
ALISO (CANYON TU	JRBINE R	Exist	ing (TRAFFIC Conditi k Hour		CT AN	ALYSIS	(JN 0	6677)	
		Level (Of Serv	rice (Computa	ation 1	Report	 t.			
2	2000 HCM	4-Way S	top Met	chod	(Future	e Volu	me Alt	ternati	.ve)		
********	******	******	*****	*****	******	*****	*****	******	*****	*****	******
Intersection	#500 Tar	mpa Ave.	(NS)/	Sesno	on Boul	levard	(EW)				
********	******	*******	*****	*****							
Cycle (sec):		100						р.(X):			
Loss Time (se	•	0						ec/veh)	:	1	
Optimal Cycle		0			Level						В

Approach:											
Movement:	$\Gamma \rightarrow 1$? – R	L -	- T	- R	. г.	- T	- R	L ·	- T	- R
							`	ļ			
Control:	Stop	Sign	St	cop S:	∟gn	S	top S:	ıgn	S	top S:	ıgn
Rights:		lude						ıde		Incl	
Min. Green:		0 0			0			0		, 0	
Lanes:) 1 0			1 0			1 0			1 0
Volume Module		1	0	0	0	0	0.40	0.01	70	140	0
Base Vol:		1 33		0			249			140	0
Growth Adj:				1.00			1.00			1.00	1.00
Initial Bse:		1 33	0	0	0	0		201	79		0
Added Vol:	0	0 0	0	0	0	0		0	0	0	0
PasserByVol:		0 0	0	0	0	0		0	0 79	140	0 0
Initial Fut:		1 33		1 00	-	-		201		140	1.00
2	1.00 1.0			1.00	1.00 0.67		1.00	1.00 0.67		1.00	0.67
PHF Adj: PHF Volume:	0.67 0.6	1 49	0.07	0.07	0.07	0.07	371	299	118	208	0.07
Reduct Vol:	190	0 0	0	0	0	0		299	0	208	0
Reduced Vol:		1 49		0	0			299	118		0
PCE Adj:							1.00			1.00	1.00
-	1.00 1.0		1.00		1.00		1.00			1.00	1.00
FinalVolume:			1.00		1.00		371	299	118		1.00
					-						-
Saturation Fl			11		- J	,		.1	,		- 1
Adjustment:			1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:											
Final Sat.:							689			725	0
Capacity Anal					ŗ	•		,	•		I
Vol/Sat:	0.40 0.0		XXXX	0.00	XXXX	XXXX	0.54	0.49	0.30	0.29	XXXX
Crit Moves:	****			****			****		****		
	14.3 9.	7 9.7	0.0	0.0	0.0	0.0	14.6	12.4	11.8	11.2	0.0
	1.00 1.0		1.00		1.00		1.00	1.00	1.00		1.00
AdjDel/Veh:	14.3 9.		0.0	0.0	0.0		14.6	12.4	11.8		0.0
LOS by Move:	В	A A	*	*	*	*	В	В	В	В	*
ApproachDel:	13.	3	XX	xxxx			13.6			11.4	
Delay Adj:	1.0			xxxx			1.00			1.00	
ApprAdjDel:	13.			xxxx			13.6			11.4	
11 5		В		*			в			в	
LUS DY ADDI:											
LOS by Appr: AllWayAvqQ:	0.6 0.	1 0.1	0.0	0.0	0.0	1.1	0.9	0.9	0.4	0.4	0.4

Note: Queue reported is the number of cars per lane.

EXPM

EXPM			Mo	on May	4, 2	009 13	:34:16				Page	2-1
ALISO C	CANYO	N TURI	BINE RI	Exis	ting	TRAFFI Condit k Hour		CT AN	ALYSIS	(JN 0	6677)	
	·		Level (of Ser	vice	Comput	ation 1		 +			
2	2000 1		nsignal							ive)		
***********	****	*****	******	*****	*****	******	*****	*****	*****	*****	*****	*****
Intersection ************								*****	*****	*****	****	*****
Average Delay ********						Worst *****						
			ound								est B	ound
Movement:	ь -	- T	– R	ь 	- T	– R	ь - 	- T	- R	۲. 		- R
Control:			ign									
Rights:		Inclu	ude		Incl	ude		Incl	ude		Incl	uđe
Lanes:	0 (0 0	0 0	0		0 1						0 0
 Volume Module												
Base Vol:	0	0	0	83	0	84	0	888	63	111	199	0
Growth Adj:	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
initial Bse:	0	0	0	83	0	84	0	888	63	111	199	0
Jser Adj:				1.00	1.00	1.00		1.00		1.00	1.00	1.00
PHF Adj:			0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
HF Volume:	0	0	0	93		95	0	1000	71	125		0
Reduct Vol:				0	` 0			0	0		Ŷ	0
inalVolume:	0	0			0	95		1000				
 Critical Gap												
Critical Gp:x			XXXXX	6.4	6.5	6.2	xxxxx	xxxx	XXXXX	4.1	xxxx	xxxxx
followUpTim:x	xxxx	XXXX	XXXXX	3.5	4.0	3.3	XXXXX	XXXX	XXXXX	2.2	XXXX	XXXXX
·[
Capacity Modu				1510	1545	204				1071		
Inflict Vol:									XXXXX			XXXXX XXXXX
otent Cap.:						820			XXXXX			
love Cap.: olume/Cap:					0.00				XXXX			XXXX
				0,02								
evel Of Serv												
Way95thQ:				XXXX	XXXX	0.4	xxxx	xxxx	xxxxx	0.7	xxxx	xxxxx
Control Del:x							XXXXX				XXXX	XXXXX
OS by Move:			*				*	*	*	в	*	*
iovement:	LT -	- LTR	- RT	LT -	- LTR	\rightarrow RT	LT -	- LTR	- RT	LT -	- LTR	- RT
hared Cap.:	XXXX	XXXX	XXXXX	114	XXXX	xxxxx	XXXX	xxxx	xxxxx	XXXX	XXXX	xxxxx
haredQueue:x						XXXXX						
hrd ConDel:x												
Shared LOS:	*	*	*	F	*	*	*	*	*	*	*	*
pproachDel:	XX	XXXXX *			59.9 F		XX	XXXXX		XX	XXXXX *	
ApproachLOS:												

Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

М	on	Mav	4,	2009	13:34:	16

Page 3-1

EXPM			FI	on May	4, Z	009 I3	:34:16				Page	3-T
ALISO	CANYO	N TUR	BINE R	Exis	ting	TRAFFI Condit k Hour	ions					
			Level	of gor		Comput						
	2000		nsigna			-		-		ive)		
******											****	*****
Intersection	#200	I-5	NB (NS)/ CAL	GROVE	BLVD.	(EW)					
* * * * * * * * * * * * *												
Average Dela												
* * * * * * * * * * * * *												
Approach:												
Movement:	· با i	- 1	- ĸ	ىد سىسىسا 1	- 1 	- R	ىل ا	- 1	- ĸ	· با سسمی ا (- 1 	- ĸ
Control:			ign									
Rights:											Incl	
lanes:	0	1 0	0 1	0	0 0	0 0	1	0 1	0 0	0		
·												
Volume Modul	e:											
Base Vol:								497	-		194	74
rowth Adj:					1.00		1.00			1.00		1.0
nitial Bse:				0	-	-	-	-	-	-		7.
ser Adj:	1.00	1.00	1.00		1.00					1.00		
HF Adj:					0.91			0.91			0.91	
HF Volume:					0			549			214	8.
educt Vol: inalVolume:	74	2	298	0 0	0	0	516	549	0	0 0	214	8:
ritical Gap				• •								
ritical Gp:	6.4	6.5	6.2	xxxxx	XXXX	XXXXX	4.1	xxxx	xxxxx	xxxxx	xxxx	XXXXX
'ollowUpTim:										XXXXX		
	•									[]		
apacity Mod												
nflict Vol:						XXXXX				XXXX		
otent Cap.:			539			XXXXX				XXXX		
ove Cap.: olume/Cap:						XXXXX XXXX			XXXXX XXXX	XXXX		XXXX
evel Of Ser	-											
Way95thQ:	XXXX	xxxx	3.3	xxxx	xxxx	XXXXX	2.0	xxxx	XXXXX	xxxx	xxxx	XXXXX
ontrol Del:							9.7	xxxx	XXXXX	XXXXX	XXXX	XXXXX
OS by Move:					*		A			*		
ovement:			– RT								- LTR	– RT
hared Cap.:			XXXXX									XXXXX
haredQueue:			XXXXX									
hrd ConDel:			XXXXX *	XXXXX *	XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXX
hared LOS:	F	* 87.2	×			×			×			~
pproachDel: pproachLOS:		87.2 F		X	xxxxx *		X	*****		X2	XXXXX *	
************	****		*****	*****		*****	*****		******	******		*****
ote: Queue :												
****									*****	*****	****	*****

EXPM

,

MITIGO - EAP	P1			iu May	14,	2009 10					raye	<u>т</u> т
ALISO	CANYON	TURI	BINE RE	Exis	ting	TRAFFIC Conditi k Hour		CT AN	ALYSIS	(JN 0	6677)	
						Computa		-				
上CU 上 ************						thod (E ******						******
Intersection *********	#300	WILEY	Y CANYO	N RD.	(NS) / LYON	IS AVE	NUE ()	EW)			
Cycle (sec):		10	00						p.(X):		0.	
Loss Time (se	ec):	1	00 L0 53			Averag	re Del	ay (s	ec/veh)	:	XXXX	xxx
Optimal Cycle						Level						С

Approach:			ound_						ound_		est_Bo	
Movement:			- R			~ R			- R		→ T	
Control:	,					l ted						
Rights:		otecu Inclu		E.	otec Ovl		E.	Incli		2	Inclu	
Min. Green:			0	0	0		n	0		n	0	0
Y+R:	4.0			4.0					4.0	-	4.0	
Lanes:			0 1			0 1			0 1		2	
									i			
Volume Module	e:											
Base Vol:	167	355	224	160		232	345	967	133	135	782	111
Growth Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		355	224	160		232	345	967	133	135	782	111
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:		0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	167	355	224	160	256	232	345	967	133	135	782	111
User Adj:	1.00		1.00		1.00	1,00		1.00	1.00		1.00	1.00
PHF Adj:	0.92		0.92		0.92	0.92		0.92	0.92		0.92	0.92
PHF Volume:	181	384	242	173	277	251		1047	144	146	846	120
Reduct Vol:	0	0 384	0 242	0 173	0 277	0 251	0	0 1047	0 144	0 146	0	0 120
Reduced Vol: PCE Adj:	1.00		1.00		1.00	1.00		1.00	$144 \\ 1.00$		846 1.00	1.00
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:			242	173	277	251		1047	144	146	846	120
OvlAdjVol:	101	504	212	175	237	64	070	1011	7.7.7	T40	040	120
	!			}								
Saturation F	Low Mod	dule:				•			•	•		
Sat/Lane:	1750 1	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adjustment:	1.00 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00 2		1.00		2.00			2.00	1.00		2,63	0.37
Final Sat.:			1750		3500			3500			4597	653
	•											
Capacity Anal	-			0 10	0 00	0 14	0 11	0 20	0 00	0 00	0 10	0 10
	0.10 (0.11	0.14	0.10	0.08	0.14 0.04	0.11	0.30	0.08	0.08	0.18	0.18
OvlAdjV/S: Crit Moves:			* * * *	****		0.04		****		****		
CITC MOVES:												

.

