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Preface to Version 4.0  
CalEnviroScreen 4.0 is the latest iteration of the California Communities Environmental 
Health Screening Tool. The original and subsequent versions were developed by the Office 
of Environmental Health Hazard Assessment, or OEHHA, an office within the California 
Environmental Protection Agency. 

This version of CalEnviroScreen incorporates the recent publicly available data for all 
indicators. It also improves in the way some indicators are calculated to better reflect 
environmental conditions or a population’s vulnerability to environmental pollutants. One 
new indicator — Children’s Lead Risk from Housing — has been added to help capture 
another exposure that affects health and contributes to the pollution burden communities 
face. 

CalEnviroScreen 4.0 has also been updated with additional information on the California-
Mexico border region, pursuant to Assembly Bill 1059 (Garcia, Statutes of 2015). These 
changes affect the indicators for PM2.5, Diesel Particulate Matter, Traffic Impacts, Toxic 
Releases from Facilities, Solid Waste Sites and Facilities, and Hazardous Waste Generators 
and Facilities. 

The CalEnviroScreen 4.0 draft report and draft mapping tool were released in February 
2021 for public review and input. OEHHA convened a webinar and six workshops on the 
draft version to share the proposed updates of the tool, answer questions, and take public 
comment. Five workshops focused on different regions of the state. A sixth workshop 
covered statewide issues. OEHHA also received written public input on the report. OEHHA 
updated the tool and made changes based on written comments and verbal input received 
in the workshops.

A full discussion of the basis for the indicators and data sources is given in the main body of 
this document. A description of updates to the tool is provided in a Summary of Changes 
document available on the CalEnviroScreen 4.0 webpage.
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Message from the Secretary

I am pleased to present this fourth version of 
CalEnviroScreen, which continues California’s 
commitment to advancing equity and 
environmental justice. 

Low-income communities, communities of color, 
tribal nations and other disadvantaged groups 
continue to be overburdened by unacceptable 
levels of pollution. CalEPA and the entire 
Newsom Administration is dedicated to shifting 
this dynamic, and CalEnviroScreen has become 
the national gold standard of geospatial data 
tools than can help drive more equitable 
decision-making.

Developed by CalEPA and its Office of 
Environmental Health Hazard Assessment 
(OEHHA), CalEnviroScreen includes an online mapping tool, a supplemental race analysis 
and related documents. It analyzes data on environmental, public health and 
socioeconomic conditions in California’s 8,000 census tracts to provide a clear picture of 
cumulative pollution burdens and vulnerabilities in communities throughout the state.

When CalEPA released the initial version of the California Communities Environmental 
Health Screening Tool (CalEnviroScreen) in 2013, it marked the first time a state used a 
science-based screening tool to demonstrate, from a geospatial perspective, who is most 
affected by environmental injustice. Since then, CalEnviroScreen has guided significant 
public investments aimed at improving environmental conditions in California’s 
disadvantaged communities and ameliorating environmental injustice. The tool has helped 
CalEPA and other local, state and federal agencies ensure their activities address these 
pollution burdens and protect those communities from additional ones. CalEPA uses 
CalEnviroScreen to prioritize enforcement and outreach in vulnerable communities. The City 
of Fresno used CalEnviroScreen data to prioritize the funding of parks in overburdened 
neighborhoods. Non-profit organizations have used the tool to advance the concept of 
green zones and identify neighborhoods for tree planting. Several states, including 
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Washington, New York, and Michigan, have used CalEnviroScreen to inform the 
development of their own state-specific environmental justice tools. The US Environmental 
Protection Agency studied CalEnviroScreen in developing its own national screening tool, 
EJSCREEN.

CalEnviroScreen shines a bright light on the shameful legacy of our past as well as 
continued injustices. It shows a direct, persistent relationship between exposure to 
environmental burdens and socio-economic and health vulnerabilities affecting largely, and 
at times almost exclusively, communities of color, as shown in the supplemental race 
analysis. California’s history of racism and discrimination is visible in many of the maps 
contained in the tool. Segregation, redlining, and discriminatory land use, permitting and 
enforcement practices resulted in industrial facilities, landfills, ports and railyards, and high 
pesticide use clustered around low-income communities of color. Continued discriminatory 
practices, inequities in decision-making, disinvestment, poverty and other socioeconomic 
factors magnify the effects of pollution on these communities. 

We seek to continuously improve our protection of public health and the environment and 
the programs and tools that support that work. CalEnviroScreen is no exception. 
CalEnviroScreen 4.0 reflects the input and comments received on prior versions of the tool 
and the 4.0 draft. This latest version features a new indicator reflecting children’s risk of 
lead exposure from older housing stock, a burden disproportionately impacting low-income 
communities. CalEnviroScreen 4.0 also incorporates the most recent data produced by 
CalEPA’s boards, departments and offices, the California Health and Human Services 
Agency and federal entities. 

CalEnviroScreen is a powerful tool that can help us address historical and continued 
inequality. We encourage government agencies and private and non-governmental 
organizations alike to use CalEnviroScreen to continue to develop their own innovative ways 
to address pollution and related public health concerns and further environmental justice in 
California. We must continue progress toward making the California Dream accessible for 
all. 

Sincerely,

Jared Blumenfeld 
California Secretary for Environmental Protection
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Introduction 
In California, environmental quality has improved over the last few decades as evidenced 
by improved water quality, reduced air pollution, decrease in pesticide use, continued 
cleanup of hazardous waste sites as well as increased recycling and reduction of solid 
waste going into landfills. These improvements are observed and well documented at the 
state and regional level. However, the pollution reduction and resulting health and 
environmental benefits are not uniformly distributed across the state, within a region, or 
among all population segments. 

Many communities continue to bear a disproportionate burden of pollution not only from 
multiple nearby sources, but also from pollution in multiple media (e.g., air or water). 
Some of these communities experience the additional burden of socioeconomic stressors 
and health conditions that render them more vulnerable to the impacts of pollution. . In 
order to address the cumulative effects of both pollution burden and these additional 
factors, and to identify which communities might be in need of particular policy, 
investment, or programmatic interventions, OEHHA developed and now maintains and 
updates the CalEnviroScreen tool on behalf of CalEPA. This tool applies a framework for 
assessing cumulative impacts that OEHHA developed in 2010, based in large part on 
input from a statewide working group on environmental justice that pointed out the unmet 
need to assess cumulative burdens and vulnerabilities affecting California communities 
(OEHHA 2010). This framework was incorporated into the first (1.0) version of 
CalEnviroScreen, providing the first statewide assessment of cumulative impacts across 
California communities. Subsequent versions updated the assessment tool using the most 
current available data and incorporating various improvements and recommendations 
from residents, stakeholders, and government partners. CalEnviroScreen 2.0 was 
released in 2014 and 3.0 in 2017. 

This update to CalEnviroScreen, Version 4.0, continues to evolve as a science-based 
method for identifying impacted communities by taking into consideration pollution 
exposure and its effects, as well as health and socioeconomic status, at the census-tract 
level. This updated version includes more recent data, improved methodology, and an 
additional indicator.

SSimilar to previous versions, CalEnviroScreen 4.0 continues to:

 Present a relative, rather than an absolute, evaluation of pollution burdens and 
vulnerabilities in California communities by providing a relative ranking of 
communities across the state of California.
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 Provide a methodology consistent with previous versions of the tool, and an 
assessment that is up-to-date with additional and most recent data.

 Evaluate multiple pollution sources, and stressors that measure a community’s 
vulnerability to pollution.

CCalEnviroScreen 44.0 changes over the previous version include:

 An update of all indicators with the most recent available data.

 Improved methods for calculating some indicators, including:

o Refining the criteria for selecting Drinking Water Contaminants, updating 
water system service areas used in calculating the indicator’s value, and 
improving the methodology for assessing water quality for areas outside of 
public water systems. 

o Adding multiple pesticides to the Pesticide Use indicator.

o Adding dairy and feedlot locations to the Groundwater Threats indicator

o Adding chrome metal plating facility locations to the Hazardous Waste 
indicator

o Improving the methodology used to create the PM2.5 and Diesel PM air 
quality indicators

 Adding one new indicator to reflect potential exposure of children to lead-based 
paint, indicative of children’s lead risk in low-income communities with older 
housing stock.

Assessing cumulative impactss 

Many factors, often referred to as stressors, contribute to an individual or a community’s 
pollution burden and vulnerability. Standard risk assessment protocols used by regulatory 
agencies cannot always account for the full range of factors that may contribute to risk 
and vulnerability. Risk assessments are often primarily designed to quantify health risks 
from a single pollutant or single source at a time, often in one specific medium (e.g., air or 
water). Many community groups and scientists have highlighted the fact that this 
approach fails to consider the totality of the health risks that communities face.

In reality, people are simultaneously exposed to multiple contaminants from multiple 
sources and also have multiple stressors based on their health status as well as living 
conditions. Thus, the resulting cumulative health risk is influenced by nonchemical factors 
such as socioeconomic and health status of the people living in a community. In such 
situations, risk assessment has a limited ability to quantify the resulting cumulative risk.  
Furthermore, risk assessment requires extensive characterization of the chemicals 
present, the routes and levels of exposure, and the dose-response relationship for 
hundreds of chemicals for which data are neither currently available nor likely to be 
generated in the foreseeable future.

A methodology did not exist to fully integrate, for a community in given geographic 
location, the spectrum of pollutants (such as simultaneous exposure to numerous 
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pollutants from multiple pollution sources), intrinsic factors (health status), and extrinsic 
factors (socioeconomic status) into risk assessment. Hence, OEHHA and CalEPA 
developed CalEnviroScreen to conduct statewide evaluations of community-scale impacts 
through this screening tool. 

IImpact    
vvs. Risk

A core purpose of developing CalEnviroScreen is to characterize 
“impacts” of pollution in communities with respect to factors that are 
not routinely included in risk assessment. Often, the terms risk and 
impact are used synonymously, suggesting that they describe the 
same outcome. However, the term risk means a probability of an 
injury or loss that is quantified, while impact in this context refers 
more broadly to the overall burden that affects health and quality of 
life. While risk assessment suggests a quantitative approach to 
evaluating injury or loss, impact assessment implies integrating both 
quantitative factors and those less readily measured or estimated, 
but that may increase the magnitude of adverse effects. Impact 
assessment is increasingly used in land-use planning, resource 
allocation, and permitting. 

OOrganization of the report

This report follows the same format as previous CalEnviroScreen versions beginning with 
methodology, selection criteria for the 21 indicators, and calculation of the 
CalEnviroScreen score for an individual census tract. This is followed by sections for each 
indicator that define the indicator and explain how the data for each indicator were 
selected and analyzed. The scores of each indicator and the final CalEnviroScreen scores 
for different areas of the state are presented as maps. The report concludes by providing 
the overall results of the statewide analysis, presented as maps showing the census tracts 
with highest CalEnviroScreen scores.

RReferences Office of Environmental Health Hazard Assessment (OEHHA, 
2010).  Cumulative Impacts:  Building A Scientific Foundation. 
OEHHA, California Environmental Protection Agency. Available 
online at: 
https://oehha.ca.gov/media/downloads/calenviroscreen/report
/cireport123110.pdf    
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Method
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TTHE CALENVIROSCREEN 
MODEL
Definition of 
Cumulative 
Impacts

CalEPA adopted the following working definition of cumulative 
impacts in 2005: 

“Cumulative impacts means exposures, public health or 
environmental effects from the combined emissions and 
discharges, in a geographic area, including environmental 
pollution from all sources, whether single or multi-media, 
routinely, accidentally, or otherwise released. Impacts will 
take into account sensitive populations and socioeconomic 
factors, where applicable and to the extent data are 
available.”

CalEnviroScreen 
Model

The CalEnviroScreen model is based on the CalEPA working 
definition in that:

 The model is place-based and provides information for the 
entire State of California on a geographic basis. The 
geographic scale selected is intended to be useful for a wide 
range of decisions.

 The model is made up of multiple components cited in the 
above definition as contributors to cumulative impacts. The 
model includes two components representing Pollution 
Burden – Exposures and Environmental Effects – and two 
components representing Population Characteristics – 
Sensitive Populations (e.g., in terms of health status and 
age) and Socioeconomic Factors.
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MModel 
CCharacteristics

The model:

 Uses 21 statewide indicators to characterize both Pollution 
Burden and Population Characteristics.

 Uses percentiles to assign scores for each of the indicators 
in a given geographic area. The percentile represents a 
relative score for the indicators.

 Uses a scoring system in which the percentiles are averaged 
for the set of indicators in each of the four components 
(Exposures, Environmental Effects, Sensitive Populations, 
and Socioeconomic Factors). 

 Combines the component scores to produce a 
CalEnviroScreen score for a given place relative to other 
places in the state, using the formula below.

FFormula for 
CCalculating 
CCalEnviroScreen 
SScore 

After the components are scored within Pollution Burden or 
Population Characteristics, the scores are combined as follows to 
calculate the overall CalEnviroScreen Score:

PPollution Population 
 Burden Characteristics 

* The Environmental Effects score was weighted half as much as 
the Exposures score.

Rationale for 
FFormula

Scores for the pollution burden and population characteristics 
categories are multiplied (rather than added, for example). 
Although this approach may be less intuitive than simple 
addition, there is scientific support for this approach to scoring. 

Multiplication was selected for the following reasons:

1. Scientific Literature: Existing research on environmental 
pollutants and health risk has consistently identified 
socioeconomic and sensitivity factors as “effect 
modifiers” that multiply the risks posed by the pollutants.  
For example, numerous studies on the health effects of 
particulate air pollution have found that low 
socioeconomic status is associated with about a 3-fold 
increased risk of morbidity or mortality for a given level of 
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particulate pollution (Samet and White, 2004). Similarly, 
sensitivity to an air pollutant was up to 7-fold greater in 
asthmatics than non-asthmatics (Horstman et al., 1986). 
Low-socioeconomic status African-American mothers 
exposed to traffic-related air pollution were twice as likely 
to deliver preterm babies (Ponce et al., 2005). Studies of 
increased risk in vulnerable populations can often be 
described by effect modifiers that amplify the risk. This 
research suggests that the use of multiplication makes 
sense. 

2. Risk Assessment Principles: Some people (such as 
children) may be 10 times more sensitive to some 
chemical exposures than others. Risk assessments, using 
principles first advanced by the National Academy of 
Sciences, apply numerical factors or multipliers to 
account for potential human sensitivity (as well as other 
factors such as data gaps) in deriving acceptable 
exposure levels (US EPA, 2012).

3. Established Risk Scoring Systems: Priority rankings done 
by various emergency response organizations to score 
threats have used scoring systems with the formula:  
Risk = Threat × Vulnerability (Brody et al., 2012).  
These formulas are widely used and accepted.

MMaximum Scores 
ffor Combined 
CComponents

CComponent Group    MMaximum Score*

PPollution Burden
  Exposures and  
  Environmental Effects  10

PPopulation Characteristics
  Sensitive Populations and 
  Socioeconomic Factors  10

CCalEnviroScreen Score  Up to 100 (= 10 × 10)

* Enough decimal places were retained in the calculation to 
eliminate ties.

Notes on Scoring 
System

In the CalEnviroScreen model, the Population Characteristics are 
a modifier of the Pollution Burden. In mathematical terms, the 
Pollution Burden is the multiplicand and Population 
Characteristics is the multiplier, with the CalEnviroScreen score 
as the product. The final ordering of the communities is 
independent of the magnitude of the scale chosen for the 
Population Characteristics (without rounding scores). That is, the 
communities would be ordered the same in their final score if the 
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SSelection of 
GGeographic Scale  

RRace/Ethnicity,, aand 
YYoung and Elderly 
PPopulations

RReferences

Population Characteristics were scaled to 3, 5, or 10, for 
example. Here, a scale up to 10 was chosen for convenience.

CalEnviroScreen 4.0 uses the census tract as the unit of 
analysis. Census tract boundaries are available from the Census 
Bureau. CalEnviroScreen uses the Bureau’s 2010 boundaries. 
New boundaries will be drawn by the Census Bureau as part of 
the 2020 Census but will not be available until 2022. OEHHA will 
address updates to census tract geography in CalEnviroScreen at 
that time. 

There are approximately 8,000 census tracts in California, 
representing a relatively fine scale of analysis. Census tracts are 
made up of multiple census blocks, which are the smallest 
geographic unit for which population data are available. Some 
census blocks have no people residing in them (unpopulated 
blocks).

The relationship between CalEnviroScreen scores of the state’s 
census tracts and their race/ethnicity compositions and children 
and elderly populations is an important context with which to 
understand environmental inequity in California. A analysis 
available on the CalEnviroScreen website shows clear disparities 
with respect to the racial makeup of the communities with the 
highest pollution burdens and vulnerabilities. People of color, 
especially Latino and Black people, disproportionately reside in 
highly impacted communities in California. The results using the 
CalEnviroScreen 4.0 scores are consistent with earlier versions 
of the tool, and reflect racial disparities, with the highest 
percentages of people of color living in the most highly impacted 
communities. After releasing each finalized version of 
CalEnviroScreen, OEHHA conducts a further analysis on race and 
age and provides the data and report on the CalEnviroScreen 
website. 

Brody TM, Bianca PD, Krysa J (2012). Analysis of inland crude oil 
spill threats, vulnerabilities, and emergency response in the 
midwest United States. Risk Analysis: An International Journal 
332(10):1741-9.

Horstman D, Roger LJ, Kehrl H, Hazucha M (1986). Airway 
sensitivity of asthmatics to sulfur dioxide. Toxicology and 
Industrial Health 2(3):289-98.

Ponce NA, Hoggatt KJ, Wilhelm M, Ritz B (2005). Preterm birth: 
the interaction of traffic-related air pollution with economic 
hardship in Los Angeles neighborhoods. American Journal of 
Epidemiology 162(2):140-8.
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Samet J, White R (2004). Urban air pollution, health, and equity. 
Epidemiology & Community Health 558(1).

US EPA (2012). Conducting a Human Health Risk Assessment 
[Available at URL: https://www.epa.gov/risk/conducting-human-
health-risk-assessment].
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IINDICATOR SELECTION
AND SCORING
The overall CalEnviroScreen community scores are driven by indicators. Here are the 
steps in the process for selecting indicators and using them to produce scores. 

Overview of the 
Process

1. Identify potential indicators for each component.

2. Find sources of data to support indicator development (see 
Criteria for Indicator Selection below).

3. Select and develop the indicators, assigning a value for each 
geographic unit.

4. Assign a percentile for each indicator for each geographic unit, 
based on the rank-order of the value.

5. Generate maps to visualize data.

6. Derive scores for pollution burden and population 
characteristics components (see Indicator and Component 
Scoring below).

7. Derive the overall CalEnviroScreen score by combining the 
component scores (see below).

8. Generate maps to visualize overall results.

The selection of specific indicators requires consideration of both the type of information 
that will best represent statewide pollution burden and population characteristics, and 
the availability and quality of such information at the necessary geographic scale 
statewide.

Criteria for 
Indicator 
Selection

 Indicators should provide a measure that is relevant to the 
component it represents, in the context of the 2005 CalEPA 
cumulative impacts definition.

 Indicators should represent widespread concerns related to 
pollution burden or population characteristics in California.

 The indicators combined together should provide a good 
representation of each component.
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 Pollution burden indicators should relate to issues that may 
be potentially actionable by CalEPA boards and departments. 

 Population characteristics indicators should represent 
demographic factors known to modify vulnerability to impacts 
of pollution.

 Data for each indicator should be available for the entire 
state at the census tract level or be translatable to the 
census tract level.

 Data should be of sufficient quality, and be:

o Complete

o Accurate

o Current

EExposure 
IIndicators

People may be exposed to a pollutant if 
they come in direct contact with it, by 
breathing contaminated air, for example. 

No data are available statewide that 
provide direct information on exposures. 
Exposures generally involve movement of 
chemicals from a source through the 
environment (air, water, food, soil) to an 
individual or population. CalEnviroScreen 
uses data relating to pollution sources, 
releases, and environmental 
concentrations as indicators of potential 
human exposures to pollutants. Eight
indicators have been identified and found 
consistent with criteria for exposure 
indicator development. They are:

 Ozone concentrations in air 

 PM2.5 concentrations in air 

 Diesel particulate matter 
emissions 

 Drinking water contaminants 

 Children’s lead risk from housing

 Use of certain high-hazard, high-
volatility pesticides

 Toxic releases from facilities
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 Traffic impacts

EEnvironmental 
EEffect Indicators

Environmental effects are adverse environmental conditions caused 
by pollutants.

Environmental effects include environmental degradation, 
ecological effects and threats to the environment and communities. 
The introduction of physical, biological and chemical pollutants into 
the environment can have harmful effects on different components 
of the ecosystem. Effects can be immediate or delayed. The 
environmental effects of pollution can also affect people by limiting 
their ability to make use of ecosystem resources (e.g., eating fish or 
swimming in local rivers or bays). Also, living in an environmentally 
degraded community can lead to stress, which may affect human 
health. In addition, the mere presence of a contaminated site or 
high-profile facility can have tangible impacts on a community, even 
if actual environmental degradation cannot be documented. Such 
sites or facilities can contribute to perceptions of a community being 
undesirable or even unsafe. 

Statewide data on the following topics have been identified and 
found consistent with criteria for indicator development:

 Toxic cleanup sites

 Groundwater threats from leaking underground storage sites 
and cleanups

 Hazardous waste facilities and generators

 Impaired water bodies

 Solid waste sites and facilities

SSensitive 
PPopulation 
IIndicators

Sensitive populations are populations with physiological conditions 
that result in increased vulnerability to pollutants.

Sensitive individuals may include those with impaired physiological 
conditions, such as people with heart disease or asthma. Other 
sensitive individuals include those with lower protective biological 
mechanisms due to genetic factors. 

Pollutant exposure is a likely contributor to many observed adverse 
outcomes, and has been demonstrated for some outcomes such as 
asthma, low birth weight, and heart disease. People with these 
health conditions are also more susceptible to health impacts from 
pollution. With few exceptions, adverse health conditions are 
difficult to attribute solely to exposure to pollutants. High quality 
statewide data related to sensitive populations affected by toxic 



CalEnviroScreen 4.0

20

chemical exposures have been identified and found consistent with 
criteria for development of these indicators: 

 Asthma emergency department visits

 Cardiovascular disease (emergency department visits for 
heart attacks)

 Low birth-weight infants

SSocioeconomic 
FFactor 
IIndicators

Socioeconomic factors are community characteristics that result in 
increased vulnerability to pollutants.

A growing body of literature provides evidence of the heightened 
vulnerability of people of color and lower socioeconomic status to 
environmental pollutants. For example, a study found that 
individuals with less than a high school education who were 
exposed to particulate pollution had a greater risk of mortality. Here, 
socioeconomic factors that have been associated with increased 
population vulnerability were selected.

Data on the following socioeconomic factors have been identified 
and found consistent with criteria for indicator development:

 Educational attainment

 Housing-burdened low-income households

 Linguistic isolation

 Poverty

 Unemployment

IIndicator and 
CComponent 
SScoring

The indicator values for the census tracts for the entire state are 
ordered from highest to lowest. A percentile is calculated from the 
ordered values for all areas that have a score.* Thus each area’s 
percentile rank for a specific indicator is relative to the ranks for 
that indicator in the rest of the places in the state.

 The indicators used in this analysis have varying underlying 
distributions, and percentile rank calculations provide a 
useful way to describe data without making any potentially 
unwarranted assumptions about those distributions. 

 A geographic area’s percentile for a given indicator simply 
tells the percentage of areas with lower values of that 
indicator. 

 A percentile does not describe the magnitude of the 
difference between two or more areas. For example, an area 
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ranked in the 30th percentile is not necessarily three times 
more impacted than an area ranked in the 10th percentile.

* When a geographic area has no indicator value (for example, the census tract 
has no hazardous waste generators or facilities), it is excluded from the percentile 
calculation and assigned a score of zero for that indicator. When data are 
unreliable or missing for a geographic area, such as census data with large 
uncertainties, it is excluded from the percentile calculation and is not assigned 
any score for that indicator. Thus the percentile score can be thought of as a 
comparison of one geographic area to other localities in the state where the 
hazard effect or population characteristic is present.

