Near Zero Emissions
Engine Technologies
For Heavy Duty Transportation

Cherif Youssef
Technology Development Manager

Engine Webinar
June 12, 2013
LA Basin and San Joaquin Valley Need More Emission Reductions, Sooner

SCAQMD carrying capacity for 80 ppb ozone standard = 160 tpd NOx

SCAQMD 642 TPD in 2010

SJVAPCD carrying capacity for 80 ppb ozone standard = 115 tpd NOx

SJVAPCD 560 (?) TPD in 2012

Carrying capacity for 75 ppb ozone standard = 80 tpd NOx

NOx...
Mobile Sources with Good Potential for Conversion to NG (in red)

(298 tons/day out of total 319 tons/day)
Five Strategies for Emission Reductions

Goals
- NOx: Reduce to ZE-equivalent ~ 90% below EPA 2010/Tier 4
- GHGs: Reduce to 2050 goals ~ 80% below current levels

Advanced Engines and Drivelines
- GHG and NOx reduction through combustion optimization and increased efficiency

Advanced after-treatment
- NOx Reduction through Advanced After-treatment
- GHG and NOx reduction through increased efficiency

Hybridization
- GHG and NOx reduction through increased efficiency

Vehicle Integration
- GHG and NOx reduction through increased efficiency and low-carbon fuels

Fuels, Storage & Infrastructure
- GHG and NOx reduction through efficiency and low-carbon fuels
Technology Advancements to Reduce Emissions and Increase Engine Efficiency

<table>
<thead>
<tr>
<th>Goals</th>
<th>Advanced Engines</th>
<th>Advanced After-Treatment</th>
<th>Hybridization</th>
<th>Vehicle Integration</th>
<th>Fuels, Storage & Infrastructure</th>
</tr>
</thead>
</table>
| NOx: Reduce from 0.2 Gr/Bhp-Hr to 0.02 Gr/Bhp-Hr | • New or enhanced combustion strategies
• Optimized Compression Ratios
• On Board Diagnostics
• Advanced Sensors/Controls
• Innovative and Advanced Cycles
• Waste Heat Recovery
• Camless Engine & HCCI
• Multi Port Injection
| • Enhanced 3-way Catalyst
• Lean burn + SCR
• Rich burn + NSCR + EGR
• Lean burn + SCR + Oxidation Catalyst
• Lean burn + Lean NOx Trap (LNT)
• Advanced control
| • Various drive-train configurations to capture waste energy to “assist” the primary drive
• Hydraulic hybrid
• Battery-Electric
• Advanced Plug-in range extender (FC, turbines)
• Dual Mode Catenary hybrid
| • Incremental improvements to known strategies
| | • RNG from organic waste, dedicated crops or sunlight
| | • Aerodynamics
| | • Weight reduction
| | • Tire rolling resistance reduction
| | • Friction & Parasitic reduction
| | • Improved compression technology
| | • Low pressure storage

Increase Thermal Engine Efficiency From ~35 to 50%
Multiple Strategies to Address NOx Emission Reductions

- Advanced combustion and after-treatment for CNG/LNG engines
- Next generation after-treatment
- Hybridization
- CNG/H₂ blends

“Power plant equivalent” Goal (0.02 g/bhp-hr)
Similar Technology Strategies Can Reduce GHG Emissions

Efficiency Improvements and Renewables Availability Increase Over Time

- Petroleum Fuels
- CNG/LNG
- Efficiency Improvements
- Renewable Blends / H2

2050 Goal

GHG emissions (from 1990 levels)
Engine Technology Advancements

- Advanced Combustion – IC Engine
 - Spark Ignition
 - Compression Ignition
 - Homogeneous Charge Compression Ignition (HCCI)
 - Direct Injection (DI)
 - Low Peak Temperature Combustion (LPTC)
 - Camless Engine (Electronic Valve Timing)
 - Sensors & Controls
- Advanced Turbines
Various Types of Engine Ignitions

- **Diesel Engine** (compression ignition)
 - Fuel injector
 - Hot flame region: NOx + smoke