Page 5-1

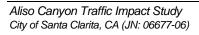
ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing Conditions

PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #400 WILEY CANYON RD. (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 40.1 Worst Case Level Of Service: F[378.4] North Bound South Bound East Bound West Bound Approach: $\mathbf{L} \rightarrow \mathbf{T} - \mathbf{R} \quad \mathbf{L} \rightarrow \mathbf{T} - \mathbf{R} \quad \mathbf{L} \rightarrow \mathbf{T} - \mathbf{R} \quad \mathbf{L} \rightarrow \mathbf{T} - \mathbf{R}$ Movement: Control:Stop SignStop SignUncontrolledUncontrolledRights:IncludeIgnoreIncludeInclude 0 0 1! 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 Lanes: _____| Volume Module: 1 77 6 199 65 554 145 6 0 79 Base Vol: 55

 Initial Bse:
 6
 5
 1
 77
 6
 199
 554
 145
 6
 0
 79
 55

 User Adj:
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00 PHF Volume:7618670620162708862Reduct Vol:00000000000FinalVolume:7618670620162708862 _____| Critical Gap Module: Critical Gp: 7.1 6.5 6.2 7.1 6.5 6.2 4.1 xxxx xxxxx xxxxx xxxx xxxx FollowUpTim: 3.5 4.0 3.3 3.5 4.0 3.3 2.2 xxxx xxxxx xxxxx xxxx xxxxx Capacity Module: Cnflict Vol: 1524 1551 162 1497 1497 88 150 xxxx xxxxx xxxx xxxx xxxx Potent Cap.: 98 115 888 102 124 975 1444 xxxx xxxxx xxxx xxxx xxxx 64 71 975 1444 xxxx xxxxx xxxx xxxx xxxx Move Cap.: 61 65 888 Volume/Cap: 0.11 0.09 0.00 1.35 0.09 0.00 0.43 xxxx xxxx xxxx xxxx xxxx -----| Level Of Service Module: 2.2 xxxx xxxxx xxxx xxxx xxxx 2Way95thQ: xxxx xxxx xxxx xxxx xxxx xxxx Control Del:xxxxx xxxx xxxxx xxxxx xxxx 9.4 xxxx xxxxx xxxxx xxxx xxxx A * * * * * Shared LOS: * F * F * * * * * * * * * 378.4 ApproachDel: 70.6 XXXXXX XXXXXX F F * ApproachLOS: * Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

EXPM _____

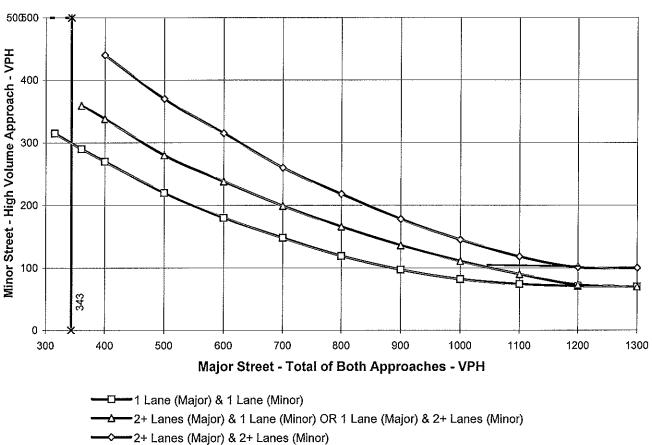
MITIG8 - EXP	м 		T}	u May	14, 2	2009 10	5:32:0	8			Page	1-1	
ALISO	CANYO	N TURI	BINE RE	Exis	ting (TRAFFIC Conditi & Hour		CT AN	ALYSIS	(JN 0	6677)		
****		HCM 4-	Way St	op Me	thod		e Volu	me Al	ternati				
Intersection	#500	Tampa	a Ave.	(NS)/	Sesno	on Boul	.evard	(EW)					
************* Cycle (sec):	****	***** 1(*****	*****				****** p.(X):			**** 212	* 1
Loss Time (s	ec):	1							ec/veh)			8.8	
Optimal Cycl			0			Level						А	
********											*****	****	* 1
Approach:									ound		est_B		
Movement:			- R			~ R			- R		- T		
Control: Rights:	S		.gn	S		lgn	S		ign	St		ign	
Min. Green:			0			0			0		0	440	(
Lanes:	0	1 0	1 0	0 3	10	1 0	0		1 0		L 0		0
·							1						
Volume Modul		2	40	0	0	2	0	1 0 7	100	40	00		,
Base Vol: Growth Adj:	120		40	1 00	0 1.00	3 1.00	1 00	107 1.00	100 1.00	43	89 1.00	1.() ^^
Initial Bse:			±.00 40	1.00	1.00	1.00	1.00	107	100	43	1.00	Τ.() (
Added Vol:	120		40	0	0	0	0	0	100	43 0	0		(
asserByVol:			ŏ	0 0	0	0	0		0	0	0		(
Initial Fut:			40	0	ŏ	3	ő	107		43	89		(
Jser Adj:		1.00	1.00	-	1.00	1.00	-	1.00	1.00		1.00	1.0	
PHF Adj:		0.96	0.96		0.96	0.96		0.96	0.96		0.96	0.9	
PHF Volume:	126		42	0.50	0.50	3	0.50	112	105	45	93	•••	(
	0		0	Õ	ŏ	õ	õ	0	0	0	Ő		(
Reduced Vol:			42	0	Ō	3	0			45	93		(
PCE Adj:				1.00	1.00	1.00	1.00				1.00	1.0	00
4LF Adj:			1.00		1.00			1.00				1.0)(
FinalVolume:			42	0	0	3	0	112	105	45	93		0
Saturation F													
Adjustment:													
lanes:		0.51	0.49		1.00				0.97			0.0	
Final Sat.:													
Capacity Anal				1		1	1		1	ı			
/ol/Sat:	-	0.01	0.12	XXXX	0.00	0.00	XXXX	0.16	0.14	0.11	0.10	XXX	хx
Crit Moves:	****					****		****		****			
elay/Veh:	10.0	8.0	8.0	0.0	0.0	7.6	0.0	8.7	7.8	8.8	8.5	0.	. (
elay Adj:		1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.0)(
djDel/Veh:	10.0	8.0	8.0	0.0	0.0	7.6	0.0	8.7	7.8	8.8	8.5	0.	. 0
OS by Move:	в		A	*	*	А	*	А	А	А	А		*
pproachDel:		9.5			7.6			8.3			8.6		
elay Adj:		1.00			1.00			1.00			1.00		
pprAdjDel:		9.5			7.6			8.3			8.6		
OS by Appr:	<u> </u>	A			A	0 0	0 5	A		<u> </u>	A	-	
AllWayAvgQ:	0.2		0.1	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.1	0.	
*******	the standard state of the state		المحاد ماد ماد	als als als -	الأراجان والمراجع	ا ا- ا- ماد ماد ماد	J. J. J. T. J. J.		المراجعة والمراجعة والمراجعة		المتلح والمراجل		1 - P.

APPENDIX C

TRAFFIC SIGNAL WARRANTS

EXISTING CONDITIONS (AM Peak Hour)

Major Street Name = Calgrove


Total of Both Approaches (VPH) = **343**

Number of Approach Lanes Major Street = 1

Minor Street Name = I-5 SB Ramps

High Volume Approach (VPH) = **912**

Number of Approach Lanes Minor Street = 1

WARRANTED FOR A SIGNAL

- * Minor Street Approaches

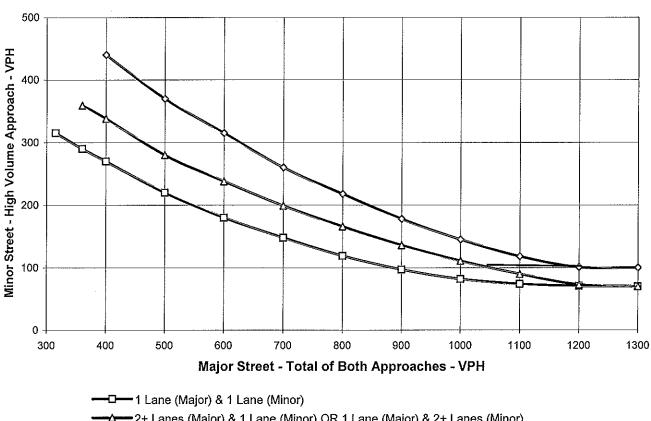
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

I-5 SB_Calgrove (RURAL AREA WARRANT)

^{**} NOTE:

EXISTING CONDITIONS (PM Peak Hour)


Major Street Name = Calgrove

Total of Both Approaches (VPH) = 167 Number of Approach Lanes Major Street = 1

Minor Street Name = I-5 SB Ramps

High Volume Approach (VPH) = 1261

Number of Approach Lanes Minor Street = 1

WARRANTED FOR A SIGNAL

-2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

- ->----2+ Lanes (Major) & 2+ Lanes (Minor)
- ★ Major Street Approaches
- - Minor Street Approaches

** NOTE:

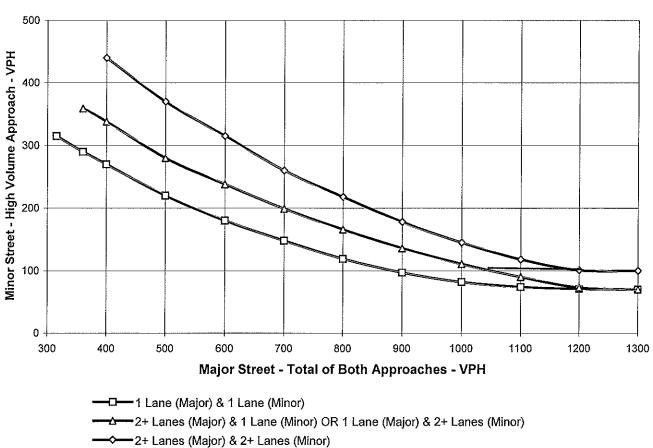
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

I-5 SB_Calgrove PM (RURAL AREA WARRANT)

EXISTING CONDITIONS (AM Peak Hour)

Major Street Name = Calgrove


Total of Both Approaches (VPH) = 135

Number of Approach Lanes Major Street = 1

Minor Street Name = I-5 NB Ramps

High Volume Approach (VPH) = 938

Number of Approach Lanes Minor Street = 1

WARRANTED FOR A SIGNAL

- * Minor Street Approaches

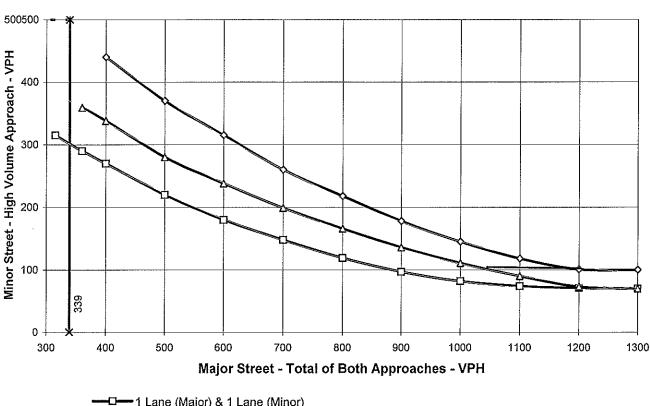
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

I-5 NB_Calgrove AM (RURAL AREA WARRANT)

^{**} NOTE:

EXISTING CONDITIONS (PM Peak Hour)