Indicators from Exposures and Environmental Effects components 
were grouped together to represent Pollution Burden. Indicators 
from Sensitive Populations and Socioeconomic Factors were 
grouped together to represent Population Characteristics (see figure 
below).

```````````````````````````````````````````````````````````````````````````
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For a given census tract, scores for the Pollution Burden and 
Population Characteristics are calculated as described below. An 
example calculation is provided on at the end of this chapter:

 First, the percentiles for all the individual indicators in a 
component are averaged. This becomes the score for that 
component. When combining the Exposures and 
Environmental Effects components, the Environmental 
Effects score was weighted half as much as the Exposures 
score. This was done because the contribution to possible 
pollutant burden from the Environmental Effects component 
was considered to be less than those from sources in the 
Exposures component. More specifically, the Environmental 
Effects components represent the presence of pollutants in a 
community rather than exposure to them. Thus the Exposure 
component receives twice the weight as Environmental 
Effects component.

 The Population Characteristics score is the average of the 
Sensitive Population score and Socioeconomic Factors score. 

 The Pollution Burden and Population Characteristics scores 
are then scaled so that they have a maximum value of 10 
and a possible range of 0 to 10. A value of zero typically 
implies that monitoring or reporting was conducted, but no 
impacts were present. 

Each average was divided by the maximum value observed in the 
state and then multiplied by 10. The scaling ensures that the 
pollution component and population component contribute equally 
to the overall CalEnviroScreen score.

CCalEnviroScreen 
SScore and Maps

The overall CalEnviroScreen score is calculated by multiplying the 
Pollution Burden and Population Characteristics scores. Since each 
group has a maximum score of 10, the maximum CalEnviroScreen 
Score is 100. 

The census tracts are ordered from highest to lowest, based on their 
overall score. A percentile for the overall score is then calculated 
from the ordered values. As for individual indicators, a census 
tract’s overall CalEnviroScreen percentile equals the percentage of 
all ordered CalEnviroScreen scores that fall below the score for that 
area.

Maps are developed showing the percentiles for all the census 
tracts of the state. Maps are also developed highlighting the census 
tracts scoring the highest.
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UUncertainty   
aand Error

There are different types of uncertainty that are likely to be 
introduced in the development of any screening method for 
evaluating pollution burden and population vulnerability in different 
geographic areas. Important ones are:

 The degree to which the data that are included in the model 
are correct.

 The degree to which the data and the indicator metric 
selected provide a meaningful measure of the pollution 
burden or population vulnerability.

 The degree to which data gaps or omissions influence the 
results.

Efforts were made to select datasets for inclusion that are complete, 
accurate and current. Nonetheless, uncertainties may arise because 
environmental conditions change over time, or large databases may 
contain errors or be incomplete, among others. Some of these 
uncertainties were addressed in the development of indicators. For 
example:

 Clearly erroneous place-based information for facilities or 
sites has been removed.

 Highly uncertain measurements have been excluded from 
the analysis (for example, socioeconomic measures with high 
margins of error).

Other types of uncertainty, such as those related to how well 
indicators measure what they are intended to represent, are more 
difficult to measure quantitatively. For example:

 How well data on chemical uses or emissions reflect 
potential contact with pollution.

 How well vulnerability of a community is characterized by 
demographic data.

Generally speaking, indicators are surrogates for the characteristic 
being modeled, so a certain amount of uncertainty is inevitable. 
That said, this model comprised of a suite of indicators is 
considered useful in identifying places burdened by multiple sources 
of pollution with populations that may be especially vulnerable. 
Places that score highly for many of the indicators are likely to be 
identified as impacted. Since there are tradeoffs in combining 
different sources of information, the results are considered most 
useful for identifying communities that score highly using the model. 
Using a limited data set, an analysis of the sensitivity of the model 
to changes in weighting showed it is relatively robust in identifying 
more impacted areas (Meehan August et al., 2012). Use of broad 
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groups of areas, such as those scoring in the highest 10 and 25 
percent, is expected to be the most suitable application of the 
CalEnviroScreen results.

RReference Meehan August L, Faust JB, Cushing L, Zeise L, Alexeeff GV (2012). 
Methodological considerations in screening for cumulative 
environmental health impacts: Lessons learned from a pilot study in 
California. International Journal of Environmental Research and 
Public Health 99(9):3069-84.
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EEXAMPLE CENSUS TRACT: 
INDICATOR RESULTS AND 
CALENVIROSCREEN SCORE

One example census tract in western Fresno was selected to illustrate how an overall 
CalEnviroScreen score is calculated using the California Communities Environmental Health 
Screening Tool. Its census tract number is 6019000300.

Shown below are:

 An area map for the census tract and surrounding tracts.

 Tables for the indicators of Pollution Burden and Population Characteristics with 
percentile scores for each of the indicators.

 A table showing how a CalEnviroScreen score was calculated for the example area, 
using CalEnviroScreen 4.0.

                 Example Census Tract
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EExposure Indicators

Indicator Raw 
Value Percentile

Ozone 
(concentration) 0.06 82.48

PM2.5 
(concentration) 13.78 97.36

Diesel PM 
(emissions) 0.69 95.22

Drinking Water 
(index) 733.95 84.39

Children’s 
Lead Risk from 
Housing 
(index)

82.05 91.09

Pesticide Use 
(Ibs/sq. mi.) 59.94 73.38

Toxic Releases 
(RSEI toxicity-
weighted 
releases)

2385.27 81.92

Traffic  
(impacts) 641.60 31.51

AVERAGE 
COMPONENT  
SCORE*

-- 79.67

Environmental Effects Indicators

Indicator Raw 
Value Percentile

Cleanup Sites 
(weighted sites) 15.00 74.93

Groundwater 
Threats 
(weighted sites)

22.5 71.69

Hazardous 
Waste 
Factilities/ 
Generators 
(weighted sites)

0.29 47.41

Impaired Water 
Bodies 
(number of 
pollutants)

0.00 0.00

Solid Waste 
Sites/Facilities 
(weighted sites 
and facilities)

1.00 35.72

AVERAGE 
COMPONENT 
SCORE

-- 45.95

*A score here is calculated by averaging the percentiles within the component
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SSensitive Population Indicators

Indicator Raw 
Value Percentile

Asthma 
(rate per 
10,000)

139.35 98.23

Cardiovascular 
Disease 
(heart attacks 
per 10,000)

22.68 94.57

Low Birth 
Weight 
(percent)

8.07 96.74

AVERAGE
COMPONENT 
SCORE

-- 96.51

Socioeconomic Factor 
Indicators

Indicator Raw 
Value Percentile

Educational 
Attainment 
(percent)

38.40 88.71

Housing  
Burden 
(percent)

18.80 57.85

Linguistic  
Isolation  
(percent)

14.20 75.19

Poverty 
(percent) 70.20 97.37

Unemployment 
(percent) NA NA

AVERAGE
COMPONENT 
SCORE

-- 79.78
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The approach used to calculate the CalEnviroScreen Score for census tract 6019000300 is 
shown below in tabular form.

PPollution Burden Population Characteristics

Exposure 
Indicators

Environmental 
Effects 

Indicators*

Sensitive 
Population 
Indicators

Socioeconomic 
Factor 

Indicators 

Component  
Score

79.67 (0.5 × 45.95)
=22.98 96.51 79.78

Average of 
Component  
Score

102.65 ÷ (1 + 0.5) =  
68.43 

Pollution Burden is calculated as the average of 
its two component scores, with the 

Environmental Effects component half-
weighted.

176.29 ÷ 2 = 
88.15

Population Characteristics is calculated as 
the average of its two component scores.

Scaled 
Component 
Scores  
(Range 0-10)

(68.43 ÷ 81.9**) × 10 = 
8.36 

The Pollution Burden percentile is scaled 
by the statewide maximum  

Pollution Burden scores.

(88.15 ÷ 96.4***) × 10 = 
9.14 

The Population Characteristics percentile is 
scaled by the statewide maximum 
Population Characteristics scores.

CalEnviroScreen 
Score

8.36 x 9.14 = 76.4

A score of 76.4 puts this census tract in the 95-100 percentile or 
top 5% of all CalEnviroScreen scores statewide.

* The Environmental Effects component was given half the weight of the Exposures component.
** The tract with the highest Pollution Burden score in the state had a value of 81.9.
*** The tract with the highest Population Characteristics score in the state had a value of 96.4.
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Indicators
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PPOLLUTION BURDEN: EXPOSURE 
INDICATORS 
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AAIR QUALITY: OZONE 
Ozone pollution causes numerous adverse health effects, including respiratory irritation 
and exacerbation of lung disease. The health impacts of ground level ozone and other 
criteria air pollutants (carbon monoxide, lead, nitrogen dioxide, particulate matter (PM), 
and sulfur dioxide) have been considered in the development of health-based standards. 
Of the six criteria air pollutants, ozone and particle matter pose the most widespread and 
significant health threats. The California Air Resources Board maintains a wide network of 
air monitoring stations that provides information that may be used to better understand 
exposures to ozone and other air pollutants across the state. 

Indicator Mean of summer months (May-October) of the daily maximum 
8-hour ozone concentration (ppm), averaged over three years (2017 
to 2019).

Data Source Air Monitoring Network, California Air Resources Board (CARB)

CARB, local air pollution control districts, tribes and federal land 
managers maintain a wide network of air monitoring stations in 
California. These stations record a variety of different measurements 
including concentrations of the six criteria air pollutants and 
meteorological data. In certain parts of the state, the density of the 
stations can provide high-resolution data for cities or localized areas 
around the monitors. However, not all cities have stations. 

The information gathered from each air monitoring station audited 
by CARB includes maps, geographic coordinates, photos, pollutant 
concentrations, and surveys. Data are available at the link below:

http://www.arb.ca.gov/aqmis2/aqmis2.php

Rationale Ozone is an extremely reactive form of oxygen. In the upper 
atmosphere, stratospheric ozone provides protection against the 
sun’s ultraviolet rays. In contrast to ozone in the upper atmosphere, 
tropospheric ozone at ground level is harmful and is the primary 
component of smog. Ground-level ozone is formed from the reaction 
of oxygen-containing compounds with other air pollutants in the 
presence of sunlight. Ozone levels are typically at their highest in the 
afternoon and on hot days (NRC, 2008). 

Adverse effects of ozone have been studied extensively since the 
late 1960s (Lippmann, 1989). Population-based studies have 
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documented that acute ozone exposure is associated with a 
decrease in lung function, worsening of asthma, increase in hospital 
admissions as well as daily deaths (Last et al., 2017). Prolonged 
exposure to ozone in both animal and human studies show 
progressive inflammatory and cellular or tissue injury responses 
(Last et al., 2017). People with asthma and chronic obstructive 
pulmonary disease (COPD) are generally considered to be sensitive 
to the effects of ozone (Kehrl et al., 1999; Thurston et al., 1997; 
White et al., 1994).

Studies have shown that long-term ozone exposure also influences 
total respiratory and cardiovascular mortality (Crouse et al., 2015; 
Turner et al., 2016). A 2019 study estimates 13,700 deaths (95% 
CI: 6,100-23,700) in California in the year 2012 were attributable to 
long-term ozone exposure (Wang et al., 2019). Of these deaths, 
7,300 and 6,400 were from respiratory and cardiovascular causes, 
respectively. 

The lung irritation, decrements in lung function, inflammation and 
exacerbation of existing chronic conditions is seen at even low-level 
ozone exposures (Alexis et al., 2010; Fann et al., 2012; Schelegle et 
al., 2009; Zanobetti and Schwartz, 2011). A long-term study in 
southern California found that rates of asthma hospitalization for 
children increased during warm season episodes of high ozone 
concentration (Moore et al., 2008). A Central Valley study found an 
association between ozone exposure and emergency department 
visits, with children aged 6-18 years, adults 19-40 years, and Blacks 
having the greatest increased odds (Gharibi et al., 2019). Additional 
studies have shown that the increased risk is higher among children 
under 2 years of age, young males, and African American children 
(Lin et al., 2008; Burnett et al., 2001). Increases in ambient ozone 
have also been associated with higher mortality, particularly in the 
elderly, women and African Americans (Medina-Ramon, 2008).

A California study found an association between ozone and asthma, 
acute respiratory infection, pneumonia, COPD, and upper respiratory 
tract inflammation emergency department visits, with particularly 
large associations during the warm season (Malig et al., 2016). A 
study in New Mexico found an association between ozone and both 
cardiovascular and respiratory emergency room visits during spring 
and summer months when ambient ozone concentrations are 
highest (Rodopoulou et al., 2014). Together with PM2.5, ozone is a 
major contributor to air pollution-related morbidity and mortality 
(Fann et al., 2012).



CalEnviroScreen 4.0

33

MMethod   Daily maximum 8-hour average concentrations for all 
monitoring sites in California were extracted from CARB’s air 
monitoring network database for the summer months (May to 
October) for the years 2017-2019. 

 The means of summer months (May-October) were calculated 
by averaging the daily maximum 8-hour ozone concentrations 
during those months over three years (2017 to 2019).

 The mean concentrations from the monitoring stations were 
used to model ozone concentrations across the state of 
California. A model using a spatial interpolation method that 
incorporates the monitoring data from nearby monitors 
(ordinary kriging) was used to estimate concentrations for 
census tracts.   

 Using the kriging model, daily maximum 8-hour 
concentrations were estimated for the center of each census 
tract. These were averaged to obtain a single value for each 
census tract.

 Ozone values at census tracts with centers more than 50 km 
from the nearest monitor were not estimated using the 
model. For these tracts, the ozone value of the nearest air 
monitor was used.

 Census tracts were ordered by ozone concentration values 
and assigned a percentile based on the statewide distribution 
of values.
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AAIR QUALITY: PM2.5 
Particulate matter pollution, and fine particle (PM2.5) pollution in particular, has been 
shown to cause numerous adverse health effects, including heart and lung disease. 
PM2.5 contributes to substantial mortality across California. The health impacts of PM2.5 
and other criteria air pollutants (ground-level ozone, nitrogen dioxide, carbon monoxide, 
sulfur dioxide, and lead) have been considered in the development of health-based 
standards. Of the six criteria air pollutants, particulate matter and ozone pose the most 
widespread and significant health threats. The California Air Resources Board maintains a 
wide network of air monitoring stations that provides information that may be used to 
better understand exposures to PM2.5 and other pollutants across the state.

Indicator Annual mean concentration of PM2.5 (weighted average of 
measured monitor concentrations and satellite observations, 
μg/m3), over three years (2015 to 2017). 

Data Source Air Monitoring Network, Satellite Remote Sensing Data; California Air 
Resources Board (CARB)

CARB, local air pollution control districts, tribes and federal land 
managers maintain a wide network of air monitoring stations in 
California. These stations record a variety of different measurements 
including concentrations of the six criteria air pollutants and 
meteorological data. The density of the stations is such that specific 
cities or localized areas around monitors may have high resolution. 
However, not all cities have stations. 

The site information gathered from each air monitoring station 
audited by CARB includes maps, location coordinates, photos, 
pollutant concentrations, and surveys. 

Satellite data are available for California from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua 
satellite. The satellite is polar-orbiting and retrieves time-series 
MODIS measurements for up to 16 days in each fixed 1 km grid. 
More information available at the links below:

http://www.arb.ca.gov/aqmis2/aqmis2.php 

https://ww2.arb.ca.gov/resources/documents/air-quality-research-
using-satellite-remote-sensing
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RRationale Particulate matter (PM) is a complex mixture of aerosolized solid and 
liquid particles including such substances as organic chemicals, 
dust, allergens, and metals. These particles can come from many 
sources, including cars and trucks, industrial processes, wood 
burning, or other activities involving combustion. The composition of 
PM depends on the local and regional sources, time of year, location, 
and weather. The behavior of particles and the potential for PM to 
cause adverse health effects is directly related to particle size. The 
smaller the particle size, the more deeply the particles can penetrate 
into the lungs. Some fine particles have also been shown to enter the 
bloodstream. Those most susceptible to the effects of PM exposure 
include children, the elderly, and persons suffering from 
cardiopulmonary disease, asthma, and chronic illness (US EPA, 
2019b).

PM2.5 refers to particles that have a diameter of 2.5 micrometers or 
less. Particles in this size range can have adverse effects on the 
heart and lungs, including lung irritation, exacerbation of existing 
respiratory disease, and cardiovascular effects. The International 
Agency for Research on Cancer (IARC) determined PM to be 
carcinogenic to humans and causally associated with lung cancer 
(IARC, 2015). In 2020, US EPA made the decision to retain the 2012 
standard for ambient PM2.5 concentration of 12 μg/m3 (US EPA, 
2020). According to US EPA’s Air Quality System databases, six of the 
ten counties nationwide with PM2.5 concentrations exceeding this 
standard are in California as of 2019 (US EPA, 2019a). Because 
adverse health effects are seen at concentrations below the US 
EPA’s current standard, residents in more counties than these six 
could be facing health risks. 

Many studies have shown that levels of PM2.5 exposure below the 
current US EPA standard can cause significant health impacts. 
Studies found that mortality was associated with long-term exposure 
to PM2.5 at relatively low levels (Crouse et al., 2012; Wu et al., 
2020; Zeger et al., 2008). In an open cohort of Medicare 
beneficiaries, increases in PM2.5 exposure even at lower levels 
(below 12 g/m3) were associated with a significant increase in the 
risk of death, especially among men, African Americans, and people 
with Medicaid eligibility (Di et al., 2017). Both acute and chronic low-
concentration PM2.5 exposures are associated with mortality (Shi et 
al., 2016). The association between long-term PM2.5 exposure and 
mortality is also influenced by individual-level, neighborhood-level 
variables, temperature, and chemical composition (Wang et al., 
2017).
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Deaths from all-causes and cardiovascular and respiratory illnesses 
stemming from PM2.5 exposures continue to be of major global 
concern. Results from a 2019 meta-analysis of 652 cities across the 
globe indicated that rises in ambient PM2.5 concentrations increase 
mortality more significantly in the United States than in countries like 
China that have very high ambient PM2.5 levels (Liu et al., 2019). 
This reflects their finding showing that the association between 
PM2.5 concentration and mortality is stronger at lower 
concentrations and tends to level off when higher concentrations are 
reached (Liu et al., 2019). Another recent study estimates that 
PM2.5 was associated with 26,700 (95% CI: 18,800–35,000) 
deaths in California in 2012 (Wang et al., 2019).

People with metabolic syndrome (having three or more of five heart 
disease risk factors) also exhibit a systemic inflammatory response 
after PM2.5 exposure (Dabass et al., 2018). An increase in acute 
coronary syndrome (ACS) is associated with same-day PM2.5 
exposure, and long-term survival following ACS is reduced with long-
term PM2.5 exposure (Rajagopalan et al., 2018).  In addition, 
studies continue to report the associated risk of insulin resistance 
and diabetes with PM2.5 exposure (Paul et al., 2020; Rao et al., 
2015). 

A meta-analysis combining data from 94 studies reports that the risk 
for admission to a hospital with stroke or death due to stroke 
increased by one percent when ambient PM2.5 levels increased by 
10 μg/m3 (Rajagopalan et al., 2018). Living close to roadways was 
found to be positively associated with the risk and severity of stroke 
(Rajagopalan et al., 2018). A study of six US communities, including 
Los Angeles, found an association between increased PM2.5 
concentration and an increased risk of stroke (Adar et al., 2013). 

In children, researchers associated high ambient levels of PM2.5 in 
Southern California with adverse effects on lung development 
(Gauderman et al., 2004). Additionally, a follow-up study showed that 
in recent years, declining levels of PM2.5 were associated with 
improvements in children’s lung development (Gauderman et al., 
2015). Another study in California found an association between 
PM2.5 and increased hospitalizations for several childhood 
respiratory diseases (Ostro et al., 2009). In adults, studies have 
demonstrated relationships between daily PM2.5 and mortality 
(Ostro et al., 2006), increased hospital admissions for respiratory 
and cardiovascular diseases (Wei et al., 2019), premature death 
after long-term exposure (Li et al., 2018), decreased lung function 



CalEnviroScreen 4.0

40

and pulmonary inflammation due to short-term exposures (Pope, 
2009), and work loss/restricted activity days (Ostro, 1983, 1987). 

A study of prior year PM2.5 exposure in women found significant 
associations with biomarkers of inflammation that can indicate 
increased risk of cardiovascular disease (Green et al., 2016). 
Exposure to PM during pregnancy has also been associated with low 
birth weight and premature birth (Bekkar et al., 2020; Brauer et al., 
2008; Kloog et al., 2012; Wu et al., 2011). A Los Angeles County 
study found that the odds of full-term low birth weight increased with 
entire pregnancy exposure to PM2.5 from diesel and gasoline 
combustion and paved road dust (Wilhelm et al., 2012). These 
adverse effects are even more pronounced among black women 
(Bekkar et al., 2020; Salihu et al., 2012).

Wildfires are an additional source of PM2.5 in California, which are 
of growing concern as they become more frequent and severe. 
Smoke particles fall almost entirely within the size range of PM2.5. 
During the wildfires that spread throughout the state in June 2008, 
PM2.5 concentrations at a site in the northeast San Joaquin Valley 
not only far exceeded air quality standards, but were also much more 
toxic than normal ambient PM2.5 (Wegesser et al., 2009).  Data 
from the 2008 northern California wildfires were used in a recent 
study which found that during the active fire periods, PM2.5 was 
significantly associated with asthma and worsening chronic 
obstructive pulmonary disease (COPD) (Reid et al., 2019). During the 
2007 San Diego wildfires, respiratory diagnoses, particularly asthma, 
were elevated in the population of Medi-Cal beneficiaries, with 
related healthcare utilization persisting after the initial high-exposure 
period (Hutchinson et al., 2018). In addition, adverse health events 
increased even at slightly degraded air quality levels (Hutchinson et 
al., 2018). Analyses of exposure to California wildfire smoke in the 
2015 season found it to be associated with cardiovascular and 
cerebrovascular emergency department visits for all adults, 
particularly over 65 years of age (Wettstein et al., 2018), as well as 
an increased risk of out-of-hospital cardiac arrest (Jones et al., 
2020). Although the short-term risks from exposure to smoke during 
a wildfire have been studied, long-term risks are still largely unknown 
(Black et al., 2017). As is the case with exposures to other pollution 
sources, sensitive populations are more likely to experience severe 
symptoms, both acute and chronic, from wildfire events (Lipsett et 
al., 2008). 
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MMethod  PM2.5 annual mean monitoring data were extracted for all 
monitoring sites in California from CARB’s air monitoring 
network database for the years 2015-2017, with the 
exception of the special purpose monitor at San Ysidro where 
data were available only for 2015 and part of 2016. For San 
Ysidro, estimated 2015-2017 values were supplemented 
using regression relationships with nearby sites to estimate 
missing values.

 Satellite-based annual average PM2.5 concentrations were 
derived from Aerosol Optical Depth (AOD) measurements, 
land use and meteorology data via regression on ground level 
monitor data (Lee, 2019).

 Concentrations were estimated for each 1 km satellite grid 
cell.  They were computed as a weighted average of the 
satellite-derived concentration and the concentrations of 
monitors within 50 km of the center of the grid cell. Estimates 
were blended using an inverse-distance weighting method 
where grid cells closer to monitors receive a higher weight 
from measured monitor concentrations and grid cells further 
away receive higher weight from satellite estimates. Beyond 
50 km from the nearest PM2.5 monitor, monitor 
concentrations are given weight zero and estimated 
concentrations are based solely on satellite data. 
Concentrations were estimated at the center of the 11 km 
grid layer. 

 For the air monitor in Portola (Plumas County), California, 
satellite data were used for areas beyond 10 km from the 
Portola monitor due to the localized nature of the particulate 
pollution in Portola.

 Annual means were then computed for each year by 
averaging quarterly estimates and then averaging those over 
the three year period to avoid overrepresentation of the peak 
season because of uneven sampling frequency.

 Census tract estimates are calculated by taking the average 
of each grid cell value within a census tract boundary. All grid 
cell values that had a grid cell centroid point located within a 
census tract boundary contribute to the tract PM2.5 score. 
For census tracts with no grid cell centroids within the tract 
boundary the closest grid cell to the centroid of the tract was 
assigned.

 Census tracts were ordered by the PM2.5 concentration 
values and assigned a percentile based on the statewide 
distribution of values.
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DDIESEL PARTICULATE 
MATTER
Diesel particulate matter (diesel PM) occurs throughout the environment from both on-