- **Gasoline Engine** (spark ignition)
 - Spark plug
 - Hot flame region: NOx

- **HCCI Engine** (Homogeneous Charge Compression Ignition)
 - Low temperature combustion: ultra low emissions

- **Direct Injection**
Engine Controls and Exhaust Treatment

- Stoichiometric Engine + NSCR (TWC) + EGR
- Lean Burn + SCR + Ammonia/Urea
Other Technology Advancements

• Advanced After Treatment
 – Selective Catalytic Reduction (SCR)
 – Non-Selective Catalytic Reduction (NSCR)
 – Lean NOx Catalyst (LNC)
• Waste Heat Recovery
 – Bottoming Cycle
• Hybridization
• Renewable Natural Gas
Next Generation Refuse/Transit

Project Overview

- Develop dedicated natural gas engine with near zero emissions without sacrificing performance or efficiency compared to 2010 engine standards
- Doosan and SWRI are the technical leads
- On-road testing to begin late 2014 – plan to test 3 vehicles

Potential Benefits:

- 75%+ reduction in NOx emissions
- Similar efficiency and cost to diesel alternatives

Goals & Targets

- Modify 11L 340hp Doosan engine (conversion from lean burn w/SCR)
- Stoichiometric operation, TWC, Cool EGR
- Advanced ignition system for highly dilute mixtures
- Optimized in-cylinder turbulence & High efficiency turbo matching
- Advanced control for knock and misfire detection

Partners

- CEC, DOE, SCAQMD and SWRI
Low Emission Turbine Drive

Project Overview
- Demonstrate near-zero emissions dual liquid/natural gas combustor for existing 350 kW gas turbine engine designed for Class-8 trucks
- Brayton Energy, Kenworth & FedEx -- develop a Class 8 MT dual fuel truck

Potential Benefits
- Near-zero emissions (75% NOx improvement)
 NOx < 0.05 g/bhp/hr, CO< 0.02 g/bhp/hr
- Fuel flexibility
- Improved efficiency from advanced turbine design

Goals & Targets
- Testing of turbine in truck chassis is schedule for late 2013
- First chassis dynamometer runs expected in July 2013
- FedEx will receive the CNG-only truck (made by Kenworth) in late 2013 and operate in 2014 in CA

Partners
- CEC, DOE and Brayton Energy
US Hybrid: Plug-in Hybrid Natural Gas Drayage Truck Demonstration

Project Overview
- Demo of 80,000 GVWR Nat Gas Plug-in Hybrid Truck
- Utilizes ISL-G (8.9 L) CARB certified engine and 100 kWh Li-Ion Battery-Pack

Potential Benefits
- Eliminates frequent periods of idling typical at Port facilities where drayage trucks often queue for long periods.
- Hybrid truck will operate in electric mode (EV mode) around 25% of time (30 miles) in charge depletion mode, then in hybrid mode with sustaining charge.
- No limitation of the range and usage and will have higher number of operating hours than a diesel truck.

Goals & Targets
- Target of 30% fuel reduction due to HEV operation
- Out-perform strict CARB emission standards

Partners
- CEC, US Hybrid, GTI and Freightliner
RFP to Develop & Demonstrate Near Zero Emissions HD Engines

• SoCalGas, CEC, SCAQMD and SJVAPCD are partnering to fund On-Road Heavy-Duty Development, Integration, and Demonstration of Ultra-Low Emission Natural Gas Engines.

• The RFP emissions targets are:
 – 0.02 grams per brake horsepower-hr (g/bhp-hr) NOx
 – 0.01 g/bhp-hr particulate matter (PM)
 – 0.14 g/bhp-hr hydrocarbon (HC)
 – 15.5 g/bhp-hr carbon monoxide (CO)

• Proposal are due July 24, 2013

• http://www.aqmd.gov/rfp/index.html (RFP P2013-22)
Cherif Youssef
Technology Development Manager
Southern California Gas CO
555 W 5th Street
Los Angeles, CA 90013
cyoussef@semprautilities.com
213-244-5325