Major Street Name = Calgrove

Total of Both Approaches (VPH) = 339 Number of Approach Lanes Major Street = 1

Minor Street Name = I-5 NB Ramps

High Volume Approach (VPH) = 1232

Number of Approach Lanes Minor Street = 1

WARRANTED FOR A SIGNAL

-D-1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

- - Minor Street Approaches

** NOTE:

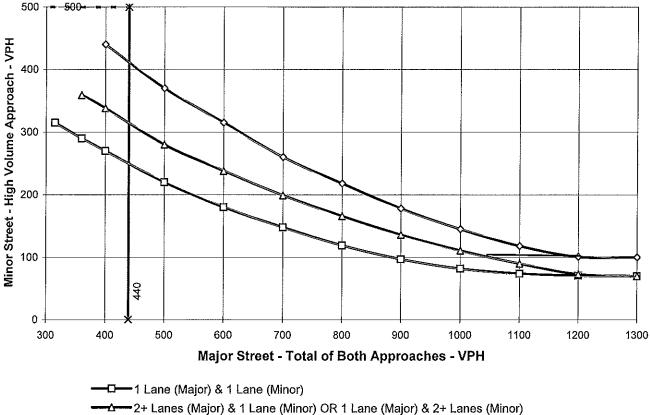
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

I-5 NB_Calgrove PM (RURAL AREA WARRANT)

EXISTING CONDITIONS (AM Peak Hour)

Major Street Name = Calgrove


Total of Both Approaches (VPH) = 440 Number of Approach Lanes Major Street = 1

Minor Street Name = Wiley

High Volume Approach (VPH) = 668

Number of Approach Lanes Minor Street = 1

->----2+ Lanes (Major) & 2+ Lanes (Minor)

- * Minor Street Approaches

** NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

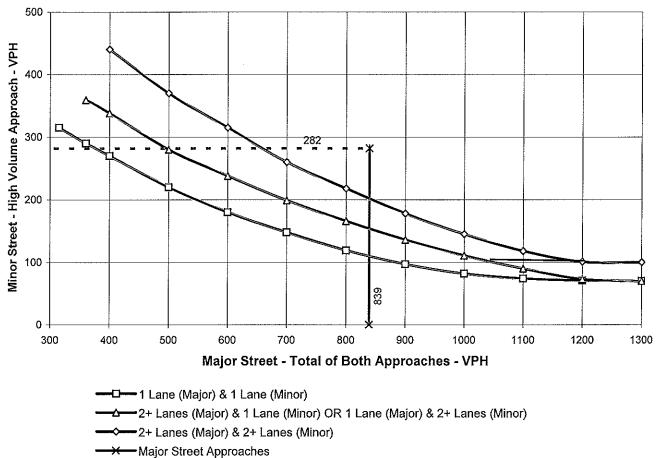
Urban Crossroads

Wiley_Calgrove AM (RURAL AREA WARRANT)

EXISTING CONDITIONS (PM Peak Hour)

Major Street Name = Calgrove

Total of Both Approaches (VPH) = 839


Number of Approach Lanes Major Street = 1

Minor Street Name = Wiley

High Volume Approach (VPH) = **282**

Number of Approach Lanes Minor Street = 1

WARRANTED FOR A SIGNAL

* Minor Street Approaches

** NOTE:

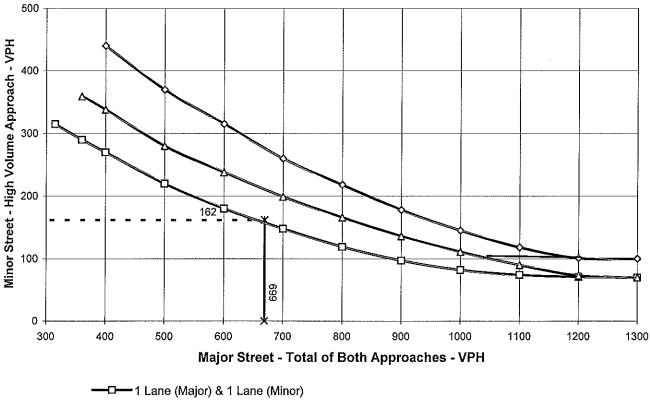
100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

Wiley_Calgrove PM (RURAL AREA WARRANT)

EXISTING CONDITIONS (AM Peak Hour)

Major Street Name = Sesnon


Total of Both Approaches (VPH) = 669 Number of Approach Lanes Major Street = 1

Minor Street Name = Tampa

High Volume Approach (VPH) = **162**

Number of Approach Lanes Minor Street = 1

->-----2+ Lanes (Major) & 2+ Lanes (Minor)

- * Minor Street Approaches

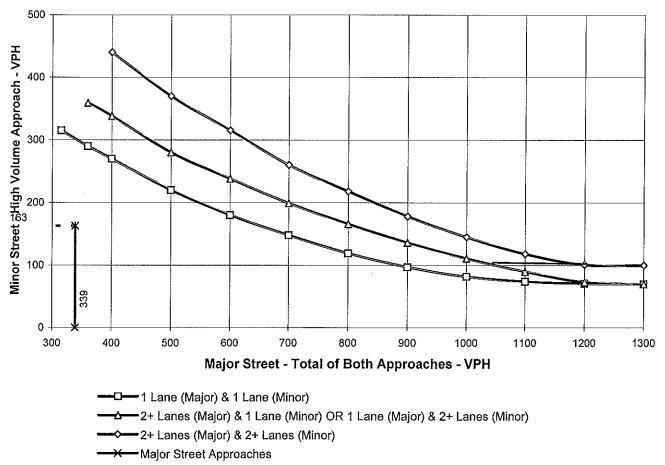
** NOTE:

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

Sesnon_Tampa AM (RURAL AREA WARRANT)

EXISTING CONDITIONS (PM Peak Hour)


Major Street Name = Sesnon

Total of Both Approaches (VPH) = **339** Number of Approach Lanes Major Street = **1**

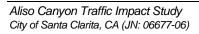
Minor Street Name = Tampa

High Volume Approach (VPH) = **163** Number of Approach Lanes Minor Street = **1**

SIGNAL WARRANT NOT SATISFIED

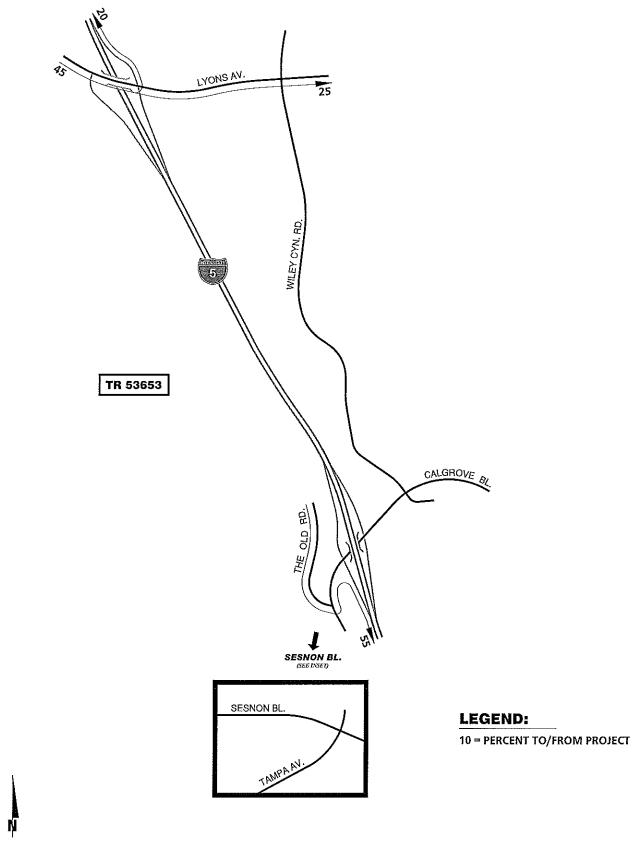
* Minor Street Approaches

** NOTE:

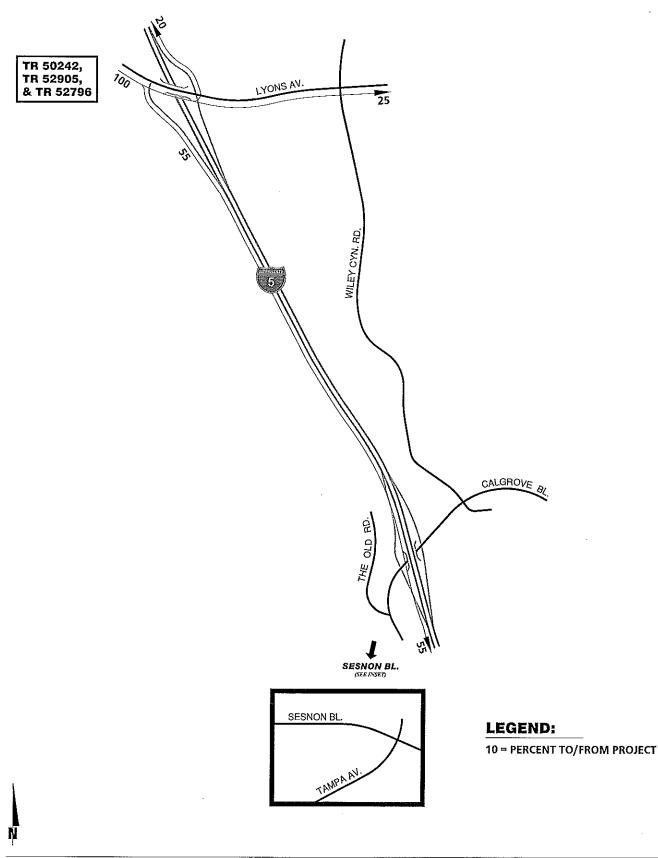

100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Urban Crossroads

Sesnon_Tampa PM (RURAL AREA WARRANT)

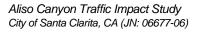

APPENDIX D

CUMULATIVE TRAFFIC


TR 53653 TRIP DISTRIBUTION

Aliso Canyon Turbine Replacement Project County of Los Angeles, CA (JN - 6677:09)

TR 50242, TR 52905, AND TR 52796 TRIP DISTRIBUTION



Aliso Canyon Turbine Replacement Project County of Los Angeles, CA (JN - 6677:10)

APPENDIX E

EXISTING PLUS AMBIENT PLUS CUMULATIVE LEVEL OF SERVICE WORKSHEETS

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions AM Peak Hour

______ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ********************** Intersection #100 I-5 SB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 8.6 Worst Case Level Of Service: C[20.3] North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Approach: Movement: L - T - R Control:Stop SignStop SignUncontrolledRights:IncludeIncludeInclude Rights: Lanes: Volume Module: Base Vol: 0 0 0 39 1 303 0 107 68 480 257 0 Initial Bse: 0 0 0 40 1 312 0 110 70 494 265 0

 Added Vol:
 0
 0
 0
 0
 0
 0
 0
 57

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0

 Initial Fut:
 0
 0
 0
 40
 1
 312
 0
 110
 127

 0 19 0 0 0 0 494 284 0

 PHF Volume:
 0
 0
 42
 1
 324
 0
 115
 132
 514
 295

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 FinalVolume:
 0
 0
 0
 42
 1
 324
 0
 115
 132
 514
 295

 0 0 0 -----||------||--------|| Critical Gap Module: Critical Gp:xxxxx xxxx 6.4 6.5 6.2 xxxxx xxxx 4.1 xxxx xxxx FollowUpTim:xxxxx xxxx XXXX 3.5 4.0 3.3 xxxxx xxxx 2.2 xxxx xxxx Capacity Module: Cnflict Vol: xxxx xxxx 1503 1569 295 xxxx xxxx 247 xxxx xxxx Potent Cap.: xxxx xxxx xxxx 135 112, 749 xxxx xxxx xxxx 1331 xxxx xxxxx Move Cap.: xxxx xxxx xxxx 95 69 749 xxxx xxxx 1331 xxxx xxxxx Volume/Cap: xxxx xxxx 0.44 0.02 0.43 xxxx xxxx 0.39 xxxx xxxx Level Of Service Module: 1.9 xxxx xxxxx Control Del:xxxxx xxxx xxxxx xxxxx 13.4 xxxxx xxxx 9.4 xxxx xxxxx LOS by Move: * * * * * B * * * A * * Movement: LT - LTR - RT A * * Shared LOS: * * * F * * * * * * * * xxxxxx * ApproachDel: xxxxxx ApproachLOS: * 20.3 XXXXXX * С * Note: Queue reported is the number of cars per lane.