road and off-road mobile sources and some stationary sources. Major sources of diesel 
PM include trucks, buses, cars, ships and locomotive engines. Diesel PM is concentrated 
near ports, rail yards and freeways where many such sources exist. Exposure to diesel PM 
has been shown to have numerous adverse health effects including irritation to the eyes, 
throat and nose, cardiovascular and pulmonary disease, and lung cancer. California 
regulations enacted since 1990 have led to a steady decline in diesel emissions that 
continues today. 

Indicator Spatial distribution of gridded diesel PM emissions from on-road 
and non-road sources 2016 (tons/year).

Data Source EMission FACtors (EMFAC) model2017, the 2016 CEPAMv1.05 
Inventory for criteria pollutants, and the California Emissions 
Inventory Development and Reporting System (CEIDARS) 2012 
database, California Air Resources Board (CARB)

CARB produces grid-based emission estimates for a variety of 
pollutants by emissions category on a 1km by 1km statewide 
Cartesian grid system to support specific regulatory and research 
programs. Diesel PM emissions were generated from four source 
sectors that were created using different approaches: area, point, on 
road mobile, and ocean going vessels. The data source does not 
account for meteorological dispersion of emissions at the 
neighborhood scale, which can have local-scale and year-to-year 
variability, or significant local-scale spatial gradients known to exist 
within a few hundred meters of a high-volume roadway or other 
large source of diesel PM. Nevertheless, it is a reasonable regional 
metric of exposure to diesel PM emissions.  Data available at the 
links below:

http://www.arb.ca.gov/diesel 
http://www.arb.ca.gov/msei/modeling.htm 
https://ww2.arb.ca.gov/emission-inventory-data 
https://arb.ca.gov/emfac 

Rationale Diesel PM is the particle phase of exhaust emitted from diesel 
engines commonly used to power trucks, buses, cars, trains, and 
heavy-duty equipment. This phase, sometimes referred to as “soot”, 
is composed of a mixture of compounds, including sulfates, nitrates, 
metals and carbon particles. The diesel PM indicator is distinct from 
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other air pollution indicators in CalEnviroScreen, such as PM2.5 
generated from non-diesel sources. Diesel engine exhaust has been 
classified as carcinogenic to humans by the International Agency for 
Research on Cancer in 2012, based on sufficient scientific evidence 
showing the association between exposure and elevated risk of lung 
cancer (IARC, 2014). Diesel PM contains known carcinogens, such 
as benzene and formaldehyde (Krivoshto et al., 2008; NTP, 2016) 
and 50 percent or more of the particles are in the ultrafine range 
(US EPA, 2002). 

Although diesel emissions have been substantially reduced, modern 
diesel vehicles still emit ultrafine PM (Liati et al., 2018). As particle 
size decreases, the particles may have increasing potential to 
deposit in the lung (Löndahl et al., 2012). The ultrafine fraction of 
diesel PM (aerodynamic diameter less than 0.1 μm) is of concern 
because these particles penetrate deeper into the lung, can carry 
toxic compounds on particle surfaces, and are more biologically 
reactive than larger particles (Betha and Balasubramanian, 2013; 
Nemmar et al., 2007). In urban areas, diesel PM is a major 
component of the particulate air pollution from traffic (McCreanor et 
al., 2007).

Children and those with existing respiratory disease, particularly 
asthma, appear to be especially susceptible to the harmful effects of 
exposure to airborne PM from diesel exhaust, resulting in increased 
asthma symptoms and attacks along with decreases in lung function 
(McCreanor et al., 2007; Wargo et al., 2002). Studies have found 
strong associations between diesel particulate exposure and 
exacerbation of asthma symptoms in asthmatic children who attend 
school in areas of heavy truck traffic (Patel et al., 2013; Spira-Cohen 
et al., 2011). Diesel exposure may also lead to reduced lung 
function in children living in close proximity to roadways (Brunekreef 
et al., 1997). 

Studies of both men and women demonstrate cardiovascular effects 
of diesel PM exposure, including coronary vasoconstriction and 
premature death from cardiovascular disease (Krivoshto et al., 
2008). A study of diesel exhaust inhalation by healthy non-smoking 
adults found an increase in blood pressure and other potential 
triggers of heart attack and stroke (Krishnan et al., 2013). Exposure 
to diesel PM, especially following periods of severe air pollution, can 
lead to increased hospital visits and admissions due to worsening 
asthma and emphysema-related symptoms (Krivoshto et al., 2008).

People that live or work near heavily-traveled roadways, ports, 
railyards, bus yards, or trucking distribution centers may experience 
a high level of diesel PM exposure (Krivoshto et al., 2008; NTP, 
2016; US EPA, 2002). A study of US workers in the trucking industry 
found an increasing risk for lung cancer with increasing years on the 
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job (Garshick et al., 2012; Garshick et al., 2008). The same trend 
was seen among railroad workers, who showed a 40% increased 
risk of lung cancer (Garshick, 2020; Garshick et al., 2004). Using 
elemental carbon as a proxy for diesel engine exhaust, one study 
found that for three groups of truckers and miners, diesel engine 
exhaust exposure at occupational levels appears to pose a 
substantial excess lifetime risk of lung cancer (Vermeulen et al., 
2014). Workers in jobs with diesel exhaust exposure also have an 
increased risk of chronic obstructive pulmonary disease mortality 
relative to those in unexposed jobs (Hart et al., 2009). 

MMethod Gridded diesel PM emissions from on-road sources were calculated 
for a typical summer week in July as follows:

 CARB’s on-road emissions model, EMFAC2017, was used to 
calculate county-wide estimates of diesel PM emissions for 
each representative day of the summer week and multiplied 
by the total number of days for the corresponding day of the 
week in 2016. The average day emissions reported in this 
layer is the sum of the above emissions divided by the total 
number of days in 2016. The average day emissions are 
multiplied by 365 to represent a yearly average.

 EMFAC2017 county-wide emission estimates are spatially 
distributed to 11 km grid cells based on the distribution of 
regional vehicle activity. Transportation networks are 
produced from travel demand modeling conducted by 
metropolitan planning organizations, local agencies and 
Caltrans. 

Gridded diesel PM from non-road sectors is based on CEPAMv1.05 
for a 2016 year except for the stationary source sector, which 
comes from a 2012 CEIDARS database which contains information 
relevant to the AB 2588 Air Toxics "Hot Spots" Program.  These two 
sectors were spatially allocated using the Sparse Matrix Operator 
Kerner Emissions (SMOKE) Modeling System.

 Area source sector emissions are spatially distributed to 11 
km grid cells based on a variety of gridded spatial surrogate 
datasets. Each category of emissions is mapped to a spatial 
surrogate that generally represents the expected sub-county 
locations of source-specific activities. The surrogates include, 
for example: Lakes and Coastline; Population; Housing and 
Employment; Industrial Employment; Irrigated Cropland; 
Unpaved Roads; Single-Housing Units; Forest Land; Military 
Bases; Non-irrigated Pasture Land; Rail Lines; Non-Urban 
Land; Commercial Airports; and Ports.
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 Point source sector emissions are spatially distributed to 11 
km grid cells based on the latitude and longitude of the 
emitting stack or facility.

 The Ocean going vessel (OGV) sector was obtained in gridded 
format. Pre-gridded at 1km resolution, the OGV data were 
based on CEPAMv1.05.

Adjustment for emissions at the US-Mexico border:

 Recent air quality modeling work demonstrates that 
emissions from Mexico can impact air quality in communities 
north of the border (Quintana et al., 2015). To account for 
additional diesel PM emissions from sources on the Mexico 
side of the US-Mexico border, CARB compared the results of 
its gridded diesel PM calculation with estimated diesel PM 
measurements from San Diego and Imperial County air 
monitors using measured nitrogen oxides (NOX) as a 
surrogate. Emissions in the Calexico area of Imperial County 
were adjusted higher based on additional air monitoring data 
showing cross-border pollution impacts.

 Comparison with other NOx monitors in the area suggested 
that the emissions in the Calexico area underestimate the 
true impacts of diesel PM by a factor of 2.7.  Accordingly, 
emissions for Calexico were multiplied by 2.7. The NOx 
concentrations in San Diego County matched the estimated 
diesel PM emissions more closely and did not require any 
adjustment.

Resulting gridded emission estimates from the on-road and non-
road categories were summed into a single gridded dataset. Gridded 
diesel PM emission estimates were then allocated to census tracts 
in ArcGIS Pro using a weighted apportionment. The proportion of a 
grid cell intersecting populated census blocks was used to 
contribute the weight of that grid cell value. Weighted values were 
then summed across the census tract. The estimates for diesel PM 
for census tracts were sorted and assigned percentiles based on 
their position in the distribution.
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DDRINKING WATER 
CONTAMINANTS 
Californians receive their drinking water from a wide variety of sources and distribution 
systems. An estimated 98% of Californians received their water from public sources in 
2013 (SOR, 2015), while a small fraction of the population rely on small water systems 
not regulated by the state or privately operated groundwater wells with little to no 
treatment. In 2018, 95% of public water systems, serving approximately 88% of 
Californians, delivered water that met all federal and state drinking water standards 
(SWRCB, 2018).  

However, drinking water quality varies with location, water source, treatment method, and 
the ability of the water purveyor to remove contaminants before distribution. Because 
water is universally consumed, drinking water contamination has the potential to result in 
widespread exposures. Contaminants may be introduced into drinking water sources in 
many ways, including natural occurrence, accidental discharge, industrial release, 
agricultural runoff and certain water disinfection methods. Cumulative exposure to 
contaminants, even at low levels, may affect health (Kolpin et al., 2002; Stoiber et al., 
2019).

California water systems have a high rate of compliance with drinking water standards. In 
2017, systems serving an estimated 1.6 percent of the state’s population were in 
violation of one or more federal drinking water standards (SWRCB, 2018). The drinking 
water contaminant index in CalEnviroScreen 4.0 is not a measure of compliance with 
these or California’s state standards. The drinking water contaminant index is a 
combination of contaminant data that takes into account the relative concentrations of 
different contaminants and whether multiple contaminants are present. The indicator 
does not indicate whether water is safe to drink.

Certain assumptions, data gaps and limitations within the indicator score methodology 
may affect the calculation of scores. For example, the indicator score is calculated using 
average contaminant concentrations over one compliance cycle (2011-2019). Therefore, 
those average concentrations may not be representative of current concentrations in 
treated drinking water. The indicator results do not provide a basis for determining when 
differences between scores are significant in relation to human health. Census tracts can 
encompass multiple public drinking water systems, and therefore, their scores may 
represent a combination of water contaminant data from several public drinking water 
systems and groundwater sources. As such, the drinking water contaminant score may not 
reflect the water that an individual resident of that tract is drinking. For a location within a 
census tract, more specific local water quality data may be available from the public water 
system serving that area. Public water systems are required to prepare annual Consumer 
Confidence Reports that provide detailed, system-specific information on water quality, 
health impacts and compliance with drinking water standards.  These Consumer 
Confidence Reports provide drinking water quality information directly to the public. The 
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US Environmental Protection Agency offers guidance on finding water quality data in 
California: http://water.epa.gov/drink/local/ca.cfm 

IIndicator Drinking water contaminant index for selected contaminants (2011 
to 2019)

DData Source Water Boundary Tool – Tracking California

Community water system and state small water system service area 
boundaries were extracted from the Water Boundary Tool. Although 
the mapping tool was retired on July 1, 2020, it was the most 
complete tool for system boundaries at the time of updating this 
indicator. The website is at the link below.

https://trackingcalifornia.org/water-boundary-tool/water-boundary-
tool-landing 

Sections and Townships - Public Land Survey System

Sections (approximately 1 by 1 mile grid) and townships (6 by 6 mile 
grid) were used to characterize ambient groundwater quality in areas 
outside of community and state small water systems. The layer is 
based on the PLSNET layer that the Department of Pesticide 
Regulation hosts and is provided in the link below.

https://gis.water.ca.gov/arcgis/rest/services/Environment/i07_Well
CompletionReports/FeatureServer/1 

High-Resolution Populated Areas Map of California (Pace et al., 
2013)

Water system and section boundaries were intersected with a high-
resolution map layer of residential or parcel areas within census 
blocks. The population estimate for each census block or portion of 
block was used in calculating water quality estimates at the census 
tract level. 

Safe Drinking Water Information System (SDWIS) –California State 
Water Resources Control Board

SDWIS houses a wide range of information about water systems, 
such as population served and types of facilities and sampling points 
within the distribution system. Additionally, MCL violations, TCR 
violations and sample results from the Lead and Copper Rule were 
extracted from this database. The data are available through 
request.

EDT Library and Water Quality Analyses Data and Download Page – 
California State Water Resources Control Board
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Drinking water monitoring data reported from laboratories were 
extracted from this database. The data are available at the link 
below. 
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwat
er/EDTlibrary.html 

Groundwater Ambient Monitoring and Assessment (GAMA) 
Program’s Groundwater Information System – California State Water 
Resources Control Board

This online mapping tool integrates ambient groundwater sample 
results from multiple sources. Ambient groundwater sample results 
were utilized from 8 GAMA projects to characterize areas outside of 
community and state small water system service boundaries. 

 Monitoring Wells (Water Board Regulated Sites)

 Local Groundwater Projects

 Public Water System Wells

 Department of Water Resource

 GAMA - Domestic Wells

 National Water Information System (NWIS)

 GAMA – Priority Basin Project

 GAMA – Special Studies

The link to the mapping tool is below.

https://gamagroundwater.waterboards.ca.gov/gama/gamamap/pub
lic/Default.asp 

GAMA Aquifer Risk Map Depth Filter Dataset

A depth filter was applied to ambient groundwater data in order to 
capture well depths most similar to domestic wells using the dataset: 
https://gispublic.waterboards.ca.gov/portal/home/item.html?id=55
258176731a4cefb24fc571d8136276 

RRationale Low income and rural communities, particularly those served by 
small community water systems, can be disproportionately exposed 
to contaminants in their drinking water (Balazs et al., 2011; 
VanDerslice, 2011). These systems tend to have the largest number 
of MCL violations for a variety of contaminants (Allaire et al., 2018; 
Marcillo and Krometis, 2019; Wallsten and Kosec, 2005).

Much of California relies on groundwater for drinking. In agricultural 
areas, nitrate from fertilizer application or animal waste can leach 
into groundwater and cause contamination of drinking water wells 
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(Lockhart et al., 2013). Rural residents of the San Joaquin Valley 
receive water primarily from shallow domestic wells. Elevated levels 
of nitrate in drinking water are associated with methemoglobinemia 
(blue baby syndrome) and may be associated with birth defects and 
miscarriages (Ruckart et al., 2007). 

Perchlorate, a groundwater contaminant that can come from 
geologic, industrial and agricultural sources, is common in drier 
regions of the state (Fram and Belitz, 2011). Although for most 
people, ingested perchlorate comes primarily from food, on average, 
across all age groups, 20 percent comes from drinking water (Huber 
et al., 2011). Perchlorate exposure during pregnancy appears to 
affect thyroid hormone levels in newborns, which can disrupt normal 
development (Hershman, 2005; Steinmaus et al., 2010). A study of 
bladder cancer in the US found that drinking surface water was 
associated with an increased risk of mortality, and the authors 
suspected a link to low-level pesticide contamination (Colli and 
Kolettis, 2010). 

Arsenic, a known human carcinogen, is a naturally occurring 
contaminant often found in groundwater in arid and semiarid 
regions, particularly in the San Joaquin Valley. Exposure to arsenic 
through drinking water is associated with elevated lung and bladder 
cancer rates, especially with early-life exposures (Steinmaus et al., 
2013). It has also been found that communities with more low 
socioeconomic-status residents were more likely to be exposed to 
arsenic in their drinking water and more likely to receive water from 
systems with high numbers of water quality compliance violations 
(Balazs et al., 2012). In an earlier study of nitrate concentrations and 
socioeconomic characteristics of water consumers, investigators 
found that small community water systems serving Latinos and 
renters supplied drinking water with higher levels of nitrate than 
systems serving fewer Latinos and a higher proportion of 
homeowners (Balazs et al., 2011).

Further contamination may occur through commonly used water 
treatment methods and post-treatment leaching in the distribution 
system. Chlorination and other treatment methods that are used to 
control microbial contamination can introduce by-products such as 
trihalomethanes (THMs), which have been linked to an increased 
risk of bladder cancer (Cantor et al., 2010; Richardson and Postigo, 
2011). Tap water ingestion is the principal source of THM exposure 
in the US (ATSDR, 1997; NTP, 2016). Lead can leach into drinking 
water post-treatment when pipes and fixtures made from lead 
corrode, contributing to at least 20 percent of lead ingestion (US 
EPA, 2019). Lead pipes are most commonly found in older cities and 
homes built before 1986 (US EPA, 2019). Although lead is harmful to 
all age groups, children who are exposed to lead are at significant 
risk of brain and nervous system damage, developmental disorders, 



CalEnviroScreen 4.0

58

and learning and behavioral problems (ATSDR, 2020; Bellinger et al., 
1984; Dietrich, 1999; Lanphear et al., 2005). There is no known 
safe level of lead exposure (ATSDR, 2020; NTP, 2012).

MMethod A drinking water contaminant metric was calculated for each census 
tract through four broad steps (detailed more fully below):

1. Drinking water system boundaries and townships were 
downloaded and cleaned. 

2. Average concentrations for each contaminant were calculated 
and associated with each water system and township. 

3. The systems’ and townships’ average water contaminant 
concentrations were re-allocated from the associated 
boundaries to census tracts. The census tracts were then 
ranked to obtain a percentile score for each contaminant and 
tract.

4. A census tract contaminant index was calculated as the sum 
of the percentiles for all contaminants. 

Drinking Water System Boundaries

 Water system boundaries were downloaded from Tracking 
California’s Water Boundary Tool. The 2,933 water systems in 
this set comprise all community water systems and about 90 
state small water systems.

 For areas without known water systems and source locations, 
township boundaries from the Public Land Survey System 
(approximately 6 miles square) were treated as the 
boundaries for the purpose of assigning water quality to 
people living in that area. It is assumed that people living in 
these areas drink water from very small water systems (under 
15 connections) or from private wells.

Drinking Water Contaminant Metric Calculation

 A subset of contaminants tested in drinking water across 
California was selected for the analysis (see Appendix) based 
on a set of criteria, such as frequency of tests, detections in 
drinking water and toxicity concerns. Monitoring data for 
these chemicals were obtained from SWRCB’s Water Quality 
Monitoring database from 2011-2019, the most recent 9-
year compliance cycle. 

 Data from the Lead and Copper Rule (LCR) were used to 
evaluate lead contamination during the same time period. 
The LCR requires water systems to report the 90th percentile 
results of lead sampling. Therefore, the average lead 
concentration represents the average of the 90th percentile 
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results. For areas outside of water systems, lead sample 
results were averaged by drinking water well first and then 
the 90th percentiles of the well concentrations within each 
township were calculated.

 Water quality data representing treated/delivered water were 
associated with their water system first. If no 
treated/delivered water quality data for a system was 
available, but the system purchased water from wholesalers, 
the wholesaler’s water quality was associated with the 
system. If no treated/delivered water data were reported in 
that time period for a given contaminant and system, water 
quality data from untreated or raw sources were used for that 
contaminant and system.

 For large water systems serving more than 20,000 people 
that rely on local sources of water and purchase water from 
wholesalers, the fraction of water that was purchased was 
identified from publicly available information (e.g., water 
quality reports). If no information was found on fraction 
purchased, it was assumed that half of the water was 
purchased (including all systems serving less than 20,000 
people that purchase water from wholesalers).

 Time-weighted average concentrations of each contaminant 
were calculated for each year for each sample source within 
a system. The average yearly concentrations were then 
averaged to create a source concentration. Then, the source 
concentrations within a system were averaged to calculate 
one concentration value for each chemical in each system. If 
purchased water from wholesalers was included, the 
calculation was adjusted by the fraction purchased.

 Water quality for areas outside of system service areas were 
characterized by using ambient groundwater well data from 
the eight GAMA projects (see data sources). Both domestic 
and non-domestic wells were incorporated. A methodology 
was used that filtered non-domestic wells based on their well 
depth in relation to known domestic well depths in the area. 
This methodology was adapted from SWRCB’s GAMA Aquifer 
Risk Map. Areas outside of system service areas were 
assigned an average groundwater quality data by PLSS 
section. First, an average water quality was calculated for 
sections with wells that have data. Then, an average of wells 
in neighboring sections with data were used for sections 
without data. Lastly, sections still without data were assigned 
the average of the township that the sections were within 
(ambient groundwater data from 8 GAMA sources).
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 Violations of the Maximum Contamination Level (MCL) for any 
chemical contaminant and Total Coliform rule were also 
summed for each water system, serving as a basis for a 
“violation index.” A system’s number of lead action level 
exceedances (from the Lead and Copper Rule) was added to 
MCL violations.

Re-allocation from Water System Boundaries to Census Tracts

 Residential areas from a high-resolution populated census 
block file (see data sources) were assigned the contaminant 
concentration or violation index of the systems in which they 
fell. Partial census blocks were apportioned by area.

 Census tract concentration estimates for each contaminant 
were calculated as the population-weighted sum of the 
contaminant concentration for the census blocks (or partial 
blocks) within the tract. Violation index data were similarly 
calculated.

 The census tracts were ordered by the value of their 
contaminant concentrations or violation index. Percentiles 
were calculated.

 The overall drinking water contaminant score for a census 
tract is the sum of its percentiles for all contaminants and 
violations. 
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AAppendix Contaminants Evaluated

Contaminant Unit MCL PHG DL

1,2,3-
Trichloropropane*

UG/L 0.005 0.0007 0.005

Arsenic UG/L 10 0.004 2
Cadmium UG/L 5 0.04 1
Dibromochloropropane 
(DBCP)

UG/L 0.2 0.0017 0.01

Gross Alpha PCI/L 15 3
Lead (Lead and Copper 
Rule)**

UG/L 15 0.2 5

Nitrate as N MG/L 10 10 0.4
Perchlorate UG/L 6 1 4
Chromium, Hexavalent UG/L 0.02 1
Ethylene Dibromide 
(EDB)

UG/L 0.05 0.01 0.02

Total Haloacetic Acids 
(HAAs)

UG/L 60 0

Tetrachloroethylene 
(PCE)

UG/L 5 0.06 0.5

Total Trihalomethanes 
(THM)

UG/L 80 1

Trichloroethylene (TCE) UG/L 5 1.7 0.5
*Action Level established under the Lead and Copper Rule (LCR).
**Notification level

Violation Types Evaluated

Violation Type

MCL Violations + LCR Action Level Exceedances

Total Coliform Rule Violations
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CCHILDREN’S LEAD RISK 
FROM HOUSING
Exposure to lead through paint is the most significant source of lead exposure for 
children (CDC, 2019b). Lead is a toxic heavy metal and occurs naturally in the 
environment. However, most of the high levels of lead found in our environment result 
from human activities. Historically, lead was used as an additive in gasoline and as a 
primary ingredient in house paint. Lead levels in the United States have declined over the 
past five decades due to various regulations. However, lead still persists in older 
buildings containing lead paint, as well as old plumbing and contaminated soil. 

Data on elevated blood lead levels (BLLs) in children is limited because universal testing 
of children for lead is not required in California. However, factors such as age of housing, 
income, race, and enrollment in public assistance programs have been significantly 
associated with EBLLs and have been used to screen for places where children may be at 
high risk for lead exposure. Data exists for two of the most significant measures of known 
risk factors: age of housing and children living in low-income households. Combining 
these data serves to identify communities that have a high potential for children’s 
exposure to lead paint in older housing stock, though it is not a measure of true exposure 
to lead in a community. While there are multiple sources of exposure to environmental 
lead, such as proximity to hazardous waste sites, contaminated soil, or older water pipes, 
the datasets relied upon here represent an indicator of potential exposure to lead due to 
older housing. Other CalEnviroScreen indicators can account for some of these other 
sources such as drinking water contaminants, toxic releases, and cleanup sites 
indicators.

Indicator Potential risk for lead exposure in children living in low-income 
communities with older housing. 

Percentage of households within a census tract with likelihood of 
lead-based paint (LBP) hazards from the age of housing (2017 
California parcel data and 5-year estimates 2015-2019) combined 
with the percentage of households that are both low-income 
(household income less than 80% of the county median family 
income) and have children under 6 years old (5-year estimates 
2013-2017).

Data Source California Residential Parcel Data – Digital Map Products

Parcel data for 2017 were obtained from Digital Map Product’s 
SmartParcels, a nationwide parcel database that combines parcel 
boundaries with property and tax attributes. 
https://www.digmap.com/platform/smartparcels/ 

United States Census Bureau – American Community Survey 
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The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau and has 
replaced the long form of the decennial census. Unlike the 
decennial census, which attempts to survey the entire population 
and collects a limited amount of information, the ACS releases 
results annually based on a sample of the population and includes 
more detailed information on individuals and households. Multiple 
years of data are pooled together to provide more reliable 
estimates for geographic areas with small population sizes. The 
most recent results available at the census tract scale are the 5-
year estimates for 2015-2019. The data are available through the 
US Census data download website.

http://www.census.gov/acs/ 

https://data.census.gov/cedsci/ 

United States Department of Housing and Urban Development – 
Comprehensive Housing Affordability Strategy (CHAS)

Each year, the US Department of Housing and Urban Development 
(HUD) receives custom tabulations of ACS data from the US Census 
Bureau. These data, known as the "CHAS" data (Comprehensive 
Housing Affordability Strategy), demonstrate the extent of housing 
problems and housing needs, particularly for low income 
households. The most recent results available at the census tract 
scale are the 5-year estimates for 2013-2017. The data are 
available from the HUD user website.

https://www.huduser.gov/portal/datasets/cp.html 

RRationale Young children are especially susceptible to the effects of lead 
exposure and can suffer profound and permanent adverse health 
effects, particularly in the brain and nervous system (WHO, 1995). 
This increased susceptibility is due to their unique exposure 
pathways (e.g., dust-to-hand-to-mouth), developing brains, and 
differences in the absorption of ingested lead (CDC, 2019a). 
Researchers have concluded that even with an elevated BLL lower 
than 10 μg/dL, children have a higher likelihood of lower IQ and 
educational performance outcomes, and symptoms of attention-
deficit hyperactivity disorder (ADHD) (Canfield et al., 2003; Eubig et 
al., 2010; Ha et al., 2009; Surkan et al., 2007). Particularly strong 
evidence for an association between low BLL and cognitive 
impairment comes from a large international study which 
concluded that environmental lead exposure is associated with 
intellectual deficits (Lanphear et al., 2005). This association was 
especially apparent even among children who had BLLs less than 
7.5 μg/dL. 
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There are no known safe levels of lead exposure, and levels that 
were previously considered safe are now known to cause subtle, 
chronic health effects. In 2012, the US Centers for Disease Control 
and Prevention (CDC) lowered the reference level at which they 
recommend public health actions be initiated from 10 μg/dL to a 
BLL of 5 μg/dL (CDC, 2019a). 

Childhood blood lead levels in the United States have steadily 
declined over the past five decades due to various regulations. 
However, among 675,000 California children tested in 2011, more 
than 17,000 children had elevated BLL (>5 ug/dL) (California 
Environmental Health Tracking Program, 2015). Lead persists in 
the environment in lead paint, old plumbing and contaminated soil, 
and can also be reintroduced through new pathways, like consumer 
products or through manufacturing-related exposures (CDC, 2020). 
As an example, in one California city, more than one half of the 
areas sampled had soil lead levels in excess of the California EPA 
recommended levels (Masri et al., 2020).

Older housing and higher levels of poverty are associated with 
elevated BLL (Kim et al., 2002; Sargent et al., 1995; Schultz et al., 
2017). Although residential LBP was banned in the US in 1978, 
paint chips and flaking paint remain a major source of lead 
exposure for young children living in these homes. In California, 
much of the housing was built prior to the lead paint ban, with 62% 
built prior to 1980 and 16% before 1950 (California Environmental 
Health Tracking Program, 2015). In addition, nearly one quarter of 
all California children under the age of five live in poverty, putting 
them at particularly high risk of lead exposure (California 
Environmental Health Tracking Program, 2015).

Despite reduced exposures and declining BLLs in the US, results 
from blood testing show that children still experience elevated BLL 
(McClure et al., 2016; Wheeler, 2013). In 2018, about 1.5 percent 
of children under age 6 (or 7,141 out of the 473,813) had a BLL 
over 4.5 μg/dL reported to California’s statewide reporting system. 
(Childhood Lead Poisoning Prevention Branch, 2020). However, 
recent estimates show that only 37% of all children with elevated 
BLL in California are identified as such, indicating a clear need for 
increased testing (Roberts et al., 2017). All California children 
enrolled in Medi-Cal and other publicly funded programs for low-
income children are required to receive blood lead testing. 

MMethod This indicator is a combination of the percentage of homes with 
higher likelihood of LBP hazards and the percentage of households 
that are both low-income and have children in a given area. The 
indicator was calculated for each census tract following three main 
steps (detailed more fully below and in the Appendix): 
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1. Calculate the percentage of homes with likelihood of LBP 
hazards using the construction period for each housing unit 
in the census tract.

2. Calculate the percentage of households that are low-income 
with children in each census tract.

3. Combine the percentage of homes with likelihood of LBP 
hazards with the low-income percentage to form a metric of 
potential lead exposure risk for each census tract. 

Additional detail for each of these steps is described below:

1. Percentage of Homes with Likelihood of LBP Hazards:

 Data on the year residential housing units (HUs) were built 
was obtained from the California residential parcel data. For 
each census tract, the number of residential HUs in each of 
five different age categories was calculated. The number of 
housing units in each housing age category were summed 
for each census tract. Housing age categories are listed in 
Table 2 of the Appendix.

 The percentage of homes in each census tract with 
likelihood of LBP hazards was calculated using a weighted 
average approach. The number of HUs in each age category 
were multiplied by the reported percentage of homes with 
LBP hazards extracted from a study on LBP in West Coast 
homes (Jacobs et al., 2002; Westat, 2001) (see Table 2 in 
the Appendix for the reported values). The number of HUs 
with likelihood of LBP hazards in each age category were 
summed and then divided by the total housing units in the 
census tract. 

 For census tracts without adequate parcel data, age 
categories were assigned from the 2015-2019 5-year ACS 
estimates. More information on how adequate parcel data is 
defined and how the reliability of the ACS data was 
assessed is in the Appendix. 

2. Low Income Households with Children:

 A dataset containing information for households by percent 
HUD-adjusted median family income (HAMFI) category was 
downloaded from the 2013-2017 HUD CHAS by census 
tract. For each census tract, the data was analyzed to 
estimate the number of households with household incomes 
less than 80% of the county median with one or more 
children under six years of age. The percentage of the total 
households in each tract that are both low-income with one 
or more children was then calculated.
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 CHAS data estimates which come from a sample of the 
population. They may be unreliable if they are based on a 
small sample or population size. Details on the selection of 
reliable estimates is provided in the Appendix.

3. Lead Risk from Housing Index Calculation

 Percentage homes with likelihood of LBP hazards and 
percentage households that are low-income households 
with children were individually ranked and assigned 
percentile scores. The two measures were then combined 
using a weighted sum approach, with a weight of 0.6 
assigned to housing and 0.4 assigned to low-income.  The 
result is the final lead risk from housing score.

 Census tracts were ordered by their combined lead risk from 
housing score and assigned a percentile based on the 
statewide distribution of values. 

Lead  Risk from Housing Index Calculation
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AAppendix Determining age categories for housing

I. Estimating Number of Housing Units and Year Built

Residential parcel data on housing attributes used in the analysis 
included use code (single-family residence, duplex, multi-family unit, 
etc.), number of units, and year built.

Residential use codes were used to determine the number of 
households in each census tract. For most residential parcels 
statewide, the number of units for each parcel in the residential 
parcel dataset was used. For residential parcels with a missing 
“number of units” field (other than multifamily units and mobile 
home parks), the residential use code was imputed based on the 
categories in Table 1. 

Table 1: Residential parcels use codes and associated number of 
units.

Use Code Description Number of Units 

<1100, 1999 Single-family residence 
(single-family 
residences, 
condominium, rural 
residence, etc.) 

1 

1101 Duplex 2 

1102 Triplex 3 

1103 Quadruplex 4 

For multifamily residential parcels missing the number of units, a 
systematic approach to assign a value was developed. Since 
apartment buildings vary greatly in size, the median apartment unit 
number was calculated for each county using the available parcel 
data for counties with over 25% of apartment unit data available (36 
of 58 counties). For counties with less than 25% apartment unit data 
available (19 of 58 counties), the statewide median apartment unit 
number of 8 was used for missing apartment unit number values. For 
counties with no data on number of units or year built (3 of 58 
counties), ACS data was used for the entire analysis.

Residential parcels classified as mobile home parks (MHPs) did not 
include data on the number of MHP units on the parcel. To fill this 
gap, the county median number of units for mobile home parks was 
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calculated using a dataset from the U.S. Department of Security 
(Department of Homeland Security, 2019).

II. Estimating Year Built

To estimate the year built for each residential HU, parcel year built 
data was used for counties with available data greater than 50% 
data. This accounts for the majority of counties (51 out of 58 
counties). 

For counties with more than 50% of missing year built parcel data, 
ACS data was used (7 out of 58 counties: Del Norte, Humboldt, 
Imperial, Mariposa, Mendocino, San Benito, and Trinity). 

ACS year built data was also used if the census tract had fewer than 
20 housing units or the amount of available parcel unit data was less 
than 20% of the total units listed in the ACS data. This accounted for 
158 census tracts including the 7 counties above that used ACS 
housing data.

III. Estimating Percentage of Homes with Likelihood of LBP by 
Census Tract 

Percentage of homes with likelihood of LBP was calculated in SAS 
9.4 by summing up the number of units in each age of housing 
category within each census tract. Residential HUs were divided into 
the five age categories shown in Table 2 by census tract in order to 
calculate the associated percentage of homes with LBP hazards. 

Hazard weights were derived from the percentage of LBP hazards 
(for example, on walls, ceilings, windows, play areas and doors) in 
18,841 West Coast homes in a study sponsored by HUD (Jacobs et 
al., 2002; Westat, 2001). 
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TTable 2: Age of housing categories based on estimated prevalence of 
homes with lead hazards. 

*The age of housing categories and LBP hazard weights come from the HUD 2001 
and Jacobs et al., 2002 studies.  
**ACS estimates were matched as closely to the parcel categories. 

Standard error (SE) and relative standard error (RSE) were used to 
evaluate the reliability of ACS data for census tracts which relied on 
ACS data to calculate percentage of homes with LPB from age of 
housing. This approach was undertaken because ACS estimates 
come from a sample of the population and may be unreliable if they 
are based on a small sample size. The SE was calculated for each 
census tract by dividing the margin of error reported in the ACS by 
1.645, the statistical value associated with a 90% confidence 
interval. The RSE was then calculated as the absolute value of the 
census tract’s SE divided by its estimated value. Census tract 
estimates that met either of the following criteria were considered 
reliable and included in the calculation of the percentage of homes 
with LBP hazards:

o Relative standard error was less than 50 or

o Standard error was less than the mean standard error of all 
California census tract estimates for the age of housing 
category

A census tract percentage of homes with LBP hazards estimate 
calculated from the ACS was deemed reliable if the census tract had 
reliable estimates from at least three of the five age categories 
shown in Table 2. An exception was made if a single age category 
estimate held at least 80% of the tract’s total number of houses and 
that estimate was established as reliable by the above criteria using 

Year of Construction 
Age of HUs) 
Categories
(For tracts using 
parcel data)*

Year of Construction 
Age of HUs
Categories
(For tracts using ACS 
data)**

Homes with LBP 
Hazards (%)*

HUs built after 1998 HUs built after 1999 0

HUs built 1978-1998 HUs built 1980-1999 4
HUs built 1960-1977 HUs built 1960-1979 22

HUs built 1940-1959 HUs built 1940-1959 69

HUs built before 
1940

HUs built before 
1940

71
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RSE or SE. There were 87 census tracts in which the overall score 
could not be calculated due to unreliable parcel and ACS data.

For census tracts with reliable data, the number of residential HUs in 
each category and their associated hazard percentage were 
multiplied. The products were summed and divided by the total HUs 
in the census tract. HUs without age of housing parcel data were 
excluded from the total HUs calculation. Lastly, the calculated value 
was multiplied by 100 for a total percentage of homes with LBP 
hazards. This process is described in the equation below.

The weighted average calculated for each census tract:

[∑ (Total HUs in each category x % homes with LBP hazards) / ∑ 
(HUs)] x 100

Table 3 shows an example calculation for the percentage of homes 
with likelihood of LBP hazards. 

TTable 3: Example of a housing metric calculation for a census tract.  

Construction 
Year

Number of 
Housing Units

Homes with 
LBP Hazards 
(%)

Estimate of 
homes with a 
lead risk

After 1998 150 0 0

1978-1998 150 4 6

1960-1977 150 22 33

1940-1959 150 69 103.5

Before 1940 150 71 106.5

Total HU in 
census tract

750 249

Proportion and percentage of 
homes with a LBP hazard:

(249/750) x 
100 =

33.20%

IV. Low Income Households Calculation

The percentage of the total households in each census tract that are 
both low-income (household incomes less than 80% of the county 
median) and contain one or more children was calculated from the 
2012-2016 HUD CHAS. This dataset contains information for 
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households by percentage of HUD-adjusted median family income 
(HAMFI). 

Reliability of the low-income households with children estimates from 
CHAS was also assessed since these are estimates provided by ACS. 
The standard error (SE) and relative standard error (RSE) were used 
to evaluate the reliability of each estimate. Because of the further 
complexity of only selecting household data with a child under 6 
years old, the estimates and margins of error from the low-income 
housing data alone were used to establish data reliability. This 
maximizes available data and reduce the number of null results while 
still maintaining consistent exclusion criteria. 

The SE was calculated for each census tract low income household 
estimate by dividing the margin of error reported in the CHAS data by 
1.645, a statistical value associated with a 90% confidence interval. 
The RSE was then calculated by dividing a census tract’s SE by its 
estimated value and taking the absolute value as the result. Census 
tract estimates that met either of the following criteria were 
considered reliable and included in the analysis:

o Relative standard error was less than 50 or

o Standard error was less than the mean standard error of all 
California census tract estimates for the particular variable 

If a census tract did not meet either criteria for the low-income 
household estimates, it was considered null and excluded from the 
analysis. If it was established to have a reliable percentage low-
income household estimate, then the corresponding percentage low-
income household with one or more child estimate was considered 
reliable enough to use in the metric. Four census tracts, which had 
reliable housing data, were excluded due to unreliable CHAS 
estimates, resulting in the exclusion of 91 tracts from the indicator. 

V. Combining the data

There were 7944 census tracts out of 8035 with reliable data on 
housing and low-income households. Percentage of homes with a 
likelihood of LBP hazards and percentage low-income with children 
were individually ranked and assigned percentile scores. The two 
measures were combined using a weighted sum approach, with a 
weight of 0.6 assigned to percentage of homes with likelihood of LBP 
hazards and 0.4 assigned to poverty. The weights selected are based 
on national studies that examined characteristics associated with 
EBLL in children (McClure et al., 2016; Wheeler, 2013). This sum is 
the final lead exposure risk from housing score as shown in Figure 1. 
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PPESTICIDE USE
Communities near agricultural fields, primarily farm worker communities, may be at risk 
for exposure to pesticides. Drift or volatilization of pesticides from agricultural fields can 
be a significant source of pesticide exposure. Complete statewide data on human 
exposures to pesticides do not exist. The most robust pesticide information available 
statewide are data maintained by the California Department of Pesticide Regulation 
showing where and when pesticides are used across the state. Pesticide use, especially 
use of volatile chemicals that can easily become airborne, can serve as an indicator of 
potential exposure. Similarly, unintended environmental damage from the use of 
pesticides may increase in areas with greater use. 

Indicator Total pounds of 132 selected active pesticide ingredients (filtered 
for hazard and volatility) used in production-agriculture per square 
mile, averaged over three years (2017 to 2019).

Data Source Pesticide Use Reporting,  
California Department of Pesticide Regulation (DPR)

In California, all agricultural pesticide use must be reported monthly 
to county agricultural commissioners, who report the data to DPR. 
California has a broad legal definition of agricultural pesticide use—
production agricultural use is defined as pesticides used on any 
plant or animal to be distributed in the channels of trade, and non-
production agricultural use includes pesticide applications to parks 
and recreational lands, rights-of-way, golf courses, and cemeteries, 
for example. Non-agricultural control includes home, industrial, 
institutional, structural, vector control, and veterinary uses. 
Production agricultural pesticide use data are publicly available for 
each Meridian-Township-Range-Section (MTRS) in California and 
were used to create this indicator. An MTRS, or section, is roughly 
equivalent to one square mile. Data are available statewide except 
for some areas that are exempt from reporting, such as some 
military and tribal lands.

Non-production agricultural and non-agricultural pesticide use data 
are available only at the county scale and were not included in the 
indicator due to the large geographic scale. Data and the MTRS is 
available at the link below:

https://www.cdpr.ca.gov/docs/pur/purmain.htm 

https://www.cdpr.ca.gov/docs/emon/grndwtr/gis_shapefiles.htm 
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RRationale High use of pesticides has been correlated with both exposure and 
acute pesticide-related illness, and there is evidence for an 
association with chronic disease outcomes. Pregnant, low income 
Latinas residing in an agricultural area of California had pesticide 
metabolite levels in their urine up to 2.5 times higher than a 
representative sample of US women (Bradman et al., 2005). Some 
research indicates that proximity to agricultural fields is correlated 
with measured concentrations in homes (Bradman et al., 2007; 
Harnly et al., 2009). A study in California comparing farmworker 
homes to homes of low-income urban residents found indoor 
concentrations of an agricultural pesticide only in homes of 
farmworkers (Quiros-Alcala et al., 2011). Another study, based on 
data from the California Pesticide Use Report (PUR) database, found 
that nearby agricultural pesticide use was significantly associated 
with pesticide concentrations in carpet dust (Gunier et al., 2011). 

A large cohort study of male pesticide applicators found a significant 
association between the use of four specific insecticides and 
aggressive prostate cancer (Koutros et al., 2013). The same study 
cohort also found that an elevated risk of hypothyroidism was 
significantly associated with the use of seven pesticides (Shrestha et 
al., 2018). A study of California births found that rates of preterm 
birth by county increased significantly as country-wide pesticide use 
increased, using pesticide information from the California PUR 
database (Winchester et al., 2016). Prenatal exposure to the 
organophosphate chlorpyrifos has been associated with 
abnormalities in brain structure in children (Rauh et al., 2012). In an 
agriculture-intensive area of California, children prenatally exposed 
to several pesticides were found to have significant decreases in 
Full-Scale IQ (Gunier et al., 2017). 

Early life exposures to pesticides, measured as urinary metabolite 
concentrations, were significantly associated with childhood 
respiratory symptoms, such as exercise-induced coughing (Raanan 
et al., 2015). Ambient exposure to pesticides was also found to be 
associated with increased risk of developing Parkinson’s Disease in 
a California-based study (Wang et al., 2014). An examination of 
national pesticide illness data concluded that agricultural workers 
and residents near agriculture had the highest rates of pesticide 
poisoning from drift incidents. Soil fumigation accounted for most of 
the cases (Lee et al., 2011).  In 2016 alone, DPR recorded 127 
incidents of illnesses caused by agricultural pesticide drift (DPR, 
2016). Because of their physical and chemical characteristics, 
fumigants and other volatile pesticides are most likely to be involved 
in pesticide drift incidents and illnesses. However, any pesticide that 
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is applied by air or sprayed during windy conditions can drift over 
neighboring communities (Coronado et al., 2011; Lee et al., 2011).

Although pesticide air monitoring data are not available statewide, 
DPR has established a pesticide air monitoring network for eight 
agricultural areas as of 2018 where there is high use of pesticides 
likely to concentrate in air. This network tracks concentrations of 30-
40 pesticides and compares monitored ambient air concentrations 
of individual pesticides with their health screening level. In 2016 it 
showed that 25 of the 37 pesticides and breakdown products 
sampled were detected (DPR, 2017). Although none were found to 
be above health screening levels, 1,3-dichloropropene reached a 4-
week average concentration that was 97.6% of its subchronic health 
screening level (DPR, 2017). Similarly, in 2017 and 2018, 27 and 
28 of the 36 sampled pesticides and breakdown products were 
detected respectively, although none exceeded health or regulatory 
screening levels (DPR, 2018, 2019). In 2018, 1,3-dichloropropene 
was found to have 4-week and 13-week average concentrations that 
exceeded health screening levels (DPR, 2019).

MMethod Specific pesticides included in the measure of pesticide use were 
narrowed from the list of all registered pesticides in use in California 
to focus on a subset of 132 chemicals that are filtered for hazard 
and volatility. Volatility is indicative of higher likelihood of drift and 
exposure. (See Appendix.)

 Production agricultural pesticide use records were obtained 
for the entire state for the years 2017, 2018, and 2019.

 Production agricultural pesticide use (total pounds of 
selected active ingredient) for MTRS records were matched 
to census tracts using a match file created in the GIS 
software ArcMap.

 Production pesticide use for each census tract was divided by 
each census tract’s area.

 Census tracts were ordered by pesticide use values and 
assigned a percentile based on the statewide distribution of 
values.



CalEnviroScreen 4.0

82



CalEnviroScreen 4.0

83

AAppendix Pesticide Use – Filter for Hazard and Volatility

Specific pesticides included in the measure of pesticide use were 
identified from DPR’s 2018 list of pesticides active ingredients by 
pounds used in California through consideration of both hazard and 
likelihood of exposure. 

Potentially hazardous pesticides were identified using a list 
generated under the Birth Defect Prevention Act of 1984 (SB 950) 
and the Proposition 65 list (Safe Drinking Water and Toxic 
Enforcement Act of 1986). As part of a review process of active 
ingredients under the SB 950 program, pesticides were classified as 
“High”, “Moderate”, or “Low” priority in 2011 for potential adverse 
health effects using studies of sufficient quality to characterize risk. 
For SB 950, the prioritization of each pesticide is a subjective 
process based upon the nature and number of potential adverse 
effects, the number of species affected, the no observable effect 
level (NOEL), potential human exposure, use patterns, quantity used, 
and US EPA evaluations and actions, among others. Proposition 65 
requires the state to maintain a list of chemicals that cause cancer 
or reproductive toxicity. Pesticides on the Proposition 65 list as of 
March 2020 were evaluated. For the purpose of developing an 
exposure indicator, pesticides that were prioritized as “Low,” not 
prioritized under SB 950, or not on the Proposition 65 list were 
removed from the analysis. 

The analysis was further limited to pesticides of high or moderate 
volatility. Higher volatility was considered to increase the likelihood 
of exposures. A list of pesticide volatilities was obtained from DPR. 
Pesticides not appearing on this list were researched for chemical 