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions AM Peak Hour _____ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ***** Intersection #200 I-5 NB (NS) / CALGROVE BLVD. (EW) ***** Average Delay (sec/veh): 2.9 Worst Case Level Of Service: C[16.5] North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Approach: Movement: Control:Stop SignStop SignUncontrolledUncontrolledRights:IncludeIncludeIncludeInclude Include Include Include Include 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 Lanes: Volume Module: Base Vol: 52 2 81 0 0 61 98 0 658 0 0 121 Initial Bse: 54 2 83 0 0 0 63 101 0 0 678 125
 Added Vol:
 19
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <th 0 0 0 0 0 0 0 0 0 0 0 0 63 101 0 0 678 125

 PHF Volume:
 74
 2
 85
 0
 0
 64
 103

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0

 FinalVolume:
 74
 2
 85
 0
 0
 64
 103

 0 0 692 0 0 0 0 0 692 127 $\begin{array}{ccc} 0 & 0 & 0 \\ 64 & 103 & 0 \end{array}$ 0 127 Critical Gap Module: Critical Gp: 6.4 6.5 6.2 XXXXX XXXX XXXXX 4.1 XXXXX XXXXX XXXXX XXXXX FollowUpTim: 3.5 4.0 3.3 XXXXX XXXX 2.2 XXXX XXXXX XXXXX XXXXX -----!|-----!|------! Capacity Module: -----!|-----!!-----! Level Of Service Module: Control Del:xxxxx xxxx9.1 xxxxx xxxx9.8 xxxx xxxxx xxxx xxxx xxxxLOS by Move:**A**Movement:LT - LTR - RTLT - LTR - RTLT - LTR - RTLT - LTR - RT Shared LOS: C * * * * * * * * * * * * * **XXXXXX** * ApproachDel: 16.5 ApproachLOS: C XXXXXX XXXXXX * *

Note: Queue reported is the number of cars per lane.

.

E + A + C A	PI		PR	on oun	0, 2	009 07:	22:14				Page	4⊷T
ALISO				ient +	Cumu	TRAFFIC lative k Hour					6677)	
· · · · · · · · · · · · · · · · · · ·		_,		A 	m rea.	к ноцг						
		1	Level ()f Ser	vice (Computa	ation	Repor	t			
ICU 1	(Loss	as Cy	ycle Le	ength	%) Me	thod (E	future	Volu	me Alte	ernati	ve)	
*****										*****	*****	******
Intersection ********										*****	****	******
Cycle (sec):		1(p.(X):			761
Loss Time (s	ec):			₹=4.0	sec)	Averag				:	XXX	XXX
Optimal Cycl		-	59			Level						С

Approach:											est B	
Movement:			- R			- R			- R		- Т	
Control:	,						•		•	•		
Rights:	±.	Inclu	ide	L .	Ovl	ted	L	Incl	ide	£.	Incl	ude
Min. Green:	0	0	0	0		0	0		0	0		
Lanes:	1	-	0 1	1		-	2	-	0 1	1		1 0
Volume Modul	e:											
Base Vol:	183	184	147	124	378	380	121		104	163		139
Growth Adj:		1.03	1.03		1.03	1.03		1.03	1.03		1.03	1.03
Initial Bse:			151	128	389	391	125		107	168	856	143
Added Vol:	0	0	0	0	0	0	0		0	0	16	0
PasserByVol:		100	1 - 1	0	0	0	105	-	0	0	0	0
Initial Fut: User Adj:		190 1.00	$151 \\ 1.00$	128	389 1.00	391 1.00	125	683 1.00	107 1.00	168	872 1.00	143 1.00
PHF Adj:		0.89	0.89		0.89	0.89		0.89	0.89		0.89	0.89
PHF Volume:	213	214	171	144	439	441	141		121	189	983	161
Reduct Vol:	0	0	1,1	0	10	0	0	, 05	0	0	0	0
Reduced Vol:	-	-	171	144	439	441	141	-	121	189	983	161
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	213	214	171	144	439	441	141	769	121	189	983	161
OvlAdjVol:						371						
	,			l			i					
Saturation F					1000	4856	4886	1000	1850	4000		1000
Sat/Lane:		1750	1750		1750	1750		1750	1750		1750	1750
Adjustment:			1.00		1.00 2.00	$1.00 \\ 1.00$		1.00 2.00	1.00 1.00		1.00 2.58	$1.00 \\ 0.42$
Lanes: Final Sat.:		2.00 3500	$1.00 \\ 1750$		2.00	1750		3500	1750		2.58	0.42 740
Final Sat.:												
Capacity Anal	•			E .		I			1	,		i
Vol/Sat:	-	0.06		0.08	0.13	0.25	0.04	0.22	0.07	0.11	0.22	0.22
OvlAdjV/S:						0.21						
Crit Moves:	****					* * * *		****		****		

_____ ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions AM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #400 WILEY CANYON RD. (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 3.6 Worst Case Level Of Service: B[14.7] ************* North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Approach: Movement: Control:Stop SignStop SignUncontrolledUncontrolledRights:IncludeIgnoreIncludeInclude Lanes: -----!|-----! Volume Module: Base Vol: 11 7 1 34 1 633 117 41 4 182 87 Initial Bse: 11 7 1 35 1 652 121 42 9 4 187 90 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol:0000000Initial Fut:1171351652121429 0 0 0 Ω 4 187 90 PHF Adj:

 PHF Volume:
 12
 8
 1
 39
 1
 0
 133
 46
 10

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 FinalVolume:
 12
 8
 1
 39
 1
 0
 133
 46
 10

 5 206 99 0 0 0 U 5 206 99 Critical Gap Module: Critical Gp: 7.1 6.5 6.2 7.1 6.5 6.2 4.1 XXXX XXXXX 4.1 XXXX XXXXX FollowUpTim: 3.5 4.0 3.3 3.5 4.0 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxx Capacity Module: Cnflict Vol: 577 625 46 537 537 206 305 xxxx xxxxx 57 xxxx xxxxx Potent Cap.: 431 404 1029 458 453 839 1267 xxxx xxxxx 1561 xxxx xxxxx Move Cap.: 395 360 1029 413 405 839 1267 xxxx xxxxx 1561 xxxx xxxxx Level Of Service Module: 2Way95thQ: xxxx xxxx xxxx xxxx xxxx 0.3 xxxx xxxx 0.0 xxxx xxxxx Control Del:xxxxx xxxx xxxx xxxx xxxx 8.2 xxxx xxxx LOS by Move: * * * * * * A * * 7.3 xxxx xxxxx LOS by Move: * * * * * * * A * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT A * * LT - LTR - RT

В 14.7 Shared LOS: * B * B * * * * * * * * 14.6 XXXXXX ApproachDel: XXXXXX ApproachLOS: в * в * Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

E-4

E + A + C A	М		Мо	on Jun	8, 2	009 07:	:22:14				Page	6-1
ALISO				lent +	Cumu				ALYSIS ndition		6677)	
	2000		Level (t ternati			
* * * * * * * * * * * *											****	*****
Intersection									le ste de ale de ale de ale	e ste ste ste ste ste	ماد ماد ماد ماد	مار بار بار بار بار بار
Cycle (sec):			 00						э.(X):			559
Loss Time (s				R=4.0	sec)							
Optimal Cycl						Level						В
*******	****	*****	******	*****	*****	******	*****	*****	******	*****	* * * * *	*****
Approach:			ound						ound		est B	
Movement:									- R			
Control: Rights:	5	top Si	ıde	2	top Si Trali	rdu rqu	5	top Si	lgn 1de	5	cop S.	ign udo
Min. Green:		0				0			0		0	
Lanes:	٥Ŭ		1 0			1 0			1 0			1 0
Volume Modul	e:											
	128		33	0	-			249	201	79		0
Growth Adj:			1.03		1.03			1.03	1.03		1.03	1.03
Initial Bse:			34	0	0	0	0		207	81 0		0
Added Vol: PasserByVol:	0 0		0 0	0	0	0	0	0	0 0	0	0	0
Initial Fut:		-	34	0	Ő	Ő	0	256	207	81	144	0
Jser Adj:		1.00	1.00	1.00	1.00	1.00	-	1.00	1.00		1.00	1.00
PHF Adj:		0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
PHF Volume:	196	2	51	0	0	0	0	382	308	121	215	0
Reduct Vol:	0		0	0	0	0	0	0	0	0	0	0
Reduced Vol:			51	0	0	0	0	382	308	121	215	0
PCE Adj:		$1.00 \\ 1.00$	$1.00 \\ 1.00$		$1.00 \\ 1.00$	$1.00 \\ 1.00$		1.00	$1.00 \\ 1.00$		1.00	$1.00 \\ 1.00$
4LF Adj: FinalVolume:			1.00 51	1.00	1.00	1.00	1.00	382	308	121	215	1.00
				+	-	-	-					-
Saturation F	-			,		•			•	1		
Adjustment:	1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00	1.00
Lanes:		0.59	0.41		2.00			1.11			1.28	0.00
	475		214	. 0		0	-	683	610	388	717	0
 Capacity Ana							[l			
/ol/Sat:	-	0.00	0.24	xxxx	0.00	xxxx	xxxx	0.56	0.51	0.31	0.30	xxxx
Crit Moves:	****	0.00			****			****	0.01	****	0.00	
Delay/Veh:	14.6	9.8	9.8	0.0	0.0	0.0	0.0	15.3	12.9	12.0	11.5	0.0
Delay Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
djDel/Veh:	14.6	9.8	9.8	0.0	0.0	0.0		15.3	12.9	12.0		0.0
LOS by Move:	В		A	*	*	*	*	C	В	в	B	*
ApproachDel:		$13.6 \\ 1.00$			XXXXX			$14.2 \\ 1.00$			$11.7 \\ 1.00$	
Delay Adj: ApprAdjDel:		13.6			XXXXX XXXXX			14.2			11.7	
LOS by Appr:		13.0 B		312	*			.т.2 В			B	
AllWayAvgQ:	0.6		0.1	0.0	0.0	0.0	1.2	0.9	0.9	0.4	0.4	0.4
*******	*****	*****	*****	*****	*****	*****	*****	*****	*****	* * * * * *	*****	*****

Note: Queue reported is the number of cars per lane.