properties in PubChem and the open literature. Pesticides with 
volatility less than 10-6 mm Hg were removed from the indicator 
analysis.

Additionally, pesticides that did not make the hazard and volatility 
criteria, but that are listed as Toxic Air Contaminants (TACs) or 
restricted active ingredients based on DPR’s, TAC or restricted use 
lists were also included in the analysis. The DPR lists of restricted 
materials and TACs are available at: 
https://www.cdpr.ca.gov/docs/enforce/permitting.htm 
https://www.cdpr.ca.gov/docs/emon/pubs/tac/tac_prog.htm 

See the figure below for a flow chart on how pesticide active 
ingredients were selected for inclusion. 

The filtering of pesticides for both hazard and volatility resulted in a 
list of 147 pesticides, of which 132 had agricultural use during this 
time. These 132 were included in the analysis here. The pesticides 
that are included in the indicator calculation are identified below. 
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FFlowchart of Pesticide Active Ingredients used in CalEnviroScreen 4.0 

Pesticide Active Ingredients
Total Production  
Agricultural Use  

(Pounds: 2017-19) 

Rank in
CalEnviroScreen 4.0

1,3-DICHLOROPROPENE 56,009,225 1
2,4-D 16,921 67
2,4-D, 2-ETHYLHEXYL ESTER 36,930 55
2,4-D, ALKANOLAMINE SALTS 
(ETHANOL AND ISOPROPANOL 
AMINES)

287 
90

2,4-D, BUTOXYETHANOL ESTER 1,662 79
2,4-D, BUTYL ESTER 50 106
2,4-D, DIETHANOLAMINE SALT 11,773 70
2,4-D, DIMETHYLAMINE SALT 1,175,604 16
2,4-D, ISOOCTYL ESTER 106 98
2,4-D, ISOPROPYL ESTER 56,007 49
2,4-D, TRIISOPROPANOLAMINE 
SALT 294 89

2,4-D, TRIISOPROPYLAMINE SALT 519 86
2,4-DP-P, DIMETHYLAMINE SALT 24 108
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PPesticide Active Ingredients
Total Production  
Agricultural Use  

(Pounds: 2017-19) 

Rank in  
CalEnviroScreen 4.0

3-CHLORO-P-TOLUIDINE 
HYDROCHLORIDE 1 120

4-(2,4-DB), DIMETHYLAMINE SALT 229,529 33
ACETAMIPRID 257,861 32
ACIBENZOLAR-S-METHYL 16,286 68
ACROLEIN 4,635 78
ALACHLOR 180 93
ALUMINUM PHOSPHIDE 27,530 60
AMITRAZ 127 96
ATRAZINE 81,574 47
ATRAZINE, OTHER RELATED 1,650 80
BENTAZON, SODIUM SALT 39,088 53
BORIC ACID 201,605 38
BRODIFACOUM <1 129
BROMACIL 22,822 63
BROMADIOLONE <1 121
BROMOXYNIL OCTANOATE 165,243 42
BUPROFEZIN 1,004,867 17
CACODYLIC ACID 1 116
CAPTAN 2,630,831 11
CAPTAN, OTHER RELATED 21,286 65
CARBARYL 464,812 25
CHLOROPICRIN 46,094,550 2
CHLOROTHALONIL 4,396,860 9
CHLORPYRIFOS 2,063,470 13
CHLORTHAL-DIMETHYL 961,385 18
CLOMAZONE 181,312 40
CYCLOATE 207,826 37
CYMOXANIL 38,659 54
CYPRODINIL 870,240 21
DAMINOZIDE 43,283 51
DAZOMET 7,010 76
DDVP 74 103
DIAZINON 200,567 39
DICAMBA 393 87
DICAMBA, DIMETHYLAMINE SALT 23,693 62
DICAMBA, SODIUM SALT 17,793 66
DICHLOBENIL 96 100
DIFENACOUM <1 132



CalEnviroScreen 4.0

86

PPesticide Active Ingredients
Total Production  
Agricultural Use  

(Pounds: 2017-19) 

Rank in  
CalEnviroScreen 4.0

DIFETHIALONE <1 130
DIMETHENAMID-P 61,766 48
DIMETHOATE 688,052 22
DIMETHOMORPH 147,117 45
DINOSEB 56 105
DINOTEFURAN 49,538 50
DITHIOPYR 10,293 72
DIURON 455,674 26
ENDOSULFAN 97 99
EPTC 879,422 20
ESBIOTHRIN <1 131
ETHALFLURALIN 170,765 41
ETHOFUMESATE 25,283 61
ETHOPROP 21,667 64
FENAMIPHOS 77 102
FLUDIOXONIL 161,460 44
FLUMIOXAZIN 314,139 31
FORMALDEHYDE <1 123
GLUTARALDEHYDE 192 92
HYDROGEN CHLORIDE <1 124
IMAZALIL 1 118
LINURON 226,643 34
MAGNESIUM PHOSPHIDE 117 97
MALATHION 1,509,690 14
MANCOZEB 6,363,283 6
MANEB 8,137 75
MCPA, 2-ETHYL HEXYL ESTER 1,338 82
MCPA, DIMETHYLAMINE SALT 337,510 30
MCPA, ISOOCTYL ESTER 1 115
MEFENOXAM 416,012 27
META-CRESOL 8 112
METALAXYL 551 85
METAM-SODIUM 16,141,566 4
METHAMIDOPHOS 3 114
METHIDATHION 172 94
METHOMYL 952,551 19
METHOXYCHLOR <1 122
METHYL BROMIDE 5,231,947 8
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PPesticide Active Ingredients
Total Production  
Agricultural Use  

(Pounds: 2017-19) 

Rank in  
CalEnviroScreen 4.0

METHYL IODIDE 19 109
METHYL PARATHION 29 107
METHYL PARATHION, OTHER 
RELATED <1 125

METRAFENONE 225,553 35
MEVINPHOS 241 91
MEVINPHOS, OTHER RELATED 160 95
MYCLOBUTANIL 220,071 36
NITRAPYRIN 318 88
NORFLURAZON 36,314 56
ORTHO-BENZYL-PARA-
CHLOROPHENOL <1 128

ORTHO-PHENYLPHENOL 3 113
OXYDEMETON-METHYL 4,904 77
PARAQUAT DICHLORIDE 5,304,452 7
PARATHION 16 110
PCNB 341,271 29
PCP, OTHER RELATED 9 111
PENTACHLOROPHENOL 78 101
PHORATE 103,671 46
PHOSPHINE 72 104
POTASSIUM N-
METHYLDITHIOCARBAMATE 33,164,122 3

PROMETON 1 119
PROPANIL 6,623,895 5
PROPOXUR <1 126
PYRETHRINS 31,925 58
PYRIDABEN 15,319 69
PYRIMETHANIL 346,408 28
S,S,S-TRIBUTYL 
PHOSPHOROTRITHIOATE 30,588 59

SIMAZINE 468,900 24
SODIUM FLUOROACETATE <1 127
STRYCHNINE 753 84
SULFUR DIOXIDE 10,821 71
SULFURYL FLUORIDE 40,345 52
TERRAZOLE 1,317 83
TETRACONAZOLE 32,360 57
THIOBENCARB 2,266,300 12



CalEnviroScreen 4.0

88

PPesticide Active Ingredients
Total Production  
Agricultural Use  

(Pounds: 2017-19) 

Rank in  
CalEnviroScreen 4.0

THIRAM 586,434 23
TRIALLATE 8,453 74
TRIBUTYLTIN OXIDE 1 117
TRIFLUMIZOLE 162,768 43
TRIFLURALIN 1,348,481 15
XYLENE 1,409 81
ZINC PHOSPHIDE 9,548 73
ZIRAM 2,920,604 10



CalEnviroScreen 4.0

89

RReferences Bradman A, Eskenazi B, Barr DB, Bravo R, Castorina R, Chevrier J, et 
al. (2005). Organophosphate urinary metabolite levels during 
pregnancy and after delivery in women living in an agricultural 
community. Environ Health Perspect 1113(12):1802-7.

Bradman A, Whitaker D, Quiros L, Castorina R, Claus Henn B, 
Nishioka M, et al. (2007). Pesticides and their metabolites in the 
homes and urine of farmworker children living in the Salinas Valley, 
CA. J Expo Sci Environ Epidemiol 17(4):331-49.

Coronado GD, Holte S, Vigoren E, Griffith WC, Barr DB, Faustman E, 
et al. (2011). Organophosphate pesticide exposure and residential 
proximity to nearby fields: evidence for the drift pathway. J Occup 
Environ Med 53(8):884-91.

DPR (2016). California Department of Pesticide Regulation. 
Summary of Results from the California Pesticide Illness 
Surveillance Program 2016. 
https://www.cdpr.ca.gov/docs/whs/pisp/2016/2016summary.pdf.

DPR (2017). California Department of Pesticide Regulation. Air 
Monitoring Network Results for 2016. Volume 6. [Available by 
request at: 
https://www.cdpr.ca.gov/docs/emon/airinit/air_network_results.ht
m].

DPR (2018). California Department of Pesticide Regulation. Air 
monitoring Network Results for 2017. Volume 7. [Available by 
request at: 
https://www.cdpr.ca.gov/docs/emon/airinit/air_network_results.ht
m].

DPR (2019). California Department of Pesticide Regulation. Air 
Monitoring Network Results for 2018. Volume 8. [Available at URL: 
https://www.cdpr.ca.gov/docs/emon/airinit/air_monitoring_results/
2018/full_report.pdf].

Gunier RB, Bradman A, Harley KG, Kogut K, Eskenazi B (2017). 
Prenatal residential proximity to agricultural pesticide use and IQ in 
7-year-old children. Environ Health Perspect 125(5):057002.

Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M, et al. 
(2011). Determinants of agricultural pesticide concentrations in 
carpet dust. Environ Health Perspect 119(7):970-6.

Harnly ME, Bradman A, Nishioka M, McKone TE, Smith D, 
McLaughlin R, et al. (2009). Pesticides in dust from homes in an 
agricultural area. Environ Sci Technol 43(23):8767-74.

Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, 
Barry KH, et al. (2013). Risk of total and aggressive prostate cancer 



CalEnviroScreen 4.0

90

and pesticide use in the Agricultural Health Study. Am J Epidemiol 
1177(1):59-74.

Lee SJ, Mehler L, Beckman J, Diebolt-Brown B, Prado J, Lackovic M, 
et al. (2011). Acute pesticide illnesses associated with off-target 
pesticide drift from agricultural applications: 11 States, 1998-2006. 
Environ Health Perspect 1119(8):1162-9.

Quiros-Alcala L, Bradman A, Nishioka M, Harnly ME, Hubbard A, 
McKone TE, et al. (2011). Pesticides in house dust from urban and 
farmworker households in California: an observational measurement 
study. Environ Health 10:19.

Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B 
(2015). Early-life exposure to organophosphate pesticides and 
pediatric respiratory symptoms in the CHAMACOS cohort. Environ 
Health Perspect 123(2):179-85.

Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. 
(2012). Brain anomalies in children exposed prenatally to a common 
organophosphate pesticide. Proc Natl Acad Sci U S A 109(20):7871-
6.

Shrestha S, Parks CG, Goldner WS, Kamel F, Umbach DM, Ward MH, 
et al. (2018). Pesticide use and incident hypothyroidism in pesticide 
applicators in the Agricultural Health Study. Environ Health Perspect 
1126(9):097008.

Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B (2014). The 
association between ambient exposure to organophosphates and 
Parkinson's disease risk. Occupational and Environmental Medicine 
771(4):275-81.

Winchester P, Proctor C, Ying J (2016). County-level pesticide use 
and risk of shortened gestation and preterm birth. Acta Paediatrica 
1105(3):e107-e15.



CalEnviroScreen 4.0

91

TTOXIC RELEASES FROM 
FACILITIES
There is widespread concern regarding exposures to chemicals that are released from 
industrial facilities. Statewide information directly measuring exposures to toxic releases 
has not been identified. However, some data on the release of pollutants into the 
environment are available and may provide some relevant evidence for potential 
subsequent exposures. The US Environmental Protection Agency (US EPA) maintains a 
Toxic Release Inventory (TRI) of on-site releases to air, water, and land and underground 
injection of any classified chemical, as well as quantities transferred off-site. The data are 
reported by each facility. US EPA has a computer-based screening tool called Risk 
Screening Environmental Indicators (RSEI) that analyzes these releases and models 
potential toxic exposures.

Indicator Toxicity-weighted concentrations of modeled chemical releases to 
air from facility emissions and off-site incineration (averaged over 
2017 to 2019 and including releases from Mexican facilities 
averaged over 2014 to 2016).

Data Source Toxics Release Inventory (TRI), US Environmental Protection Agency 
(US EPA)

The TRI program was created by the federal Emergency Planning 
and Community Right-to-Know Act (EPCRA) and Pollution Prevention 
Act. The program maintains a database of emissions and other 
releases for certain toxic chemicals. The database is updated 
annually and includes: 

 Chemicals identified in EPCRA Section 313 (593 
individually listed chemicals and 30 chemical categories); 
and 

 Persistent, Bioaccumulative and Toxic (PBT) Chemicals 
(16 specific chemicals and 4 chemical classes). 

Facilities are required to report if they have 10 or more full-time 
employees, operate within a set of industrial sectors outlined by TRI, 
and manufacture more than 25,000 pounds or otherwise use more 
than 10,000 pounds of any listed chemical during the calendar year. 
Lower reporting thresholds apply for PBT chemicals (10 or 100 
pounds) and dioxin-like chemicals (0.1 gram).

https://www.epa.gov/toxics-release-inventory-tri-program 

Mexico Registry of Emissions and Transfer of Contaminants (RETC)

The Registry of Emissions and Transfer of Contaminants (RETC) is 
Mexico’s national database, similar to US EPA’s TRI, with 
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information on pollutants released into the environment, including 
air, water, and soil. Current Mexican environmental regulations 
include a list of 200 chemicals that have mandatory reporting 
requirements to RETC, with their respective reporting thresholds.

http://sinat.semarnat.gob.mx/retc/index.html 

Risk Screening Environmental Indicators (RSEI), 
US Environmental Protection Agency (US EPA) 

RSEI is a computer-based screening tool that analyzes factors 
related to toxic releases that may result in chronic human health 
risks. RSEI analyzes these factors and calculates a numeric score. 
To give the score meaning, it must be ranked against other RSEI 
scores. RSEI combines TRI release data with toxicity estimates and 
models the dispersion of chemicals in air by incorporating 
physicochemical properties, weather and geography. RSEI gives 
each chemical release and potential exposure pathway a toxicity 
weight. The toxicity weights are drawn from various programs of the 
US EPA, CalEPA, and the Agency for Toxic Substances and Disease 
Registry and consider both cancer and non-cancer endpoints. The 
resulting measure of exposure is additive across chemicals.

For all air releases, a US EPA plume model is used to estimate long-
term pollutant concentrations downwind of a stack or area source. 
The air releases resulting from incineration of waste after transfers 
to off-site facilities are modeled in the same manner. RSEI assigns 
the toxicity weighted concentrations to an 810 m by 810 m grid cell 
system. The total concentration based hazard scores for the entire 
grid cell system are available from US EPA as RSEI Geographic 
Microdata. The data are available at the link below:

https://www.epa.gov/rsei 

RRationale The Toxics Release Inventory (TRI) provides public information on 
emissions and releases into the environment from a variety of 
facilities across the state. TRI data do not, however, provide 
information on the extent of public exposure to these chemicals. 
That said, US EPA has stated that “[d]isposal or other releases of 
chemicals into the environment occur through a range of practices 
that could ultimately affect human exposure to the toxic chemicals.” 
(U.S. EPA, 2010). A study of pollution in the printed wiring board 
industry found that among states with high TRI emissions in 2006, 
RSEI risk scores for California were by far the highest. According to 
the study, California combines high toxic emissions with a high risk 
score, based on location, composition of emissions and population 
exposure modeling (Lam et al., 2011).
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Air monitoring data at hundreds of locations across the United 
States have identified over a dozen hazardous air pollutants at 
concentrations that exceed California cancer or non-cancer 
benchmarks (McCarthy et al., 2009). Many of the locations that 
these authors found to have elevated levels are near major 
industrial sources, and many of the chemicals monitored are 
emitted from these facilities. In California, a study that modeled 
concentrations of air toxic chemicals found significant levels of risk 
(Morello-Frosch et al., 2000). Although this study found that mobile 
sources accounted for a major portion of the risk, the authors 
pointed out that for some communities, local industrial sources were 
a major contributor.

In addition to routine chemical releases, some communities located 
near TRI facilities are at risk from exposure to accidental chemical 
releases. A study of self-reported accident rates at US chemical 
facilities over a five year period reported that 1,205 facilities (7.8% 
of facilities in the database) had at least one accident during the 
reporting period, and an additional 355 facilities (2.3%) had multiple 
accidents during the reporting period (Kleindorfer et al., 2003). 
Associated with these events were a total of 1,987 injuries and 32 
deaths among workers, and 167 injuries among nonemployees, 
including emergency responders. There were 215 total 
hospitalizations and 6,057 individuals given other medical 
treatments. Over 200,000 community residents were involved in 
evacuations and shelter-in-place incidents over that five year period.

Several studies have examined the potential for health effects from 
living near TRI facilities. For example, a case-control study reported 
an increase in risk for diagnosis of brain cancer in children of 
mothers living within a mile of a TRI facility that released 
carcinogens (Choi et al., 2006). In another study, TRI air and water 
concentrations were associated with an increase in infant, but not 
fetal, mortality rates (Agarwal et al., 2010). In one Texas study, 
maternal residential exposures to five TRI chemicals were positively 
associated with low birth weight in offspring (Gong et al., 2018). A 
study that compared county-level TRI releases and health data 
found that increased chemical releases to air were significantly 
associated with higher total mortality as well as mortality from 
cardiovascular disease (Hendryx et al., 2014). In addition, 
significantly higher adjusted mortality rates have been associated 
with greater water and air releases in both rural and urban counties 
(Hendryx and Fedorko, 2011). 

Multiple studies have observed greater emissions in low-income and 
disadvantaged areas (Szasz and Meuser, 1997). Additionally, race 
and ethnicity have been correlated with the presence of toxic 
release facilities. One 2016 study found that the worst polluting 
facilities disproportionally expose communities of color and low 
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income populations to chemical releases (Collins et al., 2016). 
Furthermore, these racial and ethnic disparities in exposure are 
stronger in neighborhoods with median incomes below $25,000, 
and income-based disparities stronger in neighborhoods with 
median incomes above that level (Zwickl et al., 2014). People of 
color in studied regions of southern California were found to have a 
greater likelihood of living in areas with higher toxic releases 
(Morello-Frosch et al., 2002; Sadd et al., 1999).

MMethod  California TRI air releases for years 2017 through 2019 were 
modeled using RSEI Version 2.3.7 code by Abt Associates, 
US EPA contractors for the RSEI program. (Releases to land 
and water were not included.) 

 Locations of facilities reporting emissions to RETC were 
independently validated by San Diego State University 
researchers as part of a California Air Resources Board 
contract to improve data quality at the California-Mexico 
border (Contract number 16RD010).

 RETC emissions for the years 2014 to 2016 were provided to 
Abt Associates for inclusion in the RSEI model. 

 Census tract-level estimates for RSEI hazard-weighted 
concentrations were made by taking a land-area weighted 
average of the block-level values for each tract. Land area 
information was obtained from a 2010 Census Tiger Line 
block shapefile. 

 The average of the toxicity-weighted concentration estimates 
for census tracts were sorted and assigned a percentile 
based on their position in the distribution.
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TTRAFFIC IMPACTS
While California has the strictest auto-emission standards in the US, the state is also 
known for its freeways and heavy traffic. Traffic is a significant source of air pollution, 
particularly in urban areas, where more than 50% of particulate emissions come from 
traffic. Exhaust from vehicles contains a large number of toxic chemicals, including 
nitrogen oxides, carbon monoxide, and benzene. Traffic exhaust also plays a role in the 
formation of photochemical smog. Health effects of concern from these pollutants include 
heart and lung disease, cancer, and increased mortality. 

Indicator Sum of traffic volumes adjusted by road segment length (vehicle-
kilometers per hour) divided by total road length (kilometers) within 
150 meters of the census tract (traffic volumes estimates for 2017).

Data Source TomTom Find/Route/Display 

A 2018 digital roadway network, TomTom Find/Route/Display, was 
purchased through American Digital Cartography inc. 
https://www.adci.com/tomtom/gis/ 

TrafficMetrix® Traffic Count Database 

Traffic volume data for the year 2017 was purchased from 
TrafficMetrix®. 
https://www.kalibrate.com/solutions/traffic-count-data 

University of California, Riverside College of Engineering – Center for 
Environmental Research and Technology

Bernie Beckerman, PhD, independent contractor

Researchers at the University of California, Riverside’s Center for 
Environmental Research and Technology conducted much of the 
analysis of the road network and traffic volume data in collaboration 
with Dr. Bernie Beckerman

https://www.cert.ucr.edu/ 

US Customs and Border Protection, Border Crossing Entry Data; San 
Diego Association of Governments (SANDAG)

Data on northbound border crossing counts for the year 2017 was 
downloaded from the US Customs and Border Protection website. 
Data on traffic volumes for vehicles crossing the US-Mexico border 
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and from roadways in Mexico that are within 150 meters of the US-
Mexico border was obtained for the Tijuana area for the year 2008 
from SANDAG. 

https://explore.dot.gov/views/BorderCrossingData/Annual?:isGuest
RedirectFromVizportal=y&:embed=y 

https://www.sandag.org/ 

RRationale Traffic impacts represent the vehicles in a specified area, resulting 
in human exposures to chemicals that are released into the air by 
vehicle exhaust, as well as other effects related to large 
concentrations of motor vehicles. Major roadways have been 
associated with a variety of effects on communities, including noise, 
vibration, injuries, and local land use changes such as increased 
numbers of gas stations. For example, motorists often detour 
through residential streets near major roads in order to avoid 
congestion or traffic controls and this phenomenon can increase 
risk of injuries among pedestrians or bicyclists in these 
communities. Vehicle speed is directly associated with risk of 
pedestrian fatality, and speeds along major roadways tend to be 
higher than normal speeds on residential streets.

Studies have shown that non-white and low income people make up 
the majority of residents in high-traffic areas (Gunier et al., 2003; 
Tian et al., 2013) and that schools that are located near busy roads 
are more likely to be in low-income neighborhoods than those 
farther away (Green et al., 2004). A US Centers for Disease Control 
and Prevention study based on the 2010 Census found that Latinos, 
non-whites, foreign born and people who speak a language other 
than English at home were most likely to live within 150 meters of a 
major highway (Boehmer et al., 2013). In a California study on the 
effects of traffic-related pollution and respiratory effects in children, 
Hispanic children, particularly those with Native American ancestry, 
were more likely to live close to a freeway or major road compared 
with white children (Weaver and Gauderman, 2018). Hispanic 
children with more than 50% Native American ancestry who also live 
close to a major road were more than twice as likely to have ever 
reported asthma compared with those who lived further away 
(Weaver and Gauderman, 2018). In Southern California, decreases 
in ambient levels of specific traffic-related pollutants were 
significantly associated with lower asthma incidence (Garcia et al., 
2019). In addition, children who live or attend schools near busy 
roads are more likely to suffer from asthma and bronchitis than 
children in areas with lower traffic density. This relationship has 
been seen in both developed (Patel et al., 2011; Schultz et al., 
2012) and developing countries (Baumann et al., 2011). 
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Exposure to air pollutants from vehicle emissions has been linked to 
adverse birth outcomes, such as low birth weight, stillbirth, and 
preterm birth (Ebisu et al., 2018; Ghosh et al., 2012; Ritz et al., 
2007). These associations are affected by region, as well as 
maternal race/ethnicity and education (Ng et al., 2017). A recent 
study of children in Los Angeles found that those with the highest 
prenatal exposure to traffic-related pollution were up to 15% more 
likely to be diagnosed with autism than children of mothers in the 
lowest quartile of exposure (Becerra et al., 2013). 

The Atherosclerosis in Communities study, a cohort study with over 
15,000 participants, found that traffic density and distance to 
roadways were associated with reduced lung function in adult 
women (Kan et al., 2007). A California study found that vehicular 
emissions were associated with cardiovascular hospitalizations for 
elderly, as well as respiratory hospitalizations for children (Ebisu et 
al., 2019). One study using street-level traffic-related air pollutant 
data showed an association between long-term exposure and higher 
risk of cardiovascular events among the elderly (Alexeeff et al., 
2018). Vehicular emissions were associated with increased 
cardiovascular mortality, and warm season traffic was associated 
with all-cause and cardiovascular mortality (Berger et al., 2018). 
Road density and traffic volume were associated with adult male 
mortality from cardiovascular disease in an urban area in Brazil 
(Habermann and Gouveia, 2012). Traffic volume and density have 
also been associated with all-cause mortality during tuberculosis 
treatment in California (Blount et al., 2017). Motor vehicle exhaust 
is also a major source of polycyclic aromatic hydrocarbons (PAHs), 
which can damage DNA and may cause cancer (IARC, 2010). 

MMethod  A 150 meter buffer was placed around each of the 2010 census 
tracts in California. The area of the buffered census tract was 
calculated. A buffer was used to account for impacts from 
roadways within the buffered census tract boundaries. The 
selected buffer distance of 150 meters, or about 500 feet, is 
taken from the California Air Resources Board Air Quality and 
Land Use Handbook recommendations, which states that most 
particulate air pollution from traffic drops off beyond 
approximately 500 feet from roadways (CARB, 2005).

 ArcGIS was used to link the 2017 traffic volume data from 
TrafficMetrix® to the corresponding road segment of the digital 
roadway network from 2018 TomTom Find/Route/Display. 

 ArcGIS was used to intersect (or link) the buffered census tracts 
with traffic volumes and the road network data. For each road 
within the buffered census tract, a length-adjusted volume was 
calculated and summed for all roads within the buffered area of 
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the census tract. The total road length within the buffered 
census tract was also calculated. 

 For roadways with missing traffic data, spatial interpolation 
modeling was performed (Beckerman, 2014).

 Due to differences in the length of road segments across the 
state, a length-adjusted traffic volume metric was calculated by 
indicator multiplying the traffic volumes by the length of the road 
segment.

 The final traffic impacts indicator value, vehicles per hour, was 
calculated by dividing the sum of all length-adjusted traffic 
volumes within the buffered census tract (vehicle-km/hr) by the 
sum of the length of all road segments within the buffered 
census tract (km). 

 Traffic impacts, or vehicles per hour (vehicles/hr), represents the 
number of vehicles (adjusted by road segment lengths in 
kilometers) per hour per kilometer of roadways within the 
buffered census tract. 

 Two adjustments were made to account for the impacts of traffic 
on communities along the US-Mexico border. Impacts from 
parallel roads near border crossings and roads crossing the 
border. 

 Traffic impacts from parallel roads in Mexico within 150 meters 
of the US-Mexico border were incorporated with traffic data 
obtained from SANDAG for the Tijuana area for the year 2008. 
Information on parallel roads near other border crossings, such 
as Mexicali, was not available at the time of this update.

 Data on the number of trucks, buses and personal vehicles 
crossing the six ports of entry at the US-Mexico border was 
incorporated into this indicator. Data on northbound border 
crossing counts for the year 2017 was downloaded from the US 
Customs and Border Protection website. To account for vehicles 
traveling southbound into Mexico, the northbound counts were 
multiplied by two. 

 The estimates for traffic impacts for census tracts were sorted 
and assigned percentiles based on their position in the 
distribution.
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POLLUTION BURDEN:  
ENVIRONMENTAL EFFECTS 
INDICATORS 
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CCLEANUP SITES
Sites undergoing cleanup actions by governmental authorities or by property owners have 