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ***** Intersection #100 I-5 SB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 11.8 Worst Case Level Of Service: F[99.4] Approach: Movement: Stop Sign Stop Sign Uncontrolled Uncontrolled Include Include Include Include Control: Rights: Lanes: Volume Module: 0 0 0 83 0 84 0 888 63 111 199 Base Vol: 0 Initial Bse: 0 0 0 85 0 87 0 915 65 114 205 0 0 0 0 0 0 0 0 0 Added Vol: 38 0 65 0 PasserByVol: 0 0 Initial Fut: 0 0 0 0 0 85 0 87 0 0 0 0 0 0 0 0

 Initial Fut:
 0
 0
 85
 0
 87
 0
 915
 103
 114
 270
 0

 User Adj:
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00</ PHF Adj: 0.89

 PHF Volume:
 0
 0
 0
 96
 0
 97

 Reduct Vol:
 0
 0
 0
 0
 0
 0

 FinalVolume:
 0
 0
 0
 96
 97

 0 1030 116 129 304 0 0 0 0 0 0 0 0 1030 116 129 304 Û _____/ Critical Gap Module: Critical Gp:xxxxx xxxx xxxx 6.4 6.5 6.2 xxxxx xxxx xxxx 4.1 xxxx xxxxx FollowUpTim:xxxxx xxxxx 3.5 4.0 3.3 xxxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx 1649 1707 304 xxxx xxxx 1146 xxxx xxxx Potent Cap.:xxxx xxxx xxxx11092Move Cap.:xxxx xxxx xxxx9273 740 xxxx xxxx xxxxx 617 xxxx xxxxx Move Cap.: xxxx xxxx xxxx 92 73 740 xxxx xxxx 617 xxxx xxxx Volume/Cap: xxxx xxxx 1.04 0.00 0.13 xxxx xxxx 0.21 xxxx xxxx Level Of Service Module: 2Way95thQ: xxxx xxxx xxxx xxxx 0.5 xxxx xxxx xxxx 0.8 xxxx xxxxx Control Del:xxxxx xxxx xxxxx xxxxx 10.6 xxxxx xxxx 12.4 xxxx xxxxx LOS by Move: * .* * * * B * * * B * * * B * * Movement: LT - LTR - RT В * * Shared LOS: * * * * * * * * * * * * * * * 99.4 ApproachDel: xxxxxx XXXXXX XXXXXX ApproachLOS: * F Note: Oueue reported is the number of cars per lane.

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions PM Peak Hour

____ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #200 I-5 NB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 88.5 Worst Case Level Of Service: F[348.4] ***** North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Approach: Movement: L - T - R Volume Module: Base Vol: 67 2 270 0 0 0 467 497 0 0 194 74

 Initial Bse:
 69
 2
 278
 0
 0
 481
 512
 0
 0
 200

 Added Vol:
 65
 0
 0
 0
 0
 0
 0
 0
 0

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Initial Fut:
 134
 2
 278
 0
 0
 481
 512
 0
 0
 200

 76 0 0 76 User Adj:1.001.001.001.001.001.001.001.001.00PHF Adj:0.910.910.910.910.910.910.910.910.910.91

 PHF Volume:
 148
 2
 307
 0
 0
 0
 532
 566
 0
 0
 221

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 221
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 84 0 84 _____/ Critical Gap Module: Critical Gp: 6.4 6.5 6.2 XXXXX XXXX XXXX 4.1 XXXX XXXXX XXXXX XXXXX FollowUpTim: 3.5 4.0 3.3 XXXXX XXXX XXXX 2.2 XXXX XXXXX XXXXX XXXXX -----||------|| Capacity Module:
 Potent Cap.:
 78
 67
 528
 xxxx
 xxxx
 1267
 xxxx
 Volume/Cap: 2.83 0.06 0.58 xxxx xxxx 0.42 xxxx xxxx xxxx xxxx xxxx Level Of Service Module: Control Del:xxxxx xxxx20.9 xxxxx xxxx9.9 xxxx xxxx xxxx xxxx xxxxLOS by Move:**C**<t Shared LOS:F**</h>**</h>< ****** Note: Queue reported is the number of cars per lane.

1

E + A + C P	М		Mc	n Jun	8, 2	009 07:	23:25				Page	4−⊥	
ALISO				ent +	Cumu				ALYSIS ndition	-	6677)		
TCII 1	(Loss		Level C			-		-	t ne Alte	rnatio	ر مر <i>ا</i>		
**********												*****	
Intersection *******										****	****	* * * * * * *	
Cycle (sec):			Critical Vol./Cap.(X):										
	=4.0	sec)		erage Delay (sec/veh):									
Optimal Cycl			57 *******	ماد باد باد باد باد	┺╼┺╼┺╼	Level					* * * * * *	+++++++	
Approach:													
Movement:	L,	- т	– R	L ·	- Т	- R	L	- T	- R	L -	- T	- R	
Control:	Protected			P	rotec	ted	Protected				Protected		
Rights:	Include			0	Ovl			Include			Include		
Min. Green:	1 0		0 0 1			0				0	0	0	
Lanes:	1 1					01							
Volume Modul			1	I		1	1		I	ŧ			
	167	355	224	160	256	232	345	967	133	135	782	111	
Growth Adj:	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	
Initial Bse:	172	366	231	165	264	239	355	996	137	139	805	114	
Added Vol:	0	0	0	0		0	0		0	0	53	0	
PasserByVol:		0	0	0		0	0	0	0	0	0	0	
Initial Fut:			231	165	264	239		1027	137	139		114	
User Adj:		1.00	$1.00 \\ 0.92$		1.00	1.00 0.92		1.00	$1.00 \\ 0.92$		1.00	1.00	
PHF Adj: PHF Volume:	186	0.92	250	178	285	259		1111	148	150	929	124	
Reduct Vol:	0		250	1,0	200	200	0		0	0	0	0	
Reduced Vol:			250	178	285	259		1111	-	150	-	124	
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	186	396	250	178	285	259	385	1111	148	150	929	124	
OvlAdjVol:						66							
Saturation F			•										
Sat/Lane:		1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	
Adjustment:			1.00		1.00	1.00		1.00	1,00		1.00		
Lanes:		2.00	1.00		2.00	1.00		2.00	1.00		2.65		
Final Sat.:	1750	3500	1750		3500	1750		3500	1750		4633	617	
	,												
Capacity Ana.	-			0 10	0 00	0.15	0 1 1	0 20	0 00	0 00	0 00	0.00	
	0.11	0.11	0.14	0.10	0.08	$0.15 \\ 0.04$	V.Li	0.32	0.08	0.09	0.20	0.20	
OvlAdjV/S: Crit Moves:			****	****		0.04		****		****			
CTTC 110469.													

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

4

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions PM Peak Hour

Level Of Service Computation Report

		CM Un	Level signal	ized M	ethod	(Futu	re Vol	ume A	lterna			
********										*****	****	******
Intersection *********					-				• •	*****	****	* * * * * * *
Average Delay			, -				Case *****					
Approach:	No	rth B	ound				E				est B	ound
Movement:	Ľ.	- T	– R	L ·	- Т	- R	Ъ	– T	– R	Ľ,	- T	
Control:			ign ude				Un				contr	
Rights:		Incl	ude		Igno	re		Incl	ude		Incl	ude
Lanes:			0 0			0 1			0 1		0 1	
Volume Module										11		
Base Vol:	6	5	1	77	6	199	554	145	6	0	79	55
Growth Adj:	1.03	1.03	1.03	1.03	1,03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
Initial Bse:	6	5	1	79	6	205	571	149	6	0	81	57
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	6	5	1	79	6	205	571	149	6	0	81	57
User Adj:	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.89	0.89	0.89	0.89	0.89	0.00	0.89	0.89	0.89	0,89	0.89	0.89
PHF Volume:	7	6	1	89	7	0	638	167	7	0	91	63
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume	7	6	1	89	7	0	638	167	7	0	91	63
Critical Gap]								
Critical Gp:		6.5	6.2	7.1	6.5	6.2	4 1	***	xxxxx	*****	~~~~	*****
FollowUpTim:			3.3	3.5	4.0	3.3			XXXXX			
]		
Capacity Modu		1 5 0 0	1 (7	1540	1640	01	154					
Cnflict Vol:		107	167	104Z 95	1542 116	91 972			XXXXX			XXXXX
Potent Cap.:	91 55	±07 60	882 882	95 58	65	972			XXXXX			XXXXX
Move Cap.:		0.10			0.11				XXXXX XXXX			XXXXX XXXX
Volume/Cap:												
Level Of Serv				1 1			• •					1
2Way95thQ:	1		XXXXX			XXXXX			XXXXX			XXXXX
Control Del:x LOS by Move:	XXXXX *	XXXX *	XXXXX *	XXXXX *		XXXXX *	9.5 A	XXXX *	XXXXX *	XXXXX *	XXXX *	XXXXX *
Movement:			- RT		- LTR				- RT		- LTR	RT
Shared Cap.:			XXXXX			xxxxx			XXXXX			XXXXX
SharedQueue:x							XXXXX					
Shrd ConDel:x												
Shared LOS:	*	F	*	F	*			*		*		*
ApproachDel:		79.4		-	170.5		XX	xxxx		XX	xxxx	
ApproachLOS:		F			F		-11	*			*	
*****	*****	- ****;	*****	*****	*****	*****	*****	*****	*****	******	*****	******
Note: Queue r ***********									*****	******	*****	****

E + A + C PM

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Cumulative Project Conditions PM Peak Hour

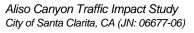
_____ - --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) Intersection #500 Tampa Ave. (NS) / Sesnon Boulevard (EW) Cycle (sec): 100 Critical Vol./Cap.(X): 0.219 Loss Time (sec):0 (Y+R=4.0 sec)Average Delay (sec/veh):8.8Optimal Cycle:0Level Of Service:A Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - RControl:Stop SignStop SignStop SignStop SignRights:IncludeIncludeIncludeIncludeMin. Green:000000Lanes:0101010 0 Volume Module: Base Vol: 120 3 40 0 0 3 0 107 100 43 89 - 0 Initial Bse: 124 3 41 0 0 3 0 110 103 44 92 0

 Added Vol:
 0
 0
 0
 0
 0
 0
 0
 0

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Initial Fut:
 124
 3
 41
 0
 3
 0
 110
 103

 0 0 0 0 0 0 0 0 44 92 0 PHF Adj: PHF Volume: 129 3 43 0 0 3 0 115 108 46 96 0


 Phr volume:
 129
 3
 43
 0
 0
 3
 0
 115
 108
 46
 96
 0

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Saturation Flow Module: Lanes:1.000.510.490.001.001.000.001.030.970.651.350.00Final Sat.:591348335060768907097564138930 Capacity Analysis Module: Vol/Sat: 0.22 0.01 0.13 xxxx 0.00 0.00 xxxx 0.16 0.14 0.11 0.11 xxxx **** **** Crit Moves: **** **** Delay/Veh: 10.1 8.1 8.1 0.0 0.0 7.6 0.0 8.8 7.9 8.9 8.6 0.0 1.00 AdjDel/Veh: 10.1 8.1 8.1 0.0 0.0 7.6 0.0 8.8 7.9 8.9 8.6 0.0 * A А LOS by Move: B A ApproachDel: 9.6 * А * А А А ApproachDel: 7.6 8.3 8.7 ApprAdjDel: LOS by Appr: AllWayAvco 1.00 1.00 1.00 1.00 9.6 7.6 8.3 8.7 А А Α Α AllWayAvgQ: 0.3 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.1 0.1 0.1

Note: Queue reported is the number of cars per lane.

APPENDIX F

EXISTING PLUS AMBIENT PLUS CUMULATIVE PLUS PROJECT LEVEL OF SERVICE WORKSHEETS

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions

AM Peak Hour Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #100 I-5 SB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 8.6 Worst Case Level Of Service: C[20.3] Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - RControl:Stop SignStop SignUncontrolledRights:IncludeIncludeIncludeLanes:00010 Volume Module: Base Vol: 0 0 0 39 1 303 0 107 68 480 257 0

 Initial Bse:
 0
 0
 40
 1
 312
 0
 110
 70
 494
 265
 0

 Added Vol:
 0
 0
 0
 0
 0
 0
 57
 0
 19
 0

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 110
 127

 PHF Volume:
 0
 0
 0
 42
 1
 324
 0
 115
 132
 514
 295
 0

 Reduct Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Critical Gap Module: Critical Gp:xxxxx xxxx xxxx 6.4 6.5 6.2 xxxxx xxxx 4.1 xxxx xxxx FollowUpTim:xxxxx xxxx xxxx 3.5 4.0 3.3 xxxxx xxxx xxxx 2.2 xxxx xxxx Capacity Module: Cnflict Vol: xxxx xxxx 1503 1569 295 xxxx xxxx 247 xxxx xxxx Potent Cap.: xxxx xxxx 135 112 749 xxxx xxxx 1331 xxxx xxxxx Move Cap.: XXXX XXXX 95 69 749 XXXX XXXXX 1331 XXXX XXXXX Volume/Cap: XXXX XXXX 0.44 0.02 0.43 XXXX XXXX 0.39 XXXX XXXX _____[Level Of Service Module: 2Way95thQ: xxxx xxxx xxxx xxxx 2.2 xxxx xxxx 1.9 xxxx xxxx Control Del:xxxxx xxxx xxxx xxxx 13.4 xxxxx xxxx 9.4 xxxx xxxx LOS by Move: * * * * * B * * * A * * Movement: LT - LTR - RT ApproachDel: xxxxx ApproachLOS: * Note: Queue reported is the number of cars per lane.

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions AM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #200 I-5 NB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 2.9 Worst Case Level Of Service: C[16.5] Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - R Lanes: Volume Module: Base Vol: 52 2 81 0 0 0 61 98 0 0 658 121 Initial Bse: 54 2 83 0 0 63 101 0 0 678 125 Added Vol: 19 0 PHF Volume: 74 2 85 0 0 64 103 0 692 127 Reduct Vol: 0 Critical Gap Module: _____[______ Capacity Module: Cnflict Vol: 987 1051 103 XXXX XXXX 820 XXXX XXXX XXXX XXXX XXXX Level Of Service Module: Control Del:xxxxx xxxx 9.1 xxxxx xxxx 9.8 xxxx xxxx xxxx xxxx Shared LOS:C**</h> ********************** Note: Queue reported is the number of cars per lane.

E + A + C + 1	P AM		/ Mc	n Jun	8, 2	009 07	:25:48				Page	4-1
			BINE RE mbient	+ Pro	ject ·		C IMPA	CT AN	ALYSIS	(JN 0	6677)	
			Level C)f Ser	vice (Computa	ation 1		 t			
ICU 1	(Loss		ycle Le							ernati	ve)	
********	* * * * *	*****	******	*****	*****	* * * * * * *	*****	*****	* * * * * * *	*****	*****	*****
Intersection ********										*****	*****	*****
Cycle (sec): Loss Time (se Optimal Cycle	e:		67	a=4.0	sec)	Averaç Level	ge Dela Of Se:	ay (s rvice	:	:	XXX	xxx D
Approach: Movement:												ound - R
			1	}								
Control: Rights:	P	rotec	ted	P	roteci	ted	P:	rotec	ted	P	rotec	ted
Rights: Min Groon:	0	Incl	uae n	0	001	Ω	0	TUCT	uae 0	0	Incl	uae 0
Min. Green: Lanes:	1	0 2	0 1	1	0 1	0 1	2 () 2)	0 1	1 1	02	1 0
Volume Module												-
Base Vol:	183	184	147	124	378	380	121	617	104	163	831	139
Growth Adj:	1.03	1.03	1.03	1.03	1.03	1.03		1.03	1.03	1.03	1.03	1.03
Initial Bse:			151	128	389	391	125		107	168	856	143
Added Vol:	0		0	0	-	0	0		0	0	16	0
PasserByVol:			0	0	-	0	0		0	0	0	0
Initial Fut:			151	128	389	391	125		107	168	872	143
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:		0.89	0.89		0.89	0.89		0.89	0.89		0.89	0.89
	213	214	171	144	439	441	141 0	769	121	189	983	161
Reduced Vol:	-		0 171	0 144	0 439	0 441	-	0 769	0 121	0 189	0 983	0 161
PCE Adj:		1.00	1.00		1.00	1.00		1.00			1.00	1.00
-		1.00	1.00		1.00	1.00		1.00		1.00		1.00
FinalVolume:			171			441		769	121	189		161
OvlAdiVol:						371						
									!			
Saturation FI	Low M	odule	:									
Sat/Lane:										1750		1750
Adjustment:									1.00			1.00
Lanes:											2.58	
			1750						1750		4510	740
Capacity Anal			•	I			I	•••••	·			
Vol/Sat:		0,06		0.08	0.25	0.25	0.04	0.22	0.07	0.11	0.22	0.22
OvlAdjV/S:	J. 12	0.00	V. IV	0.00	J.2.J	0.23	0.04	J. LL	0.07	V	J . 44	0.22
-	****				****			****		****		
******	*****	*****	******	*****	*****	*****	*****	*****	*****	*****	*****	*****

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions AM Peak Hour

					n rea	A HOUL						
			Level (Of Ser	vice	Comput	ation	Repor	t.			
		CM Un	signal:	ized M	ethod	(Futu	re Vol	ume A	lterna			
********										*****	*****	******
Intersection	****	* * * * *	*****	*****	****	*****	*****	*****	*****			
Average Dela												
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	Ŵ	est B	
Movement:	Ľ	- T	- R	L.	- T	- R	Ъ.	- T	- R	ь. 	- T	-→ R
Control:												
Rights: Lanes:		Incl	ude		Igno	re		Incl	ude		Incl	ude
Lanes:	0	0 1!	0 0	0	10	0 1	1	01	01	1	01	0 1
Volume Module Base Vol:	e: 11		1	34	1	633	117	41	9	4	182	87
Growth Adj:								1.03		1.03		
Initial Bse:			1.05									
										0	0	0
Added Vol: PasserByVol:	0	0	0	0	Ő	0 0	Ő	Ő	ň	ő	ŏ	
Initial Fut:	11	7	1	35			121			4		-
									1.00			
User Adj: PHF Adj:	0.91	n q1	0 01	n 91	0.91			0.91			0.91	
PHF Volume:				39	1						206	
Poduct Vol:	12	0		55								
Reduct Vol: FinalVolume:	12	8	1	39	1	0	133	46	10	5	206	99
							11					1
Critical Gap	Mođu	le:					1 +			• •		,
				7.1	6.5	6.2	4.1	xxxx	XXXXX	4.1	xxxx	XXXXX
Critical Gp: FollowUpTim:	3.5	4.0	3.3	3.5	4.0	3.3	2.2	XXXX	XXXXX	2.2	xxxx	XXXXX
										[]		
Capacity Modu												
Cnflict Vol:		625	46	537	537	206	305	xxxx	XXXXX	57	XXXX	XXXXX
Potent Cap.:	431	404	1029	458	453	839	1267	XXXX	XXXXX	1561	XXXX	XXXXX
Move Cap.:	395	360	1029						XXXXX		XXXX	XXXXX
Volume/Cap:						0.00			XXXX			XXXX
]]
Level Of Serv							0.2			0.0		
2Way95thQ:	XXXX	XXXX	XXXXX	XXXX	XXXX	XXXXX	0.3	XXXX	XXXXX	0.0		
Control Del: LOS by Move:	T XXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	Ø.Z 7	XXXX	xxxxx *	1.3		XXXXX *
											- LTR	
Movement: Shared Cap.:	, TIT	- TLK	- 11	ыт. И1Э		~ KI	7777 TT -	7171	- AI	тт . Тт		
-												
SharedQueue: Shrd ConDel:2							XXXXX XXXXX					
Shared LOS:	*	14,7 B	*	14.0 B	*	*	*	*	*	*****	*	*
ApproachDel:	-	14.7	-	Б	14.6			xxxx			xxxx	
ApproachLOS:		14.7 В			14.0 B			*		~~~	*	
**************************************	****		******	*****		*****	*****	*****	*****	*****	*****	******
Note: Queue 3									*****	*****	*****	*****

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

,

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions AM Peak Hour _____ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) Intersection #500 Tampa Ave. (NS) / Sesnon Boulevard (EW) Cycle (sec): 100 Critical Vol./Cap.(X): 0.680 Loss Time (sec):0 (Y+R=4.0 sec)Average Delay (sec/veh):Optimal Cycle:0Level Of Service: 18.6 C Stop SignStop SignStop SignStop SignIncludeIncludeIncludeInclude:00000 Control: Rights: 0 Min. Green: Volume Module: Base Vol: 128 1 33 0 0 0 0 249 201 79 140 Ω Initial Bse: 132 1 34 0 0 0 0 256 207 81 144 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 Added Vol: 0 0 0 0 0 75 0 207 1 0 PasserByVol: 0 75 0 0 0 0 256 282 81 144 Initial Fut: 207 0

 PHF Volume:
 308
 2
 51
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Ω 0 0 FinalVolume: 308 2 51 0 0 0 382 420 121 215 0 _____/ Saturation Flow Module: Lanes: 1.00 0.72 0.28 0.00 2.00 0.00 0.00 1.00 1.00 0.72 1.28 0.00 Final Sat.: 464 362 141 0 839 0 0 561 629 351 647 0 _____|_____|______ Capacity Analysis Module: Vol/Sat: 0.66 0.00 0.36 xxxx 0.00 xxxx xxxx 0.68 0.67 0.35 0.33 xxxx Crit Moves: **** **** * * * * **** 23.1 10.3 10.3 0.0 0.0 0.0 0.0 21.1 18.5 13.5 12.9 Delay/Veh: 0.0 AdjDel/Veh: 23.1 10.3 10.3 0.0 0.0 0.0 0.0 21.1 18.5 13.5 12.9 0.0 * * LOS by Move: C B B * * C С B B * 21.2 19.7 13.1 ApproachDel: XXXXXX XXXXX XXXXXX 1.00 1.00 Delay Adj: 1.00 ApprAdjDel: 21.2 19.7 13.1 LOS by Appr: С * С В AllWayAvgQ: 1.7 0.1 0.1 0.0 0.0 0.0 1.9 1.8 1.8 0.5 0.4 0.4

Note: Queue reported is the number of cars per lane.

Traffix 7.9.0415 (c) 2007 Dowling Assoc. Licensed to URBAN CROSSROADS, IRVINE

E + A + C + P PM Mon Jun 8, 2009 07:26:40

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions PM Peak Hour

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #100 I-5 SB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 11.8 Worst Case Level Of Service: F[99.4] Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control:Stop SignStop SignUncontrolledRights:IncludeIncludeIncludeLanes:00010 _____|_____|______| Volume Module: Base Vol: 0 0 0 83 0 84 0 888 63 111 199 0

 Initial Bse:
 0
 0
 85
 0
 87
 0
 915
 65
 114
 205
 0

 Added Vol:
 0
 0
 0
 0
 0
 0
 38
 0
 65
 0

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

 PHF Volume:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td Critical Gap Module:

 Critical Gp:xxxx xxxx xxxx 6.4
 6.5
 6.2 xxxxx xxxx xxxx 4.1 xxxx xxxx

 FollowUpTim:xxxx xxxx xxxx 3.5
 4.0
 3.3 xxxxx xxxx xxxx
 2.2 xxxx xxxxx

 Capacity Module: Cnflict Vol: XXXX XXXX XXXXX 1649 1707 304 XXXX XXXX XXXXX 1146 XXXX XXXXX
 Potent Cap.:
 xxxx xxxx
 110
 92
 740
 xxxx xxxx
 617
 xxxx xxxx

 Move Cap.:
 xxxx xxxx
 92
 73
 740
 xxxx xxxx
 617
 xxxx xxxx
 Volume/Cap: xxxx xxxx 1.04 0.00 0.13 xxxx xxxx 0.21 xxxx xxxx _____|_____ Level Of Service Module: 2Way95thQ: xxxx xxxx xxxx xxxx 0.5 xxxx xxxxx 0.8 xxxx xxxxx Shird Conbell And A ApproachDel: xxxxxx ApproachLOS: * Note: Queue reported is the number of cars per lane.

______ ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions PM Peak Hour _____ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #200 I-5 NB (NS) / CALGROVE BLVD. (EW) Average Delay (sec/veh): 88.5 Worst Case Level Of Service: F[348.4] ***** Approach:North BoundSouth BoundEast BoundWest BoundMovement:L - T - RL - T - RL - T - RL - T - RVolume Module: Base Vol: 67 2 270 0 0 0 467 497 0 0 194 74 Initial Bse: 69 2 278 0 0 481 512 0 0 200 76 Added Vol: 65 0 PHF Volume: 148 2 307 0 0 532 566 0 0 221 84 Reduct Vol: 0 -----| Critical Gap Module: Critical Gp:6.46.56.2 xxxxx xxxx xxxx4.1 xxxx xxxxx xxxx xxxx xxxxFollowUpTim:3.54.03.3 xxxxx xxxx xxxx2.2 xxxx xxxx xxxx xxxx xxxx Capacity Module: Volume/Cap: 2.83 0.06 0.58 xxxx xxxx xxxx 0.42 xxxx xxxx xxxx xxxx xxxx Level Of Service Module: Control Del:xxxxx xxxx 20.9 xxxxx xxxx 20.9 xxxxx xxxxxLOS by Move: * * C * * * A * * * * * Movement: LT - LTR - RT Shared LOS: F * <td ********************* Note: Queue reported is the number of cars per lane. ************************

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions PM Peak Hour Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***** Intersection #300 WILEY CANYON RD. (NS) / LYONS AVENUE (EW) Critical Vol./Cap.(X): 0.773 Cycle (sec): 100 Loss Time (sec):10 (Y+R=4.0 sec)Average Delay (sec/veh):Optimal Cycle:61Level Of Service: XXXXXX С Control:ProtectedProtectedProtectedProtectedRights:IncludeOvlIncludeIncludeMin. Green:00000 0 Lanes: 1 0 2 0 1 1 0 1 0 1 2 0 2 0 1 1 0 2 1 0 _____|____|_____| Volume Module: Base Vol: 167 355 224 160 256 232 345 967 133 135 782 111 Initial Bse: 172 366 231 165 264 239 355 996 137 139 805 114
 Added Vol:
 0
 0
 0
 0
 0
 0
 31
 0
 53

 PasserByVol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0 0 0 Initial Fut:1723662311652642393551027137139858114User Adj:1.001.001.001.001.001.001.001.001.001.00PHF Adj:0.920.920.920.920.920.920.920.920.920.920.92PHF Volume:1863962501782852593851111148150929124 PHF Adj: 0.92 0.92 PHF Volume: 186 396 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 186 396 250 178 285 259 385 1111 148 150 929 124 FinalVolume: 186 396 250 178 285 259 385 1111 148 150 929 124 66 OvlAdjVol: _____ Saturation Flow Module:

 Adjustment:
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00</td

Capacity Analysis Module: Vol/Sat: 0.11 0.11 0.14 0.10 0.16 0.15 0.11 0.32 0.08 0.09 0.20 0.20 Crit Moves: **** 0.04 **** **** ****

ALISO CANYON TURBINE REPLACEMENT TRAFFIC IMPACT ANALYSIS (JN 06677) Existing + Ambient + Project + Other Development Conditions PM Peak Hour

			Level			-		-				
2(********			signal. ******								****	******
Intersection										*****	*****	****
Average Dela										rvice: *****		
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	W	est B	ound
Movement:			- R							Г		
	 					 :				 TT=		
Control: Rights:	5	Thel:	nqe	5	Tano	re	UII	Tncl	ude	Un	Thel	ude
Lanes:	0		0 0			0 1			0 1		0 1	
Volume Module	e:											
Base Vol:	6			77						0	79	55
Growth Adj:	1.03	1.03	1.03	1.03	1.03	1.03		1.03	1.03	1.03	1.03	1.03
Initial Bse:	6	5	1	79	6	205	571	149	6	0	81	57
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	6	5	1	79	6	205	571	149	6	0	81	57
User Adj:	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.89	0.89	0.89	0.89	0.89	0.00	0.89	0.89	0.89	0.89	0.89	0.89
PHF Volume:	7	6	1	89	7	0	638	167	7	0	91	63
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:	7	-		89				167		-	91	
	•											
Critical Gap			c 0		<u>с</u> г	<u> </u>	. 1					
Critical Gp:				7.1						XXXXX		
FollowUpTim:	3.5	4.0	3.3			3.3				XXXXX		
Capacity Modu										11		
Cnflict Vol:		1598	167	1542	1542	91	154	XXXX	XXXXX	xxxx	XXXX	XXXXX
Potent Cap.:	91	107	882	95	116	972	1438	xxxx	XXXXX	XXXX	xxxx	XXXXX
Move Cap.:			882	58	65	972	1438	xxxx	XXXXX	xxxx	xxxx	XXXXX
Volume/Cap:	0.13	0.10	0.00		0.11		0.44	xxxx	xxxx	XXXX		XXXX
	•											
Level Of Serv							~ ~					
2Way95thQ:									XXXXX			XXXXX
Control Del:>										XXXXX		
			*				A		*		*	
Movement:			- RT						- RT		- LTR	
Shared Cap.:										XXXX		
SharedQueue:>												
Shrd ConDel:>												
Shared LOS:	*	\mathbf{F}	*	F	*	*	*	*	*	*	*	*
ApproachDel:		79.4		4	470.5		XX	XXXXX		XX	XXXXX	
ApproachLOS:		F			E	f f J C		*	n de de la como	ta da da de la como de la	*	
Note: Queue									*****	*****	*****	*****
Note: Queue :									*****	*****	****	******

E + A + C + P P	M 	Мо	on Jun	8, 2	009 07	:26:40				Page	6-1
ALISO CANY Existi			+ Proj	ject –		C IMPAC r Devel					
2000	HCM 4-	Way St	op Me	thod	(Future	ation R e Volum ******	ne Ali	ternati		****	****
Intersection #50											
**************************************	10	0 0 (Y+F 0	R=4.0 :	sec)	Critic Averaç Level	cal Vol ge Dela Of Ser	./Cap y (se vice:	p.(X): ec/veh) :	:	0.3	363 9.9 A
	orth Bo			ith Bo				ound		st Bo	
	- T	- R	г -	- т	- R	ь -	Т	- R	L -	Т	- R
 Control;	Stop Si	.gn	 St	cop Si	ign	 St		 Lgn		op Si	
Rights:	Inclu			Inclu			Inclu			Inclu	
) 0 10	0 1 0	0	-	0	0	0	0 1 0	0 0 1	0	0 1 0
Volume Module:											
Base Vol: 12		40	0	0	3	0	107	100	43	89	0
Growth Adj: 1.03 Initial Bse: 12	3 1.03 1 3	1.03 41	1.03	1.03	1.03	1.03 0		1.03	1.03		1.03
	+ 3) 0	41 0	0	0	3 0	0	$110 \\ 0$	103 0	44 0	92 0	0
PasserByVol: 7		0	0	0	0	0	0	75	0	Ő	0
Initial Fut: 19		41	0	0	3	0	110	178	44	92	0
) 1.00	1.00	1.00		1.00	1.00		1.00	1.00 1		1.00
2	5 0.96	0.96	0.96		0.96	0.96		0.96	0.96 (0,96
PHF Volume: 20		43	0	0	3	0	115	186	46	96	0
Reduct Vol:) 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol: 208	3 3	43	0	0	3	0	115	186	46	96	0
PCE Adj: 1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00 1	L.00	1.00
~	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	L.00	1.00
FinalVolume: 208		43	0	0	3	0	115	186	46	96	0
Saturation Flow M	10dule:	1 00	1.00	1 00	1 00	1.00	1 00	1 00	1 00 1		1 00
J) 0.66	$1.00 \\ 0.34$	0.00		$1.00 \\ 1.00$	0.00		$1.00 \\ 1.00$	1.00 1		$1.00 \\ 0.00$
Final Sat.: 572		218	0.00	567	638		643	736	384	827	0.00
											•
Capacity Analysis	Modul	e:									
	5 0.01	0.20	XXXX	0.00	0.01	XXXX (0.18	0.25	0.12 0).12	XXXX
Crit Moves: ****					****			****	****		
Delay/Veh: 12.0		8.4	0.0	0.0	7.9	0.0	9.3	8.9	9.4	9.0	0.0
	1.00	1.00	1.00		1.00	1.00 1		1.00	1.00 1		1.00
AdjDel/Veh: 12.0 LOS by Move: H		8.4 A	0.0 *	0.0 *	7.9	0.0	9.3	8.9	9.4	9.0	0.0 *
ApproachDel:	8 A 11.3	А		7.9	A	~	A 9.1	A	A	A 9.1	^
Delay Adj:	1.00			1.00		-	1.00		1	00	
ApprAdjDel:	11.3			7.9		-	9.1		μ.	9.1	
LOS by Appr:	±±.9 B			Ă			A			Ä	
AllWayAvgQ: 0.5		0.1	0.0	0.0	0.0	0.2	0.3	0.3	0.1	0.1	0.1
**************************************							****	*****	******	****	*****

.

Note: Queue reported is the number of cars per lane.

Appendix C CEQA Checklist

Appendix C CEQA Checklist

This appendix presents a completed California Environmental Quality Act (CEQA) Initial Study Checklist for the proposed Aliso Canyon Turbine Replacement Project. The CEQA Checklist has been completed based on the methodology and conclusion of the environmental impact analysis represented and contained in this PEA. The CEQA Checklist is provided for completeness of CEQA documentation.

1. Project title:

Aliso Canyon Turbine Replacement Project

2. Lead agency name and address:

California Public Utilities Commission 505 Van Ness Avenue San Francisco, CA 94102-3298

3. Contact person and phone number:

Larry Sasadeusz, Project Manager Southern California Gas Company 555 W. 5th St. ML GT23H5 Los Angeles, CA 90013

213-244-4434

4. Project location:

The proposed Aliso Canyon Turbine Replacement Project (ACTR) originates at the Aliso Canyon Gas Storage Field, located in unincorporated Los Angeles County, at 12801 Tampa Avenue in Northridge, CA. The project includes electrical transmission and natural gas injection. The new compressor station that will provide increased injection capacity to the storage field will be located at the Plant Station site. The transmission upgrade originates in the City of Newhall, a community within the City of Santa Clarita. The transmission system extends south through Chatsworth and Sylmar, communities within unincorporated Los Angeles County. The alignment will interconnect to the new compressor station via a new substation, proposed to be located within the property boundary of the storage field. Substations to be upgraded include the Newhall substation, located near the intersection of Wiley Canyon Road and Lyons Avenue, in the City of Santa Clarita, the San Fernando Substation, located near the intersection of San Fernando Mission Boulevard and San Fernando Road, in the City of San Fernando, and the Chatsworth Substation, located near the Chatsworth reservoir near Plummer Street and Valley Circle, in unincorporated Los Angeles County. The locations of the proposed project components are represented in Figure 3.2-1 in the PEA, and Figure A-1 in the Appendix.

5. Project Sponsor:

Southern California Gas Company 12801 Tampa Avenue Northridge, CA 91326

6. General Plan Designations

Refer to Section 4.9 Land Use and Planning, of this PEA.

7. Zoning

Refer to Section 4.9 Land Use and Planning, of this PEA.