suffered environmental degradation due to the presence of hazardous substances. Of 
primary concern is the potential for people to come into contact with these substances. 
Some of these “brownfield” sites are also underutilized due to cleanup costs or concerns 
about liability. The most complete set of information available related to cleanup sites and 
brownfields in California is maintained by the Department of Toxic Substances Control.

Indicator Sum of weighted sites within each census tract. 
(Data downloaded July 2021)

Since the nature and the magnitude of the threat and burden posed 
by hazardous substances vary among the different types of sites as 
well as the site status, the indicator takes both into account. 
Weights were also adjusted based on proximity to populated census 
blocks. 

Data Source EnviroStor Cleanup Sites Database,  
Department of Toxic Substances Control (DTSC)

EnviroStor is a public database that provides access to information 
maintained by DTSC on site cleanup. The database contains 
information on numerous types of cleanup sites, including Federal 
Superfund, State Response, Corrective Action, School Cleanup, 
Voluntary Cleanup, Tiered Permit, Evaluation, Historical, and Military 
Evaluation sites. The database contains information related to the 
status of the site such as required cleanup actions, 
involvement/land use restriction, or “no involvement.” Data 
available at the link below: 
http://www.envirostor.dtsc.ca.gov/public/ 

Region 9 NPL Sites (Superfund Sites) Polygons (2021 Draft Data) –
US Environmental Protection Agency, Region 9 
 
US EPA maintains and distributes the dataset for National Priorities 
List (NPL) Superfund sites nationwide. The data come in polygon 
format and generally represent the parcel boundaries of the sites or 
the estimated extent of contamination. Data is currently in draft 
format and was obtained from US EPA Region 9. 

Rationale Contaminated sites can pose a variety of risks to nearby residents. 
Hazardous substances can move off-site and impact surrounding 
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communities through volatilization, groundwater plume migration, or 
windblown dust. Studies have found levels of organochlorine 
pesticides in blood (Gaffney et al., 2005) and toxic metals in house 
dust (Zota et al., 2011) that were correlated with residents’ 
proximity to contaminated sites. 

A study of pregnant women living near Superfund sites in New York 
state showed an increased probability of having a low birth weight 
child (Baibergenova et al., 2003). A later study of cities in New York 
saw an association between prevalence of liver disease and the 
number of Superfund sites per 100 square miles (Ala et al., 2006). 
More recently, it was found that Superfund sites contribute to 
increased rates of elevated blood lead levels in children (Klemick et 
al., 2020). Additionally, children born to mothers living within two 
miles of a Superfund site were more likely to experience cognitive 
and behavioral problems than their siblings who were conceived 
after the site was cleaned (Persico et al., 2020). A demographic 
study of socioeconomic factors in communities in Florida found that 
census tracts with Superfund sites had significantly higher 
proportions of African Americans, Latinos and people employed in 
“blue collar” occupations than census tracts that did not contain a 
Superfund site (Kearney and Kiros, 2009). Some of the relationships 
between CalEnviroScreen scores and race have been added to the 
final section of this report.

It generally takes many years for a site to be certified as clean, and 
cleanup work is often delayed due to cost, litigation, concerns about 
liability, or detection of previously unrecognized contaminants. 

MMethod  Data on cleanup site type, status, and location (coordinate or 
address) for the entire state were obtained from DSTC’s 
EnviroStor database. 

 Sites with a valid latitude and longitude were mapped in 
ArcGIS Pro.

 US EPA Region 9 National Priority List polygon shapefile 
boundary data were acquired from US EPA Region 9. 

 Polygon boundaries of California Superfund sites were 
identified. Active sites were assigned a score of 12 (as a 
federal Superfund site).

 EnviroStor sites with a Superfund polygon representation 
were used instead of points.

 Several types of sites and statuses were excluded from the 
analysis because they indicate neither the presence of 
hazardous waste nor potential environmental risk (See 
Appendix). 
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 Each remaining site was scored on a weighted scale of 0 to 
12 in consideration of both the site type and status (See 
Appendix). Higher weights were applied to Superfund, State 
Response sites, and cleanups compared to evaluations, for 
example. Similarly, higher weights were applied to sites that 
are undergoing active remediation and oversight by DTSC, 
relative to those with little or no state involvement.

 The weights for all sites were adjusted based on the distance 
they fell from populated census blocks. Sites further than 
1000m from any populated census block were excluded from 
the analysis.

 Site weights were adjusted by multiplying the weight by 1 for 
sites less than 250m, 0.5 for sites 250-500m, 0.25 for sites 
500-750m, and 0.1 for sites 750-1000m from the nearest 
populated census blocks within a given tract. 



 Each census tract was scored based on the sum of the 
adjusted weights (in ArcMap).

 Summed census tract scores were sorted and assigned 
percentiles based on their position in the distribution.
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Appendix Weighting Matrix for Cleanup Sites

Cleanup Sites from the EnviroStor Cleanup Sites database were 
weighted on a scale of 0 to 12 in consideration of both the site type 
and status. The table below shows the weights applied for each site 
type and status. 

Site and status types excluded from the analysis: 
School Investigation and Border Zone/Hazardous Waste Evaluation 
site types were not included in the analysis. Sites with the following 
statuses were also not included in the analysis: Agreement – Work 
Completed, Referrals, Hazardous Waste Disposal Land Use, and De-
listed. Sites with statuses of Certified, Completed, and No Further 
Action were assigned a weight of zero and were effectively not 
included in the analysis. These sites and status types were excluded 
because they are not indicative of hazardous waste or potential 
environmental risk. 

For a given census tract, the weighted scores of all facilities in the 
area were summed. Definitions used in the table are defined below.
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SSite Type Status

Low

• Certified 

• Completed

• No Further 
Action

Medium

•Inactive-Needs Eval.

•Inactive

•Certified Operation 
& Maintenance – 
Land Use Restrictions

•Certified Operation 
& Maintenance

High

•Active 

•Backlog

•Inactive- Action 
Required

Low
 Evaluation
 Historical 
 Military Evaluation

0 4 6

Medium
 Corrective Action
 School Cleanup
 Voluntary Cleanup
 Tiered Permit

1 7 9

High
 State Response
 Superfund

2 10 12

Definitions*

 Active: Identifies that an investigation and/or remediation is currently in progress and 
that DTSC is actively involved, either in a lead or support capacity.

 Certified Operation and Maintenance (O&M): Identifies sites that have certified cleanups 
in place but require ongoing O&M activities.

 Certified: Identifies completed sites with previously confirmed releases that are 
subsequently certified by DTSC as having been remediated satisfactorily under DTSC 
oversight.

 Corrective Action: Identifies sites undergoing “corrective action,” defined as investigation 
and cleanup activities at hazardous waste facilities (either Resource Conservation and 
Recovery Act (RCRA) or State-only) that either were eligible for a permit or received a 
permit. These facilities treat, store, dispose and/or transfer hazardous waste.

 Evaluation: Identifies suspected, but unconfirmed, contaminated sites that need or have 
gone through a limited investigation and assessment process.

 Inactive – Action Required: Identifies non-active sites where, through a Preliminary 
Endangerment Assessment (PEA) or other evaluation, DTSC has determined that a 
removal or remedial action or further extensive investigation is required.
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 Inactive - Needs Evaluation: Identifies inactive sites where DTSC has determined a 
Preliminary Endangerment Assessment or other evaluation is required.

 No Further Action: Identifies completed sites where DTSC determined after investigation, 
generally a PEA (an initial assessment), that the property does not pose a problem to 
public health or the environment.

 School Cleanup: Identifies proposed and existing school sites that are being evaluated 
by DTSC for possible hazardous materials contamination at which remedial action 
occurred.

 State Response: Identifies confirmed release sites where DTSC is involved in 
remediation, either in a lead or oversight capacity. These confirmed release sites are 
generally high-priority and high potential risk.

 Superfund: Identifies sites where the US EPA proposed, listed, or delisted a site on the 
National Priorities List (NPL).

 Tiered CA Permit Sites: These facilities manage waste not regulated under RCRA, but 
regulated as a hazardous waste by the State of California. These facilities include but are 
not limited to recyclers, oil transfer stations, and precious metals recyclers.

 Voluntary Cleanup: Identifies sites with either confirmed or unconfirmed releases, and 
the project proponents have requested that DTSC oversee evaluation, investigation, 
and/or cleanup activities and have agreed to provide coverage for DTSC’s costs.

* EnviroStor Glossary of Terms 
(http://www.envirostor.dtsc.ca.gov/public/EnviroStor%20Glossary.pdf)

NNumber of Cleanup Sites in CalEnviroScreen 4.0: Approximately 5,600

Site Type % of Sites

Voluntary Cleanup 26%

Military Evaluation 15%

State Response 15%

Tiered Permit 14%

Evaluation 12%

Corrective Action 8%

School Cleanup 7%

Historical 1%

National Priorities List (NPL) (with boundaries) 1%

Federal Superfund (boundaries unavailable) 1%
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GGROUNDWATER THREATS
Many activities can pose threats to groundwater quality. These include the storage and 
disposal of hazardous materials on land and in underground storage tanks at various 
types of commercial, industrial, and military sites. Thousands of storage tanks in California 
have leaked petroleum or other hazardous substances, degrading soil and groundwater. 
Storage tanks are of particular concern when they can affect drinking water supplies. In 
addition, the land surrounding these sites may be taken out of service due to perceived 
cleanup costs or concerns about liability. Dairy farms and concentrated animal-feeding 
operations, which produce large quantities of animal manure pose a threat to 
groundwater. Other activities that pose threats to groundwater quality include produced 
water ponds, which are generated as a result of oil and gas development. The most 
complete sets of information related to sites that may impact groundwater and require 
cleanup are maintained by the State Water Resources Control Board. 

Indicator Sum of weighted scores for sites within each census tract. 
(Data downloaded July 2021)

The nature and the magnitude of the threat and burden posed by 
sites maintained in GeoTracker vary significantly by site type (e.g., 
leaking underground storage tank or cleanup site) and status (e.g., 
Completed Case Closed or Active Cleanup). The indicator takes into 
account information about the type of site, its status, and its 
proximity to populated census blocks. 

Data Source GeoTracker Database – 
State Water Resources Control Board (SWRCB)

GeoTracker is a public web site that allows the SWRCB, regional 
water quality control boards and local agencies to oversee and track 
projects at cleanup sites that can impact groundwater. The 
GeoTracker database contains information on locations and water 
quality of wells that could be contaminated, as well as potential 
sources of groundwater contamination. These include leaking 
underground storage tanks (LUSTs), leaking military underground 
storage tanks (USTs) cleanup and land disposal sites, produced 
water ponds, industrial sites, airports, dairies, dry cleaners, and 
publicly-owned sewage treatment plants. For each site, there is 
additional information on the status of cleanup activities. 
Groundwater quality data are extracted from monitoring and records 
maintained by SWRCB, the Department of Water Resources, Division 
of Oil, Gas & Geothermal Resources, Department of Public Health, 
Department of Pesticide Regulation, US Geological Survey and 
Lawrence Livermore National Laboratory. The database is constantly 
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updated and sites are never deleted from the database, where they 
may ultimately be designated ‘clean closed.’

A separate GeoTracker database contains information on the 
location of underground storage tanks (not leaking), which was not 
used. Data available at the link below: 
https://geotracker.waterboards.ca.gov/ 

California Integrated Water Quality System Project (CIWQS) – 
State Water Resources Control Board (SWRCB) 

The California Integrated Water Quality System (CIWQS) is a 
computer system used by the State and Regional Water Quality 
Control Boards to track information about places of environmental 
interest, manage permits and other orders, track inspections, and 
manage enforcement activities. CIWQS also allows online submittal 
of information by permittees within certain programs and makes 
data available to the public through reports. CIWQS contains data on 
confined animal facilities, including dairies and feedlots. Confined 
animal facilities include farms or ranches where livestock are held 
for a significant period of time and provided food in the facility (as 
opposed to grazing), and whose discharges are regulated by the 
SWRCB and/or one of the nine Regional Water Quality Control 
Boards. Discharges include manure, wastewater, and storm water 
runoff that may contain waste constituents. Users can access 
relevant information such as location, status, and number of 
animals permitted per facility. Data available at the link below: 
https://www.waterboards.ca.gov/water_issues/programs/ciwqs/ 

RRationale Common groundwater pollutants found at LUST and cleanup sites in 
California include gasoline and diesel fuels, chlorinated solvents and 
other volatile organic compounds (VOCs) such as benzene, toluene, 
and methyl tert-butyl ether (MTBE); heavy metals such as lead, 
chromium and arsenic; polycyclic aromatic hydrocarbons (PAHs); 
persistent organic pollutants like polychlorinated biphenyls (PCBs); 
DDT and other insecticides; and perchlorate (DPR, 2011; EPA, 
2002; SWRCB, 2012). An assessment of benzene exposure from a 
fuel leak concluded that soil and groundwater contamination could 
put nearby residents at risk and could have caused adverse health 
effects (Santos Mdos et al., 2013). Dioxins and dioxin-like 
substances have been detected in groundwater in areas where 
treated wastewater has been used for irrigation (Mahjoub et al., 
2011) and near wood treatment facilities (Karouna-Renier et al., 
2007). 

The occurrence of storage tanks, leaking or not, provides a good 
indication of potential concentrated sources of some of the more 
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prevalent compounds in groundwater. For example, the detection 
frequency of VOCs found in gasoline is associated with the number 
of UST or LUST sites within one kilometer of a well (Squillace and 
Moran, 2007). The occurrence of chlorinated solvents in 
groundwater is also associated with the presence of cleanup sites 
(Moran et al., 2007). Some of these cancer-causing compounds 
have in turn been detected in drinking water supplies in California 
(Williams et al., 2002). People who live near shallow groundwater 
plumes containing VOCs may also be exposed via the intrusion of 
vapors from soil into indoor air (Picone et al., 2012; Yao et al., 
2013). 

In addition to LUSTs and cleanup sites, confined animal feeding 
operations (CAFOs) can pose a threat to groundwater via nitrate 
contamination. Although nitrate contamination can originate from 
several possible sources, such as synthetic fertilizers and septic 
waste, manure from dairy farms is a significant contributor (Ransom 
et al., 2016). Socioeconomically disadvantaged communities in the 
Central Valley bear a disproportionate burden of nitrate groundwater 
contamination (Francis and Firestone, 2010). Another threat to 
surface groundwater is produced water ponds from oil and gas 
production, which have been shown to contain polycyclic aromatic 
hydrocarbons (PAHs), metals, and alkylphenols (Chittick and 
Srebotnjak, 2017), as well as increases in the salinity of 
underground sources of drinking water in California (Gillespie et al., 
2019).

MMethod Cleanups, Land Disposal, Underground Storage Tanks, and     
Produced Water Ponds:

 Data on cleanup site type, status, and location (coordinate or 
address) for the entire state were downloaded from 
GeoTracker 
(http://geotracker.waterboards.ca.gov/data_download.asp; 
GeoTracker Cleanup Sites). 

 Sites with a valid latitude and longitude were mapped and 
sites with address only were geocoded in ArcMap. 

 Certain types of sites and statuses were excluded from the 
analysis because they are not indicative of a hazard or a 
potential environmental risk (see Appendix). Each remaining 
site was scored on a weighted scale of 1 to 15 in 
consideration of both the site type and status. (See 
Appendix.)

Dairies and Feedlots: 

 Data on confined animal feeding operation type, status, 
location, and permitted population were downloaded from 
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CIWQS. 
(https://www.waterboards.ca.gov/ciwqs/publicreports.html#f
acilities ; Interactive Regulated Facilities Report). 

 Sites with a valid latitude and longitude were mapped and 
sites with address only were geocoded in ArcMap. 

 Pasture-based dairies were removed from the analysis 
because they are less indicative of a hazard or potential 
environmental risk. Inactive and Historical site types were 
also removed from the analysis. Each remaining site was 
scored on a weighted scale of 1 to 5 in consideration of the 
permitted animal population. (See Appendix)

Proximity Adjustment:

 The weights for all sites, except LUST Cleanup Program and 
military UST sites, were adjusted based on their distance 
from populated census blocks. Sites further than 1000m 
from any populated census block were excluded from the 
analysis. LUST Cleanup Program and military UST sites were 
not adjusted, but if these sites fell further than 250m from 
populated census blocks, they were excluded.

 Site weights were adjusted by multiplying the weight by 1 for 
sites less than 250m, 0.5 for sites 250-500m, 0.25 for sites 
500-750m, and 0.1 for sites 750-1000m from the nearest 
populated census blocks within a given tract. Sites outside of 
a census tract, but less than 1000m from one of that tract’s 
populated blocks were similarly adjusted based on the 
distance to the nearest block from that tract (See image 
below).

 Each census tract was scored based on the sum of the 
adjusted weights for sites it contains or is near (in ArcMap). 
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 Summed census tract scores were sorted and assigned 
percentiles based on their position in the distribution.
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Appendix Weighting Matrix for Groundwater Threats

Groundwater threats from the GeoTracker and CIWQS database 
were weighted on a scale of 1 to 15 in consideration of both the site 
type and status. The following table shows the weights applied for 
each site type and status.

Sites with a status type of Completed – Case Closed and Open-
Referred were excluded from the analysis because they are 
completed or were referred and tracked by another agency.

For a given census tract, the weighted scores of all facilities in the 
area were summed after adjusting for proximity to populated census 
blocks.
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SSite Type Status Weight

Land Disposal Sites 
[Military Privatized Site*]

Open – Remediation 10

Open - Assessment & Interim Remedial 
Action

10

Open - Site Assessment 6

Open 3

Open – Operating 3

Open - Verification Monitoring 3

Open - Closed / Monitoring 2

Open – Inactive 2

Open - Eligible for Closure Exclude

Open – Proposed Exclude

Produced Water Ponds Active 5

Inactive 2

LUST Sites 
[Military UST Site*]

Open – Remediation 3

Open - Assessment & Interim Remedial 
Action

3

Open - Site Assessment 2

Open - Verification Monitoring 2

Open – Inactive 1

Open - Eligible for Closure Exclude

Cleanup Program Sites 
[Military Cleanup Site*]

Open - Assessment & Interim Remedial 
Action

15

Open – Remediation 15

Open - Site Assessment 10

Open - Reopen Case 10

Open - Verification Monitoring 6

Open – Inactive 3

Open - Eligible for Closure Exclude
*Military sites have unique site types, but receive the same weights as their Land 
Disposal, Cleanup, and LUST site types of the same status.
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DDairies and Feedlots

Site Type Weight CAFO Population

Dairies

1 0 - 299

3 300 - 999

5 1,000 or more

Feedlots

1 0 - 499

3 500 – 2,999

5 3,000 or more

Site Type Definitions*: 

 Cleanup Program Site (Site Cleanup Program): In general, Site Cleanup 
Program sites are areas where a release of pollutants has occurred that is not 
addressed in the other core regulatory programs (e.g., permitted facilities, 
USTs). The funding for the Program is primarily cost reimbursement from 
responsible parties.

 Land Disposal Site: The Land Disposal program regulates water quality 
aspects of discharges to land for disposal, treatment, or storage of waste at 
waste management facilities and units such as landfills, waste piles and land 
treatment units under California Code of Regulations, Title 27. A land disposal 
unit is an area of land, or a portion of a waste management facility, at which 
waste is discharged.

 Produced Water Ponds: Produced water is the water that is produced as a 
byproduct during oil and gas extraction. The major constituents in produced 
water are salts, oil, inorganic and organic chemicals, and sometimes heavy 
metals or traces of naturally occurring radioactive materials. The Regional 
Water Quality Control Boards require waste discharge permits for produced 
water ponds.

 Military Cleanup Site: Military Cleanup Program sites are areas where a 
release of pollutants from an active or closed military facility has occurred. The 
military fully funds for the Program oversight.

 Military Privatized Site: These sites are within the Site Cleanup Program. They 
are unique because these sites have been transferred by the military into non-
military ownership with or without further cleanup necessary. 

 Military Underground Storage Tanks (UST): Military UST Program sites are 
areas where a release of pollutants from an underground storage tank has 
occurred at a military or former military installation. The military fully funds for 
the Program oversight costs.
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SStatus Definitions for Land Disposal Sites*:

 Open - Operating: A land disposal site that is accepting waste. These sites 
have been issued waste discharge requirements by the appropriate Regional 
Water Quality Control Board.

 Open - Proposed: A land disposal site that is in the process of undergoing the 
permit process from several agencies. These sites have not been issued waste 
discharge requirements by the appropriate Regional Water Quality Control 
Board, and are not accepting waste.

 Open – Closing/with Monitoring: A land disposal site that is no longer 
accepting waste and is undergoing all operations necessary to prepare the site 
for post-closure maintenances in accordance with an approved plan for 
closure.

 Open – Closed/with Monitoring: A land disposal site that has ceased accepting 
waste and was closed in accordance with applicable statutes, regulations, and 
local ordinances in effect at time of closure. Land disposal site in post closure 
maintenance period as waste could have an adverse effect on the quality of 
the waters of the state. Site has waste discharge requirements.

 Open – Inactive: A land disposal site that has ceased accepting waste but has 
not been formally closed or is still within the post-closure monitoring period. 
Site does not pose a significant threat to water quality and does not have 
groundwater monitoring. Site may or may not have waste discharge 
requirements.

 Completed – Case Closed/No Monitoring: A land disposal site that ceased 
accepting waste and was closed in accordance with applicable statutes, 
regulations, and local ordinances in effect at time of closure. The land disposal 
site was monitored for at least 30 years and Water Board staff has determined 
that wastes no longer pose a threat to water quality. Site does not have waste 
discharge requirements.

SStatus Definitions for Other Site Types*:

 Completed – Case Closed: A closure letter or other formal closure decision 
document has been issued for the site.

 Open – Assessment & Interim Remedial Action: An “interim” remedial action is 
occurring at the site AND additional activities such as site characterization, 
investigation, risk evaluation, and/or site conceptual model development are 
occurring.

 Open – Inactive: No regulatory oversight activities are being conducted by the 
Lead Agency.

 Open – Remediation: An approved remedy or remedies has/have been 
selected for the impacted media at the site and the responsible party (RP) is 
implementing one or more remedy under an approved cleanup plan for the 
site. This includes any ongoing remedy that is either passive or active, or uses 
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a combination of technologies. For example, a site implementing only a long 
term groundwater monitoring program, or a “monitored natural attenuation” 
(MNA) remedy without any active groundwater treatment as part of the 
remedy, is considered an open case under remediation until site closure is 
completed.

 Open – Site Assessment: Site characterization, investigation, risk evaluation, 
and/or site conceptual model development are occurring at the site. Examples 
of site assessment activities include, but are not limited to, the following: 1) 
identification of the contaminants and the investigation of their potential 
impacts; 2) determination of the threats/impacts to water quality; 3) 
evaluation of the risk to humans and ecology; 4) delineation of the nature and 
extent of contamination; 5) delineation of the contaminant plume(s); and 6) 
development of the Site Conceptual Model.

 Open – Verification Monitoring (use only for UST, Chapter 16 regulated cases): 
Remediation phases are essentially complete and a monitoring/sampling 
program is occurring to confirm successful completion of cleanup at the Site. 
(e.g. No “active” remediation is considered necessary or no additional “active” 
remediation is anticipated as needed. Active remediation system(s) has/have 
been shut-off and the potential for a rebound in contaminant concentrations is 
under evaluation).

 Open – Reopen Case (available selection only for previously closed cases): 
This is not a case status. This field should be selected to record the date that 
the case was reopened for further investigation and/or remediation. A case 
status should immediately be selected from the list of case status choices 
after recording this date.

 Open – Eligible for Closure: Corrective action at the Site has been determined 
to be completed and any remaining petroleum constituents from the release 
are considered to be a low threat to Human Health, Safety, and the 
Environment. The case in GeoTracker is going through the process of being 
closed.

* Available through Geotracker website: http://geotracker.waterboards.ca.gov/ 
(except the Produced Water Pond definition available at 
http://www.waterboards.ca.gov/water_issues/programs/groundwater/sb4/oil_field_pro
duced/index.shtml).

DDefinition of Confined Animal Facilities: includes farms or ranches where livestock are 
held for a significant period of time and provided food in the facility (as opposed to 
grazing), and whose discharges are regulated by the State Water Resources Control 
Board and/or one of the nine Regional Water Quality Control Boards. Discharges include 
manure, wastewater, and storm water runoff that may contain waste constituents.

Available at: https://geotracker.waterboards.ca.gov/site_type_definitions 
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NNumber of Groundwater Threat Sites: Approximately 12,000 

Facility Type % of Total

Cleanup Program Site 43%

Military Cleanup Site 15%

LUST Site 14%

Dairy 10%

Land Disposal Site 9%

Produced Water Pond 3%

Military UST Site 3%

Feedlot 2%

Military Privatized Site 1%
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HHAZARDOUS WASTE 
GENERATORS AND 
FACILITIES
Most hazardous waste must be transported from hazardous waste generators to 
permitted recycling, treatment, storage, or disposal facilities (TSDF) by registered 
hazardous waste transporters. Shipments are accompanied by a hazardous waste 
manifest. There are widespread concerns for both human health and the environment 
from sites that serve to process or dispose of hazardous waste. Many newer facilities are 
designed to prevent the contamination of air, water, and soil with hazardous materials, 
but even newer facilities may negatively affect perceptions of surrounding areas in ways 
that have economic, social and health impacts. The Department of Toxic Substances 
Control maintains data on permitted facilities that are involved in the treatment, storage, 
or disposal of hazardous waste as well as information on hazardous waste generators. 

Indicator Sum of weighted permitted hazardous waste facilities, hazardous 
waste generators, and chrome plating facilities within each census 
tract.  
(Permitted hazardous waste facilities were downloaded July 2021, 
Hazardous waste data are from 2018-2020, and chrome plating 
facilities are based on a survey from 2018.)

Data Source EnviroStor Hazardous Waste Facilities Database and 
Hazardous Waste Tracking System – 
Department of Toxic Substances Control (DTSC)

EnviroStor is a public website that provides access to detailed 
information on hazardous waste permitted facilities. Information 
included in the database includes the facility name and address, 
geographic location, facility type and status.

DTSC also maintains information on the manifests created for the 
transport of hazardous waste from generators in its Hazardous 
Waste Tracking System. Manifests include the generator’s name 
and identification number, the transporter, the designated recipient 
and description of the type and quantity of waste classified by a 
coding system. Data are currently available for 2018 - 2020. Data 
are available at the links below:

http://www.envirostor.dtsc.ca.gov/public/data_download.asp 
http://hwts.dtsc.ca.gov/ 

Chrome Plating Airborne Toxics Control Measure –
California Air Resources Board
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The California Air Resources Board (CARB) is in the process of 
amending the Chrome Plating Airborne Toxics Control Measure 
(ATCM) for reducing hexavalent chromium emissions from California 
chrome plating facilities.    Since 1988, CARB has regulated chrome 
plating operations for both decorative and hard chrome plating 
facilities, as well as chromic acid anodizing operations.  The ATCM 
was amended in 1998 and again in 2007 to accommodate changes 
in federal regulations as well as improve ways to further reduce 
chrome emissions.  Information on CARB’s Chrome Plating ATCM 
webpages provides information on the regulation, the 
announcements of Work Group meetings and public workshops, as 
well as how interested parties can get involved in the Chrome 
Plating ATCM amendment development process. This data of 
chrome plating facilities is based on survey data in 2018. More 
details about the Chrome Plating ATCM can be found at:  

https://ww2.arb.ca.gov/our-work/programs/chrome-plating-atcm 

RRationale Hazardous waste by definition is potentially dangerous or harmful to 
human health or the environment. The US Environmental Protection 
Agency and DTSC both have standards for determining when waste 
materials must be managed as hazardous waste. Hazardous waste 
can be liquids, solids, or contained gases. It can include 
manufacturing by-products and discarded used or unused materials 
such as cleaning fluids (solvents) or pesticides. Hexavalent 
chromium, a hazardous waste of particular human health concern, 
is generated as part of the chrome plating process (Pellerin and 
Booker, 2000). Used oil and contaminated soil generated from a 
site clean-up can be hazardous wastes (DTSC, 2012). In 1995, 97% 
of toxic chemicals released nationwide came from small generators 
and facilities (McGlinn, 2000). Generators of hazardous waste may 
treat waste onsite or send it elsewhere for disposal. 

The potential health effects that come from living near hazardous 
waste disposal sites have been examined in a number of studies 
(Vrijheid, 2000). While there is sometimes limited assessment of 
exposures that occur in nearby populations, there are studies that 
have found health effects, including diabetes and cardiovascular 
disease, associated with living in proximity to hazardous waste sites 
(Kouznetsova et al., 2007; Sergeev and Carpenter, 2005). 
Hexavalent chromium can be ingested or inhaled, and can cause 
damage to the respiratory system and other organs. Hexavalent 
chromium compounds have been found to be carcinogenic (Pellerin 
and Booker, 2000). 

Location of hazardous waste sites near communities has long been 
an environmental justice concern in California. For example, a study 
of 82 hazardous waste treatment, storage, and disposal facilities in 
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Los Angeles County found that the communities most affected by 
the facilities are composed of working-class and ethnic minority 
populations living near industrial areas (Aliyu et al., 2011). A 1997 
study correlated race/ethnicity with the location of hazardous waste 
treatment, storage and disposal facilities for both African-American 
and Latino populations (Boer et al., 1997).

Electronic waste is defined as universal waste rather than 
hazardous waste by California law, and is subject to different rules 
for handling and transportation. However, some components of 
electronic devices contain hazardous materials, and facilities that 
collect or recycle electronic waste are potential sources of exposure 
to toxic chemicals (CalRecycle, 2020; DTSC, 2010). 

MMethod Permitted hazardous waste facilities:

 Permitted facility data were obtained from the DTSC website.

 Facilities were scored on a weighted scale in consideration of 
the type, permit status, and compliance history for the facility 
(see Appendix).

 Site locations were mapped or geocoded (in ArcGIS Pro). 

Hazardous waste generators:

 Generator data were obtained from DTSC from the 
Hazardous Waste Tracking System for 2018 to 2020.

 Only large quantity generators (producing at least 1,000 kg of 
non-RCRA waste or at least 1 kg of RCRA waste  for at least 
one month during the three years) were included. The 
threshold of large quantity generators is based on the 
following definition from DTSC: 
https://dtsc.ca.gov/large-quantity-generator-of-hazardous-
waste-definition/ 

 To more fully account for cross-border pollution, OEHHA 
identified one brick kiln in Mexico within 1000 meters of a 
community in California. Without data on volume of waste 
generated, this brick kiln was classified as a large hazardous 
waste generator, weighted with a score of ‘2’ (see Appendix). 
This site was independently validated by San Diego State 
University researchers as part of a California Air Resources 
Board contract to improve data quality at the California-
Mexico border (Contract number 16RD010).

 Facilities were scored on a weighted scale in consideration of 
the volume of waste generated (see Appendix).

 Site locations were mapped or geocoded (in ArcGIS Pro).
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Chrome plating facilities: 

 Chrome plating facility data were obtained from CARB, which 
maintains a list of chrome plating facilities. 

 Only active chrome plating facilities were included in the 
analysis. 

 Facilities were scored based on the number of annual 
amperage hours permitted at that facility. 

 Site locations were mapped or geocoded (in ArcGIS Pro).

Proximity Adjustment:

 The weights for all facilities were adjusted based on the 
distance they fell from populated census blocks. All facilities 
further than 1,000m from any populated census block were 
excluded from the analysis.

 Site weights were adjusted by multiplying the weight by 1 for 
facilities less than 250m, 0.5 for sites 250-500m, 0.25 for 
sites 500-750m, and 0.1 for sites 750-1000m from the 
nearest populated census blocks within a given tract. 
Facilities outside of a census tract, but less than 1000m 
from one of that tract’s populated blocks were similarly 
adjusted based on the distance to the nearest block from 
that tract.

 Each census tract was scored based on the sum of the 
adjusted weights for sites it contains or is near (in ArcGIS 
Pro).

 Summed census tract scores were sorted and assigned 
percentiles based on their position in the distribution.
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AAppendix Weighting Matrix for Permitted Hazardous Waste Facilities, 
Hazardous Waste Generators, and Chrome Plating Facilities

Permitted Hazardous Waste Facilities from DTSC’s permitted 
facilities database were weighted on a scale of 1 to 15 in 
consideration of the facility activity and permit type. The score for 
any given Permitted Hazardous Waste Facility represents the sum of 
its Facility Activity and Permit Type.  Compliance history is now a 
component of the permitted facility scoring. OEHHA worked with 
DTSC during their SB 673 (Permitting Criteria) process and used 
data from the Violations Scoring Procedure (VSP)1 to assign scores 
to facilities with more violations in a rolling ten-year period. OEHHA 
assigned additional weights to facilities that fell within VSP 
Compliance Tiers of “Conditionally Acceptable” or “Unacceptable”. 
The new facility scoring weights can be found further down in the 
appendix. 

Hazardous waste generators were assigned weights from 0.1 to 2 
based on the yearly amount of waste generated. Chrome plating 
facilities were weighted on a scale of 0.1 to 2 based on the annual 
amperage-hours permitted at that site.

The following tables show the weights applied to the facilities, 
generators, and chrome platers. Greater concerns were identified 
for permitted hazardous waste facilities that handle much of the 
hazardous waste generated from the ~100,000 generators in 
California. Only large quantity generators2 (>1,000 kg of non-RCRA3

waste or at least 1 kg of RCRA waste) were included due to the large 
number of hazardous waste generators producing small amounts of 
less hazardous types of waste. In 2018 to 2020 this represents 
about 11,000 generators. Higher weights were given to generators 
that produced larger volumes of waste. For all census tracts, the 
weighted and proximity adjusted scores of all facilities and 
generators in the area were summed.

                                                

2 DTSC Large Quantity Generators of Hazardous Waste at https://dtsc.ca.gov/large-quantity-generator-of-
hazardous-waste-definition/
3 RCRA: Resource Conservation and Recovery Act governs the federal management of hazardous wastes;  
(List of RCRA waste: https://www.epa.gov/hw/defining-hazardous-waste-listed-characteristic-and-mixed-
radiological-wastes)
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PPermitted Hazardous Waste Facilities

Weight Activity or Status

Facility Activity (base weight) 10 Landfill

7 Treatment 

4 Storage 

2 Post-closure

Permit Type (additional weight) 1 Large facilities 

1 Non-RCRA facilities 

2 RCRA facilities

Violation Scoring Procedure 
Compliance Tier (additional weight)

3 Tier: “Unacceptable”

1 Tier: “Conditionally Acceptable”

Hazardous Waste Generators

Generator Type Weight Quantity of Waste

Large Quantity Hazardous Waste 
Generators (> 1,102 tons in one 
calendar month)

0.1 < 100 tons/yr

0.5 100 – 1,000 tons/yr

2 >1,000 tons/yr

Chrome Plating Facilities

Facility Type Weight Permitted Amperage-Hours

Active Chrome Plating Facilities 0.1 <=50,000 amp-hrs/yr

0.5 > 50,000 – 500,000 amp-hrs/yr

2 >500,000 amp-hrs/yr

Number of Chrome Plating Facilities, Hazardous Waste Generators, and Permitted Facilities: 
Approximately 11,300

Facility Type % of Total

Large hazardous waste generator or hazardous 
waste generator with RCRA waste 

98%

Permitted hazardous waste storage facility 1%*

Active chrome plating facility 1%

*Permitted storage facilities are weighted much higher than generators and chrome platers. 
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IIMPAIRED WATER 
BODIES
Contamination of California streams, rivers, lakes, and coastal waters by pollutants can 
compromise the use of the water body for drinking, swimming, fishing, aquatic life 
protection, and other beneficial uses. When this occurs, such water bodies are considered 
“impaired.” Information on impairments to these water bodies can help determine the 
extent of environmental degradation within an area.

Indicator Summed number of pollutants across all water bodies designated 
as impaired within the area (2018).

Data Source 2018 303(d) List of Impaired Water Bodies, 
State Water Resources Control Board (SWRCB)

The SWRCB provides information relevant to the condition of 
California surface waters. Such information is required by the 
Federal Clean Water Act. Every two years, State and Regional Water 
Boards assess and report on the quality of California surface waters. 
Lakes, streams and rivers, and coastal waters that do not meet 
water quality standards, or are not expected to meet water quality 
standards, are listed as impaired under Section 303(d) of the Clean 
Water Act. The 2018 303(d) List was based on water quality data 
collected prior to May 3, 2017. Data and information about the 
303(d) List are available at the link below:

https://www.waterboards.ca.gov/water_issues/programs/water_qu
ality_assessment/ 

Rationale Rivers, lakes, estuaries and marine waters in California are 
important for many different uses. Water bodies used for recreation 
may also be important to the quality of life of nearby residents if 
subsistence fishing is critical to their livelihood (CalEPA, 2002). 
Water bodies also support abundant flora and fauna. Alterations in 
natural conditions in aquatic environments can affect biological 
diversity and overall health of ecosystems. Aquatic species 
important to local economies may be impacted if the habitats where 
they seek food and reproduce are changed. Marine wildlife like fish 
and shellfish that are exposed to toxic substances may potentially 
expose local consumers to toxic substances as well (CalEPA, 2002). 
Excessive hardness, unpleasant odor or taste, turbidity, color, 
weeds, and trash in the waters are types of pollutants affecting 
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water aesthetics (CalEPA, 2002), which in turn can affect nearby 
communities. 

Communities of color, low-income communities, and tribes generally 
depend on the fish, aquatic plants, and wildlife provided by nearby 
surface waters to a greater extent than the general population 
(NEJAC, 2002). Some communities that rely on resources provided 
by nearby surface waters have populations of lower socioeconomic 
status and higher ethnic diversity than the general population. For 
example, certain fishing communities along California’s northern 
coast have lower educational attainment and median income than 
California as a whole (Pomeroy et al., 2010). In a study of 500 
women in the Sacramento–San Joaquin Delta, it was found that 
Asian and African American women consumed the highest number 
of sport-caught fish (Silver et al., 2007). Increased levels of certain 
surface water pollutants have been associated with lower per capita 
income, low housing values, and a higher percentage of minorities 
and people of color (Farzin and Grogan, 2013; Liévanos, 2018). In 
addition, a study in the Sacramento-San Joaquin Delta found that 
fish consumption for certain subsistence fishers was higher than 
rates used for planning and regulation of polluted waters, and that 
mercury consumption from fish was significantly above US EPA 
advisory levels (Shilling et al., 2010).

Two studies, one in England and one in San Antonio, Texas, found 
that people who lived near water bodies with significant 
impairments were more likely to believe that the water bodies were 
safe, and therefore to visit them more often, than people who lived 
further away (Brody et al., 2004; Georgiou et al., 2000).

MMethod  Data on water body type, water body ID, and pollutant type 
were downloaded in Excel format, and GIS data showing the 
visual representation of all water bodies were downloaded 
from the SWRCB website. 

https://www.waterboards.ca.gov/water_issues/programs/wa
ter_quality_assessment/2018_integrated_report.html 

 All water bodies were identified in all census tracts in the GIS 
software ArcGIS Pro. 

 The number of pollutants listed in streams or rivers that fell 
within 1 kilometer (km) or 2 km respectively of a census 
tract’s populated blocks were counted. The 2 km buffer 
distance was applied to major rivers (>100 km in length, plus 
the Los Angeles River and Imperial Valley canals and 
drainage ways). The 1 km buffer distance was applied to all 
smaller streams/rivers.
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 The number of pollutants listed in lakes, bays, estuaries or 
shoreline that fell within 1 km or 2 km of a census tract’s 
populated blocks were counted. The 2 km buffer distance 
was applied to major lakes or bays greater than 25 square 
kilometers in size, plus all the Sacramento/San Joaquin River 
Delta waterways. The 1 km buffer distance was applied for all 
other lakes/bays.

 The two pollutant counts were summed for every census 
tract.

 Each census tract was scored based on the sum of the 
number of individual pollutants found within and/or 
bordering it. For example, if two stream sections within a 
census tract were both listed for the same pollutant, the 
pollutant was only counted once. 

 Summed census tract scores were sorted and assigned 
percentiles based on their position in the distribution. 
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SSOLID WASTE SITES AND 
FACILITIES
Many newer solid waste landfills are designed to prevent the contamination of air, water, 
and soil with hazardous materials. However, older sites that are out of compliance with 
current standards or illegal solid waste sites may degrade environmental conditions in the 
surrounding area and may expose nearby residents. Other types of facilities, such as 
composting, treatment and recycling facilities, may raise concerns about odors, vermin, 
and increased truck traffic. While data that describe environmental effects from the siting 
and operation of all types of solid waste facilities are not currently available, the California 
Department of Resources Recycling and Recovery (CalRecycle) maintains data on facilities 
that operate within the state, as well as sites that are abandoned, no longer in operation, 
or illegal. 

Indicator Sum of weighted solid waste sites and facilities  
(as of July 2021).

Data Source Solid Waste Information System (SWIS) and 
Closed, Illegal, and Abandoned (CIA) Disposal Sites Program,  
California Department of Resources Recycling and Recovery – 
CalRecycle

SWIS is a database which tracks solid waste facilities, operations, 
and disposal sites throughout California. Solid waste sites found in 
this database include landfills, transfer stations, material recovery 
facilities, composting sites, transformation facilities, waste tire sites, 
and closed disposal sites. 

The CIA Disposal Sites Program is a subset of the SWIS database and 
includes closed landfills and disposal sites that have not met 
minimum state standards for closure as well as illegal and 
abandoned sites. Sites within CIA have been prioritized to assist local 
enforcement agencies investigate the sites and enforce state 
standards. Data available at the links below:

https://www2.calrecycle.ca.gov/SolidWaste/Activity 
http://www.calrecycle.ca.gov/SWFacilities/CIA/  

Hazardous Waste Tracking System –  
Department of Toxic Substances Control (DTSC)

DTSC also maintains information on the waste manifests created for 
scrap metal recyclers in its Hazardous Waste Tracking System. 
Manifests include the metal recycler’s name, identification number, 
and address. Data are currently available for 2017-2019. Data are 
available at the link below:
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http://hwts.dtsc.ca.gov/  

RRationale Solid waste sites can have multiple impacts on a community. Waste 
gases like methane and carbon dioxide can be released into the air 
from disposal sites for decades, even after site closure (Lou and 
Nair, 2009; Ofungwu and Eget, 2006; Weitz et al., 2002). Fires, 
although rare, can pose a health risk from exposure to smoke and 
ash (CalRecycle, 2010a; USFA, 2002). Odors and the known 
presence of solid waste may impair a community’s perceived 
desirability and affect the health and quality of life of nearby 
residents (Heaney et al., 2011). 

Although all active solid waste sites are regulated, CalRecycle has 
recorded a number of old closed disposal sites and landfills that are 
monitored less frequently. Former abandoned disposal sites present 
potential for human or animal exposure to uncovered waste or burn 
ash. Such sites are of concern to state and local enforcement 
agencies (CalRecycle, 2010b). 

Many of the studies that address the potential toxicity of solid waste 
site emissions look at the biological effects of landfill leachate on 
selected species of animals and plants in the laboratory. New 
ecological test methods have demonstrated that exposure to landfill 
soil containing a mixture of hazardous chemicals can cause genetic 
changes that are associated with adverse effects on the reproductive 
system (Roelofs et al., 2012). In addition, an epidemiologic study of 
human births near landfills in Wales found an increase in the rate of 
birth defects after the opening or expansion of sites (Palmer et al., 
2005). A study conducted after an accidental fire at a municipal 
landfill in Greece found unacceptably high levels of dioxins in food 
products, primarily meat, milk and olives, from an area near the 
landfill (Vassiliadou et al., 2009). A recent cohort study of people 
living within 5 kilometers of a landfill in Italy found associations 
between exposure to hydrogen sulfide, a marker of airborne 
contamination from landfills, and slight increases in mortality and 
morbidity from respiratory diseases (Mataloni et al., 2016). 

MMethod Closed, Illegal, and Abandoned (CIA) sites:

 CIA data were obtained from CalRecycle for all priorities. (Only 
high priority CIA sites data are available online.) 

 Unconfirmed and non-solid waste sites were removed from 
the analysis.

 Each remaining site was scored on a weighted scale in 
consideration of CalRecycle’s prioritization categories (see 
table in Appendix). 

 To account for cross-border pollution, OEHHA identified one 
closed solid waste site in Mexico within 1000 meters of a 
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community in California. This site was given a weight of ‘1’, 
the same as a closed solid waste site within CalRecycle’s 
database. This site was independently validated by San Diego 
State University researchers as part of a California Air 
Resources Board contract to improve data quality at the 
California-Mexico border (Contract number 16RD010).

 Site locations were mapped or geocoded (in ArcMap).

Active Solid Waste Information (SWIS) sites:

 SWIS data were obtained from the CalRecycle website. 

 CIA records were filtered from the database because SWIS 
contains an inventory of both active and CIA sites.

 Of the remaining sites, Clean Closed, Absorbed, Inactive and 
Planned sites were not included.

 Each remaining site was scored on a weighted scale in 
consideration of the category type of solid waste operation 
(see table in Appendix).

 Site locations were mapped or geocoded (in ArcMap). 

 CalRecycle provided site boundaries (based on parcel 
boundaries and aerial photo inspection) for most of the solid 
waste landfills in the SWIS database. These boundaries were 
used in the analysis in place of point location, when 
applicable.

Scrap Metal Recyclers: 

 Scrap metal recyclers (NAICS code 42193) were obtained 
from DTSC’s Hazardous Waste Tracking System for 2017 to 
2019.

 Any facility that was active between 2017 and 2019 was 
included. 

 All scrap metal recyclers were weighted the same as large 
volume permitted transfer/processing facility (see weighting 
matrix below).

All sites:

 The weights for all sites, including the large landfill 
perimeters, were adjusted based on the distance they fell 
from populated census blocks. Sites further than 1000m from 
any populated census block were excluded from the analysis.

 Site weights were adjusted by multiplying the weight by 1 for 
sites less than 250m, 0.5 for sites 250-500m, 0.25 for sites 
500-750m, and 0.1 for sites 750-1000m from the nearest 
populated census blocks within a given tract. Sites outside of 
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a census tract, but less than 1000m from one of that tract’s 
populated blocks were similarly adjusted based on the 
distance to the nearest populated block from that tract. 

 Odor complaints regarding composting facilities are 
commonly made more than 1000 m from these facilities. 
Because of this concern the buffer distances (and site 
weights) for composting sites were adjusted as follows: 1 for 
sites less than 500m, 0.5 for sites 500 – 1000m, 0.25 for 
sites 1000 – 1500m, and 0.1 for sites 1500 – 2000m from 
the nearest populated census blocks within a given tract.

 Each census tract was scored based on the sum of the 
adjusted weights for sites it contains or is near.

 Summed census tract scores were sorted and assigned 
percentiles based on their position in the distribution.
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AAppendix Weighting Matrix for Solid Waste Sites and Facilities

Solid Waste Sites and Facilities from the Solid Waste Information 
System were weighted on a scale of 1 to a maximum of 13 in 
consideration of both the site type and violation history. The following 
table shows the weights applied to the facilities and sites. The score 
for any given Solid Waste Site or Facility represents the sum of its 
‘Site or Facility Type’ and ‘Violations’. For all census tracts, the 
weighted scores of all facilities in the area were summed after 
adjusting for proximity to populated census blocks.
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CCategory Criteria Site or Facility Type Violations (any in previous 
12 months) 1

Closed, Illegal, or 
Abandoned Site 1

Priority Code 2 6 (Priority Code A) NA

4 (Priority Code B)

2 (Priority Code C)

1 (Priority Code D)

Solid Waste Landfill 
or  
Construction, 
Demolition and 
Inert (CDI) Debris 
Waste Disposal 
(active) 3

Tonnage 8 (> 10,000 tpd) 3 (gas)
1 (each for litter, dust, 

noise, vectors, and site 
security)

7 (> 3,000 to < 10,000 tpd)

6 (> 1,000 to < 3,000 tpd)

5 (> 100 to < 1,000 tpd)

4 (< 100 tpd)

Solid Waste 
Disposal Site 
(closed, closing, 
inactive) 4