8. Description of Project

The Proposed Project components include a proposed Central Compressor Station with three new VFD motors, relocation of the existing office trailers and guard house, a proposed PPL line interconnected to the proposed Central Compressor Station, a proposed SCE Natural Substation, and related off-site modifications to two existing SCE 66 kV sub-transmission lines and three existing SCE substations. SoCalGas is the Proponent of the Proposed Project; therefore, they will work extensively with SCE to license and implement the modifications to the SCE facilities needed to provide electrical services to the Proposed Project.

Construction of the proposed Central Compressor Station, proposed PPL, and relocation of office trailer facilities and guard house will be conducted by the Proponent. The installation of the new VFD compressor trains will not affect the existing system including the storage reservoir, wells, pressure, field lines, and other Storage Field parameters; they will be constructed to operate using the existing system without modification. The proposed Central Compressor Station will be connected to the suction, discharge and blowdown headers from the existing TDC station. Additional piping is proposed to connect the suction and discharge header at the proposed Central Compressor Station, and to connect the new compression facility to the existing emergency shutdown system; however, there are no new pipelines or wells planned as part of the Proposed Project. The TDCs will be retired in accordance with public utility retirement processes typically implemented by the Proponent. This includes maintaining the existing TDC station for at least one field cycle of tested reliable service using the VFDs in order to verify reliable and efficient operations using the new equipment.

The proposed PPL will be designed to San Diego Gas and Electric (SDG&E) Standards and constructed by the Proponent with four circuits to provide three (3) phase four (4) wire electrical services to the proposed Central Compressor Station and other existing site load. The proposed PPL will be interconnected from the proposed SCE Natural Substation to the proposed Central Compressor Station. The alignment of the PPL will be determined from several available options upon final engineering and design considerations for the proposed SCE Natural Substation. The trailer facilities relocation will remove the existing office trailers from service and place new office facilities within a designated location. The guard house will be relocated approximately 500 feet north of the existing guard house along the existing access road. The existing guard house will remain in place for security and signage purposes. The guard house relocation will provide additional staging area for incoming trucks helping to reduce associated city street congestion.

The proposed SCE Natural Substation, proposed SCE 66 kV sub-transmission line modifications, and proposed modifications at three additional SCE substations will be constructed by SCE. The proposed SCE Natural Substation will be a 56 megavolt ampere (MVA) 66/12 kV customer dedicated

substation, constructed according to SCE design specifications. The proposed SCE Natural Substation will include a communication system, mechanical engineering and electrical room (MEER), substation lighting, new poles, loop-in circuits, cables, conductors, capacitors, and transformers. To tie into the proposed SCE Natural Substation, SCE plans to rebuild a portion of the supporting towers supporting the SCE Chatsworth-MacNeil-Newhall-San Fernando 66 kV line and the SCE MacNeil-Newhall-San Fernando 66 kV existing source lines. These lines are represented on Figure 3.4-1 in the PEA.

9. Surrounding Land Uses and Setting

Existing land uses within the Proposed Project on-site components consist of natural gas storage. Existing land uses in the vicinity of the off-site electrical improvements include solid waste disposal, open space, residential, agricultural, and recreational. The overall region is characterized by canyons, hills, and mountain ranges, which provide an open space greenbelt around the perimeter of the Santa Clarita Valley (City of Santa Clarita 2008). The alignment of the proposed SCE 66 kV sub-transmission modification is located near open spaces such as the Santa Susana Mountains and associated park lands on the western side of I-5.

10. Other Public Agencies Whose Approval Is or May Be Required

- United States Army Corps of Engineers
- State Water Resources Control Board
- California Department of Fish and Game
- Los Angeles County Department of Public Works
- Los Angeles County Planning Department
- City of Los Angeles
- City of Santa Clarita

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

X	Aesthetics	Х	Agriculture Resources	X	Air Quality
Х	Biological Resources	Х	Cultural Resources	Х	Geology /Soils
x	Hazards & Hazardous Materials	X	Hydrology / Water Quality	x	Land Use / Planning
Х	Mineral Resources	Х	Noise	Х	Population / Housing
Х	Public Services	Х	Recreation	Х	Transportation/Traffic
Х	Utilities / Service Systems	Х	Mandatory Findings of Signi	ificance	e

DETERMINATION: (To be completed by the Lead Agency)

On the basis of this initial evaluation:

I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Date

Signature

Date

EVALUATION OF ENVIRONMENTAL IMPACTS:

The CEQA Checklist has been completed based on the methodology and conclusion of the environmental impact analysis represented and contained in this PEA. The following CEQA Checklist is provided for completeness of CEQA documentation.

CEQA CHECKLIST:

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
I. AESTHETICS Would the project:				
a) Have a substantial adverse effect on a scenic vista?			x	
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?			x	
c) Substantially degrade the existing visual character or quality of the site and its surroundings?			x	
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			x	
II. AGRICULTURE RESOURCES: In determ significant environmental effects, lead agend and Site Assessment Model (1997) prepare model to use in assessing impacts on agricu	cies may refer d by the Califo	to the California Agi rnia Dept. of Conse	ricultural Land I rvation as an o	Evaluation
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non- agricultural use?				Х
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?				х
c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?				x

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
III. AIR QUALITY Where available, the sig management or air pollution control district Would the project:				
a) Conflict with or obstruct implementation of the applicable air quality plan?			x	
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?		x		
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?		x		
d) Expose sensitive receptors to substantial pollutant concentrations?		x		
e) Create objectionable odors affecting a substantial number of people?			Х	
IV. BIOLOGICAL RESOURCES Would th	e project:			
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?			x	
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?		x		
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other			x	

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
means?				
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			х	
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?			х	
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?			x	
V. CULTURAL RESOURCES Would the	project:			
a) Cause a substantial adverse change in the significance of a historical resource as defined in '15064.5?			x	
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to '15064.5?			x	
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?			x	
d) Disturb any human remains, including those interred outside of formal cemeteries?			x	
VI. GEOLOGY AND SOILS Would the pro	oject:			
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				X
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist- Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			x	

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
ii) Strong seismic ground shaking?			Х	
iii) Seismic-related ground failure, including liquefaction?			х	
iv) Landslides?			Х	
b) Result in substantial soil erosion or the loss of topsoil?			х	
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?			х	
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?			х	
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?			х	
VII. HAZARDS AND HAZARDOUS MATER	IALS B Would	the project:		
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			х	
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?			х	
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			х	
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it			x	

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
create a significant hazard to the public or the environment?				
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?			x	
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?			x	
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?			x	
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?			x	
VIII. HYDROLOGY AND WATER QUALITY	Would the p	roject:		
a) Violate any water quality standards or waste discharge requirements?			x	
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre- existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?			X	
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?			x	

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?			х	
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?			х	
f) Otherwise substantially degrade water quality?			x	
g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?				x
h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?			x	
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?			x	
j) Inundation by seiche, tsunami, or mudflow?				X
IX. LAND USE AND PLANNING - Would the	e project:			
a) Physically divide an established community?				X
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?				X

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?			x	
X. MINERAL RESOURCES - Would the pro	oject:			
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				x
b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				x
XI. NOISE - Would the project result in:				
a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			х	
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?			x	
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?			x	
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?			x	
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				x
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				x

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
XII. POPULATION AND HOUSING Would	d the project:	-		
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				x
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				x
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				Х
XIII. PUBLIC SERVICES Would the proje with the provision of new or physically altered governmental facilities, the construction of v to maintain acceptable service ratios, respo public services:	ed government	al facilities, need for use significant enviro	new or physic onmental impa	ally altered cts, in order
Fire protection?				X
Police protection?				X
Schools?				X
Parks?				X
Other public facilities?				Х
XIV. RECREATION Would the project:				
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			x	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				x
XV. TRANSPORTATION/TRAFFIC Would	d the project:			
a) Cause an increase in traffic which is substantial in relation to the existing traffic			х	

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?				
b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?			x	
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				x
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			x	
e) Result in inadequate emergency access?			x	
f) Result in inadequate parking capacity?			х	
g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?				x
XVI. UTILITIES AND SERVICE SYSTEMS	B Would the pr	oject:		
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?				x
b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				x
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				x

ENVIRONMENTAL RESOURCE IMPACT	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?				x
e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project=s projected demand in addition to the providers existing commitments?				x
f) Be served by a landfill with sufficient permitted capacity to accommodate the projects solid waste disposal needs?				Х
g) Comply with federal, state, and local statutes and regulations related to solid waste?				x
XVII. MANDATORY FINDINGS OF SIGNIF	ICANCE Wo	uld the project:		
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?		x		
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?			x	
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?			x	

Appendix D List of Preparers

APPENDIX D List of Preparers

Consultants

Resources Area	Resource Lead	<u>Company</u>
Aesthetics	Anne Pietro, Senior Program Manager	AECOM
	Nathan Counts, Associate	AECOM
	Greg Wolffe, Senior Program Manager	AECOM
	Steve Heisler, Ph.D., Vice President	AECOM
	Charanaya Varadarajan, Ph.D., Air Quality Engineer	AECOM
Air Quality	Sarah Sullivan, Air Quality Specialist	AECOM
Agricultural Resources	Stephanie Klock, Environmental Planner	EDAW
	Kim Christiansen, Senior Associate Planner	EDAW
Biological Resources	Manju Venkat, Senior Biologist	AECOM
	Rocky Brown, Project Specialist	AECOM
Cultural Resources	Christopher Doolittle	AECOM
Geology, Soils and Seismicity	Anthonny Lizzi, Professional Geologist	AECOM
	Geoff Knight, Senior Project Manage	AECOM
	Ken Patton	AECOM
Hazards and Hazardous Materials	Geoff Knight, Senior Project Manager	AECOM
Hydrology and Water Quality	Roy Hauger,	AECOM
	Ken Patton, AECOM	AECOM
Land Use and Planning	Stephanie Klock, Environmental Planner	EDAW
	Kim Christiansen, Senior Associate Planner	EDAW

Mineral Resources	Anthonny Lizzi, Professional Geologist	AECOM
Noise	Ken Patton William Maddux	AECOM AECOM
	Greg Wolffe, Senior Project Manager	AECOM
Population and Housing	Anne Pietro, Senior Program Manager,	AECOM
	Hallie Rulnick, Environmental Associate	AECOM
Public Services	Anne Pietro, Senior Program Manager	AECOM
	Hallie Rulnick, Environmental Associate	AECOM
	Nathan Counts, Associate	AECOM
Recreation	Anne Pietro, Senior Program Manager	AECOM
	Hallie Rulnick, Environmental Associate	AECOM
	Nathan Counts, Associate	AECOM
Transportation and Traffic	Scott Sato	Urban Crossroads
	Michael Benner, Vice President	AECOM
Utilities	Anne Pietro, Senior Program Manager	AECOM
	Hallie Rulnick, Environmental Associate	AECOM
	Nathan Counts, Associate	AECOM
Cumulative Impact Analysis	Michael Benner, Vice President	AECOM
	Nathan Counts, Associate	AECOM
Growth-Inducing Impacts	Jerry Flores	AECOM

Technical Support	Peter Jonas, GIS Specialist	AECOM
	Hans Mayer, GIS Technician	AECOM
	<u>Contributors</u>	

Southern California Gas Company	Southern California Edison Company
Larry Saseduesz. Engineering Analysis Manager	Albert Garcia
Estella de Llanos, Legal Counsel	Jack Haggenmiller, P.E., Project Manager
James Strader, Project and Construction Manager	Kendra Heinicke, Transmission Estimator
Don Houston, Environmental Manager	Jeffrey Miller
	Christine MacLoed, Regulatory Affairs Manager
	Leanne Swanson, P.E., Project Manager
	Chris May, Environmental Coordinator