Tonnage 1 (All) 3 (gas)
1 (each for litter, vector, 

site security)

Inert Debris: 
Engineered Fill

Regulatory Tier 5 2 (Notification) 11 (each for dust, noise, 
vectors, site security)

Inert Debris:  
Type A Disposal

Regulatory Tier 5 3 (Permitted) 1 (each for dust, noise, 
vectors, site security)

Composting Regulatory Tier 5 4 (Permitted) 11 (each for vector, odor, 
litter, hazard, nuisance, 
noise, dust, site 
security)

1 (fire)

3 (Permitted: Chipping & 
Grinding, 200 to <500 tpd)

2 (Notification)

In-Vessel Digestion 
Facility

Regulatory Tier 5 5 (Permitted: large volume, 
> 100 tpd, or average > 
700 tpw)

3 (Registration, 15 to ≤ 100 
tpd, not to exceed 700 
tpw)

2 (Notification)

1 (vector, odor, litter, 
hazard, nuisance, noise, 
dust, site security)

Transfer/Processing Regulatory Tier 5 5 (Permitted: large vol.)
3 (Permitted: medium vol.; 

direct transfer)
2 (Notification)

1 (each for dust, litter, 
vector/bird/animal, fire, 
site security)

3 (Permitted: medium vol.; 
direct transfer)

2 (Notification)
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Waste Tire Regulatory Tier 5 44 (Major) 2 (each for storage, fire)
1 (each for vectors, site 

security)2 (Minor)

Scrap Metal 
Recycler

5 (Active 2017-2019) NA

1 Violations: Recurring requirements ensures only facilities that exhibit a pattern and 
practice of non-compliance receive a higher impact score and reduces point-in-time 
fluctuations. Explosive gas violations have a greater potential environmental impact 
than dust, noise, and vectors (from SWIS and the Waste Tire Management System).
2 CIA Sites weighted per established CIA Site Priority Code scoring methodology (A 
through D; additional information available at 
https://www.calrecycle.ca.gov/swfacilities/cia/prioritize).
3 Active landfills (other than Contaminated Soil Disposal Sites and Nonhazardous Ash 
Disposal/Monofill Facilities) are all in the Full Permit tier, so permitted tonnage (from 
SWIS) is used to scale impact score.
4 Solid Waste Disposal Site (closed) means the site was closed pursuant to state closure 
standards that became operative in 1989. Closed sites associated with the CIA Site 
database were closed prior to 1989 in accordance with standards applicable at the time of 
closure.
5 Regulatory Tier used to weight the site or facility. Placement within a regulatory tier 
accounts for the type of waste and amount of waste processed per day or onsite at any one 
time. See SWIS for compost and transfer/processing; Waste Tire Management System 
(WTMS) for waste tire sites. 

Number of Solid Waste Sites and Facilities in CalEnviroScreen 4.0: Approximately 4,000

Facility Type % of Total

Disposal (closed) 58%

Transfer/Processing (open) 15%

Composting 10%

Scrap Metal Recyclers 10%

Disposal (active) 4%

Waste Tire 1%

In-Vessel Digestion Facility <1%

Transfer/Processing (closed) <1%
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SCORES FOR POLLUTION BURDEN 
((RANGE OF POSSIBLE SCORES: 0.1 TO 10)

Pollution Burden scores for each census tract are derived from the average percentiles of 
the seven Exposures indicators (ozone and PM2.5 concentrations, diesel PM emissions, 
drinking water contaminants, children’s lead risk from housing, pesticide use, toxic releases 
from facilities, and traffic density) and the five Environmental Effects indicators (cleanup 
sites, impaired water bodies, groundwater threats, hazardous waste facilities and 
generators, and solid waste sites and facilities). 

Indicators from the Environmental Effects component were given half the weight of the 
indicators from the Exposures component. The calculated average pollution burden score 
(average of the indicators) was divided by 10 and rounded to one decimal place for a 
Pollution Burden score ranging from 0.1 – 10. 

Note: The map on the following page shows pollution scores divided into deciles. 
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PPOPULATION CHARACTERISTICS:  
SENSITIVE POPULATION 
INDICATORS
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AASTHMA
Asthma is a chronic lung disease characterized by episodic breathlessness, wheezing, 
coughing, and chest tightness. While the causes of asthma are poorly understood, it is 
well established that exposure to traffic and outdoor air pollutants, including particulate 
matter, ozone, and diesel exhaust, can trigger asthma attacks. More than three million 
Californians currently have asthma and nearly six million have had it at some point in their 
lives. Children, the elderly and low-income Californians suffer disproportionately from 
asthma (UCLA, 2009). Although asthma can be managed as a chronic disease, asthma 
can be a life-threatening condition, and emergency department (ED) visits for asthma are 
a very serious outcome, both for patients and for the medical system.

Indicator Spatially modeled, age-adjusted rate of ED visits for asthma per 
10,000 (averaged over 2015-2017).

Data Source Emergency Department and Patient Discharge Datasets from the 
State of California, Office of Statewide Health Planning and 
Development (OSHPD)

Since 2005, hospitals licensed by the state of California to provide 
emergency medical services are required to report all ED visits to 
OSHPD. Federally-owned facilities, including Veterans Affairs and 
Public Health Service hospitals are not required to report. The ED 
dataset includes information on the principal diagnosis, which can 
be used to identify which patients visited the ED because of 
asthma. 

ED utilization does not capture the full burden of asthma in a 
community because not everyone with asthma requires emergency 
care, especially if they receive preventive care, avoid asthma triggers 
and undertake disease maintenance. However, there is limited 
state-wide monitoring of other indicators, such as planned and 
unplanned doctor’s visits, that might provide a better indication of 
overall disease burden. Some ED visits result in hospitalization. 
OSPHD collects data on hospitalization due to asthma in addition to 
ED visits. ED visits are thought to provide a better comparative 
measure of asthma burden than hospitalizations and deaths 
because the data capture a larger portion of the overall burden and 
include less severe occurrences. 
https://oshpd.ca.gov/data-and-reports/ 

Tracking California

Tracking California processed OSHPD’s data to calculate age-
adjusted rates of asthma ED visits for California ZIP codes. These 
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estimates make use of 2017 ZIP code level population estimates 
from ESRI and the US 2000 Standard Population to derive age-
adjusted rates. Age-adjustment takes the age distribution of a 
population into account and allows for meaningful comparisons 
between ZIP codes with different age structures. ZIP code estimates 
are assigned to 2010 census blocks using areal apportionment. 
Population-weighted census block estimates are then combined to 
arrive at a census tract estimate. 
https://trackingcalifornia.org/asthma/query 

RRationale Asthma increases an individual’s sensitivity to pollutants. Air 
pollutants, including particulate matter, ozone, nitrogen dioxide, and 
diesel exhaust, can trigger symptoms among asthmatics (Meng et 
al., 2011). Children living in areas with higher traffic-related 
pollution in California have been shown to suffer significantly 
increased rates of asthma (McConnell et al., 2010). Particulate 
matter from diesel engines has been shown to exacerbate asthma 
symptoms in children with asthma (Spira-Cohen et al., 2011). A 
study of low-income children who developed asthma found that 
there was an increase in asthma diagnosis following increases in 
ambient air pollution (Wendt et al., 2014). Exposure to certain 
pesticides can also trigger wheezing, coughing, and chest tightness 
(Hernandez et al., 2011) and increases risk of asthma morbidity in 
children with asthma (Benka-Coker et al., 2020).

Asthma can increase susceptibility to respiratory diseases such as 
pneumonia and influenza (Kloepfer et al., 2012). For example, one 
study found that when ambient particulate pollution levels are high, 
persons with asthma have twice the risk of being hospitalized for 
pneumonia compared to persons without asthma (Zanobetti et al., 
2000). 

Asthma rates are a good indicator of population sensitivity to 
environmental stressors because asthma has been found to both be 
caused by and worsened by pollutants (Guarnieri and Balmes, 
2014). The severity of symptoms and the likelihood of needing 
hospital care decrease with access to regular medical care and 
asthma medication (CDC, 2013; Grineski et al., 2010). Asthma-
related ED visits provide an underestimate of total asthma cases 
because not all cases require emergency care. However, using those 
cases requiring emergency care as an indicator also captures some 
aspects of access to care and can be seen as a marker of both 
environmental and social stressors. Potential biases in using ED 
visits as an indicator of sensitivity include the possibility that lower 
socioeconomic status or more isolated rural populations may not 
have access to nearby health care facilities. Conversely, populations 
without health insurance may turn to emergency departments for 
basic care.
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MMethod Tracking California performed the following steps to calculate the 
rate of ED visits for asthma:

 Records for ED visits occurring during 2015-2017 were 
obtained from OSHPD’s Emergency Department and 
Ambulatory Surgery files for patients listed as residing in 
California and principle diagnostic of asthma.

 International Classification of Diseases (ICD) codes were 
used to extract ED visits for asthma. In 2015, ICD-9 was 
replaced by ICD-10. 

 ICD-9 code 493, which identifies asthma, was used for 
quarters 1-3 in 2015.

 ICD-10 code J45, which identifies asthma, was used for 
quarter 4 of 2015 and for the years 2016 and 2017. 

 Hospitalizations were included if the hospitalization is 
described as originating from the hospital’s own ED.

 An age-adjusted rate of asthma ED visits was calculated for 
each ZIP code. ZIP code rates were then reapportioned to 
census tract rates.

 2017 population data used for the age-adjustment were 
obtained from ESRI and rates reported are standardized to 
the 2000 US population using five-year age groupings (0-4, 5-
9, etc.). The rates are per 10,000 residents per year.

 Age-adjusted rates were spatially modeled to provide 
estimates for ZIP codes with fewer than 12 ED visits, which 
were considered statistically unreliable. A modeling 
technique that incorporates information about both local and 
statewide rates into the calculations was used (Mollié, 1996). 

 Census blocks were assigned the average rate of the ZIP 
code they intersected using areal apportionment. Census 
tract rates were then estimated by the population-weighted 
average of the rates of the census blocks that it contains. 

 Census tracts were sorted by the spatially modeled 
apportioned rate and were assigned percentiles based on 
their position in the distribution.



CalEnviroScreen 4.0

154



CalEnviroScreen 4.0

155

RReferences

Benka-Coker W, Loftus C, Karr C, Magzamen S (2020). Association of 
Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an 
Agricultural Community. Journal of Agromedicine 225(1):106-14.

CDC (2013). Centers for Disease Control and Prevention Asthma facts: CDC's 
National Asthma Control Program grantees. 
http://www.cdc.gov/asthma/pdfs/asthma_facts_program_grantees.pdf.

Grineski SE, Staniswalis JG, Peng Y, Atkinson-Palombo C (2010). Children's 
asthma hospitalizations and relative risk due to nitrogen dioxide (NO2): effect 
modification by race, ethnicity, and insurance status. Environ Res 110(2):178-
88.

Guarnieri M, Balmes JR (2014). Outdoor air pollution and asthma. The Lancet 
383(9928):1581-92.

Hernandez AF, Parron T, Alarcon R (2011). Pesticides and asthma. Curr Opin 
Allergy Clin Immunol 11(2):90-6.

Kloepfer KM, Olenec JP, Lee WM, Liu G, Vrtis RF, Roberg KA, et al. (2012). 
Increased H1N1 infection rate in children with asthma. Am J Respir Crit Care 
Med 185(12):1275-9.

McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. 
(2010). Childhood incident asthma and traffic-related air pollution at home and 
school. Environ Health Perspect 118(7):1021-6.

Meng YY, Wilhelm M, Ritz B, Balmes JR, Lombardi C, Bueno A, et al. (2011). Is 
disparity in asthma among Californians due to higher pollutant exposures, 
greater susceptibility, or both? Sacramento, CA: UCLA Center for Health Policy 
Research.

Mollié A (1996). Bayesian mapping of disease. In: Markov Chain Monte Carlo in 
Practice. Springer, pp. 359-79.

Spira-Cohen A, Chen LC, Kendall M, Lall R, Thurston GD (2011). Personal 
exposures to traffic-related air pollution and acute respiratory health among 
Bronx schoolchildren with asthma. Environ Health Perspect 119(4):559-65.

UCLA (2009). California Health Interview Survey 2012, from 
http://www.chis.ucla.edu/main/default.asp

Wendt JK, Symanski E, Stock TH, Chan W, Du XL (2014). Association of short-
term increases in ambient air pollution and timing of initial asthma diagnosis 
among medicaid-enrolled children in a metropolitan area. Environmental 
Research 131(0):50-8.

Zanobetti A, Schwartz J, Gold D (2000). Are there sensitive subgroups for the 
effects of airborne particles? Environ Health Perspect 108(9):841-5.



CalEnviroScreen 4.0

156

CCARDIOVASCULAR 
DISEASE
Cardiovascular disease (CVD) refers to conditions that involve blocked or narrowed blood 
vessels that can lead to a heart attack or other heart problems. CVD is the leading cause 
of death both in California and the United States. Acute myocardial infarction (AMI), 
commonly known as a heart attack, is the most common cardiovascular event. Although 
many people survive and return to normal life after a heart attack, quality of life and long 
term survival may be reduced, and these people are highly vulnerable to future 
cardiovascular events.  

There are many risk factors for developing CVD including diet, lack of exercise, smoking, 
and air pollution. In scientific statements made by the American Heart Association, there 
is strong evidence that air pollution contributes to cardiovascular morbidity and mortality 
(Brook et al., 2010; Pope III et al., 2006). 

Short term exposure to air pollution, and specifically particulate matter, has been shown 
to increase the risk of cardiovascular mortality shortly following a heart attack. There is 
also growing evidence that long term exposure to air pollution may result in premature 
death for people that have had a heart attack. In addition to people with a previous AMI, 
the effects of pollution on cardiovascular disease may be more pronounced in the elderly 
and people with other preexisting health conditions.

Indicator Spatially modeled, age-adjusted rate of emergency department (ED) 
visits for AMI per 10,000 (averaged over 2015-2017).

Data Source Emergency Department and Patient Discharge Datasets from the 
State of California, Office of Statewide Health Planning and 
Development (OSHPD)

Since 2005, hospitals licensed by the state of California to provide 
emergency medical services are required to report all ED visits to 
OSHPD. Federally-owned facilities, including Veterans Affairs and 
Public Health Service hospitals are not required to report. The ED 
dataset includes information on the principal diagnosis, which can 
be used to identify whether a patient visited the ED because of a 
heart attack.

ED visits for heart attacks do not capture the full burden of people 
living with CVD because not everyone with CVD has a heart attack. 
However, there is limited information on people with CVD, and 
therefore ED visits for a heart attack was selected as a good 
indicator of CVD. The selection of ED visits for AMI is likely to capture 
virtually the full burden of heart attacks because the abrupt nature 
and severity of the event would cause most individuals to visit the 
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ED. 
https://oshpd.ca.gov/data-and-reports/ 

Tracking California

Tracking California processed OSHPD’s data to calculate age-
adjusted rates of AMI ED visits for California ZIP codes. These 
estimates make use of 2017 ZIP code scale population estimates 
from ESRI and the US 2000 Standard Population to derive age-
adjusted rates. Age-adjustment takes the age distribution of a 
population into account and allows for meaningful comparisons 
between ZIP codes with different age structures. ZIP code estimates 
are assigned to 2010 census blocks using areal apportionment. 
Population-weighted census block estimates are then combined to 
arrive at a census tract estimate. 
https://trackingcalifornia.org/mi/query 

RRationale Recent studies have shown that individuals with preexisting heart 
disease or an AMI respond differently to the effects of pollution than 
individuals without heart disease. Specifically, individuals who have 
had an AMI may have a higher risk of dying after exposure to both 
short- and long-term increases in air pollution.  

An early paper on the subject of air pollution effects on sensitive 
subpopulations found the relative risk of dying on days with high 
levels of pollution was higher for people with chronic obstructive 
pulmonary disease (COPD), pneumonia, and existing heart disease 
or stroke (Schwartz, 1994). One more recent study found that 
exposure to ambient gases at current National Ambient Air Quality 
Standards may increase CVD risks in midlife women (Basu et al., 
2017). 

Multiple studies have found exposure to high levels of air pollution 
increased the risk of dying following an AMI. The effects of short-term 
exposure to PM10 or traffic-related air pollution following an AMI 
significantly increased the risk of death in a cohort study of almost 
4,000 people in Massachusetts (Von Klot et al., 2009), in a multi-city 
European study of over 25,000 people (Berglind et al., 2009), and 
among over 65,000 elderly residents in Illinois (Bateson and 
Schwartz, 2004).

The influence of long-term exposure to pollution on survival following 
an AMI has also been examined, although the research is less 
conclusive. A recent cohort study examined mortality over 10 years 
for almost 9,000 patients with a previous AMI and found significant 
increases in non-accidental mortality for each 10 μg/m3 increase in 
PM 2.5. This suggests that long-term exposure to particulate matter 
may play a role in decreasing the likelihood of survival following a 
heart attack (Chen et al., 2016). It has also been found that long-
term exposure to ambient PM 2.5 may increase CVD risks in midlife 
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women (Broadwin et al., 2019). Another study found that long-term 
exposure to PM 2.5 was associated with ischemic heart disease and 
stroke mortality, with excess risk occurring even below the US 
standard for PM 2.5 exposure (Hayes et al., 2020).

Several of these studies on the effects of air pollution on AMI 
survivors have examined whether different effects are observed by 
race or ethnicity. To date, no significant differences have been found. 

MMethod Tracking California performed the following steps to calculate the 
rate of ED visits for CVD:
 Records for ED visits occurring during 2015-2017 were 

obtained from OSHPD’s Emergency Department and 
Ambulatory Surgery files for patients listed as residing in 
California and principle diagnostic of AMI.

 International Classification of Diseases (ICD) codes were used 
to extract ED visits for AMI. In 2015, ICD-9 was replaced by 
ICD-10. 

 ICD-9 code 410, which identifies AMI, was used for quarters 1-
3 in 2015.

 ICD-10 code I21 and I22, which identifies AMI, was used for 
quarter 4 of 2015 and for the years 2016 and 2017. 

 Hospitalizations were included if the hospitalization is 
described as originating from the hospital’s own ED.

 An age-adjusted rate of AMI ED visits was calculated for each 
ZIP code using data obtained from OSHPD. ZIP code rates 
were then reapportioned to census tract rates.

 2017 population data used for the age-adjustment were 
obtained from ESRI and rates reported are standardized to the 
2000 US population using five-year age groupings. The rates 
are per 10,000 residents per year.

 The age-adjusted rates were spatially modeled to provide 
estimates for ZIP codes with fewer than 12 ED visits, which are 
considered statistically unreliable. A modeling technique that 
incorporates information about both local and statewide rates 
into the calculations was used (Mollié, 1996). 

 Census blocks were assigned the average rate of the ZIP code 
they intersected using areal apportionment. Census tract rates 
were then estimated by the population-weighted average of 
the rates of the census blocks that it contains. 

 Census tracts were sorted by the spatially modeled 
apportioned rate and were assigned percentiles based on 
their position in the distribution.
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LLOW BIRTH 
WEIGHT INFANTS
Infants born weighing less than 2,500 grams (about 5.5 pounds) are classified as low 
birth weight (LBW), a condition associated with increased risk of health problems later in 
life as well as infant mortality. Most LBW infants are small because they were born early, 
but infants born at full term (after 37 complete weeks of pregnancy) can also be LBW if 
their growth was restricted during pregnancy. Nutritional status, lack of prenatal care, 
stress, and maternal smoking are known risk factors for LBW. Studies also suggest that 
environmental exposures to lead, air pollution, toxic air contaminants, traffic pollution, 
pesticides, and polychlorinated biphenyls (PCBs) are all linked to LBW. These children are 
at higher risk of chronic health conditions that may make them more sensitive to 
environmental exposures after birth. 

Indicator Percent low birth weight, (averaged over 2009-2015).

Data Source California Department of Public Health (CDPH)

The Health Information and Research Section of CDPH is 
responsible for the stewardship and distribution of birth records in 
the state. Medical data related to a birth, as well as demographic 
information related to the infant, mother, and father are collected 
from birth certificates. Personal identifiers are not released publicly 
to protect confidentiality. 

Data are available at the link below:

http://www.cdph.ca.gov/data/dataresources/requests/Pages/Birth
andFetalDeathFiles.aspx 

Tracking California

Information about the geographic location of births was used by 
OEHHA in compliance with the State of California Committee for the 
Protection of Human Subjects. The data were analyzed by Tracking 
California. More information on Tracking California at the link below:

https://trackingcalifornia.org/ 

Rationale LBW is considered a key marker of overall population health. Being 
born low weight puts individuals at higher risk of health conditions 
that can subsequently make them more sensitive to environmental 
exposures. For example, children born low weight are at increased 
risk of developing asthma wheezing disorders in childhood 
(Belbasis et al., 2016). LBW can also put one at increased risk of 
coronary heart disease (Belbasis et al., 2016), which can 
predispose one to mortality associated with particulate air pollution 
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or excessive heat (Ban et al., 2017; Shah et al., 2013). There is 
also evidence that children born early or with low birth weight have 
a higher risk of developing ADHD and other behavioral problems 
compared to children born near or at normal birthweight (Franz et 
al., 2018).

Risk of LBW is increased by certain environmental exposures and 
social factors and can therefore be considered a marker of the 
combined impact of environmental and social stressors. For 
example, exposures to fine particulate matter, heavy traffic, and 
toxic air contaminants such as benzene, xylene, and toluene have 
been linked to LBW in California (Basu et al., 2014; Ghosh et al., 
2012). In addition, non-Hispanic Black women and Hispanic women 
are at higher risk of giving birth to a child who is LBW relative to 
non-Hispanic White women, even among those with comparable 
socioeconomic status, prenatal care, behavioral risk factors 
(Almeida et al., 2018).   

Living in close proximity to freeways or highly trafficked roadways 
has been associated with an increased risk for LBW term infants 
(Laurent et al., 2016). Latina women exposed to pesticides in 
California in low-income farmworker communities were found to be 
at risk for LBW infants that were small for gestational age, with 
smaller than average head circumference, an indicator of brain 
development (Harley et al., 2011). A recent study found that 
proximity to higher production oil and gas development in rural 
areas of California was associated with increased odds of LBW 
(Tran et al., 2020). There also is a significant association between 
heat, ozone, and fine particulate matter with adverse pregnancy 
outcomes, including LBW (Bekkar et al., 2020). 

In addition to these environmental risk factors, LBW is also 
influenced considerably by certain demographic characteristics. 
Women aged 40 to 54 years are twice as likely to have LBW infants 
compared to women aged 20 to 24, and African American women 
have a 2.4-fold greater prevalence of having LBW infants compared 
with white women (Ratnasiri et al., 2018). 

MMethod  Low birth weight (LBW) was calculated from California birth 
records as the percent of live, singleton births during the 
2009-2015 period weighing less than 2,500 grams. 

 Multiple births (non-singletons) and births with an improbable 
combination of gestational age and birth weight were 
excluded (Alexander et al., 1996). Out-of-state births, and 
births with no known residential address (including P.O. 
boxes) were also excluded. These exclusions lead to lower 
statewide LBW percentage than that reported by other 
organizations who do not apply this criterion. 
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 Births were geocoded based on the mother’s residential 
address at the time of birth by Tracking California. A small 
number (less than 1%) of addresses could not be geocoded 
and were excluded. 

 Estimates derived from places with few births are considered 
unreliable because they often produce extreme values much 
higher or lower than expected and can vary greatly from year 
to year. For this reason, census tracts with fewer than 50 live 
births over the seven years (2009-2015) were excluded. The 
percentage of low birth weight births was calculated using the 
seven years of data to minimize the number of excluded 
census tracts.

 Census tracts were sorted by percentage low birth weight and 
were assigned percentiles based on their position in the 
distribution.



CalEnviroScreen 4.0

164



CalEnviroScreen 4.0

165

RReferences Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M (1996). A 
United States national reference for fetal growth. Obstetrics & 
Gynecology 887(2):163-8.

Almeida J, Bécares L, Erbetta K, Bettegowda VR, Ahluwalia IB 
(2018). Racial/ethnic inequities in low birth weight and preterm 
birth: the role of multiple forms of stress. Maternal and Child Health 
Journal 22(8):1154-63.

Ban J, Xu D, He MZ, Sun Q, Chen C, Wang W, et al. (2017). The 
effect of high temperature on cause-specific mortality: A multi-
county analysis in China. Environment International 106:19-26.

Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R (2014). 
Effects of fine particulate matter and its constituents on low birth 
weight among full-term infants in California. Environ Res 128:42-
51.

Bekkar B, Pacheco S, Basu R, DeNicola N (2020). Association of Air 
Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, 
and Stillbirth in the US: A Systematic Review. JAMA Network Open 
3(6):e208243-e.

Belbasis L, Savvidou MD, Kanu C, Evangelou E, Tzoulaki I (2016). 
Birth weight in relation to health and disease in later life: an 
umbrella review of systematic reviews and meta-analyses. BMC 
medicine 14(1):147.

Franz AP, Bolat GU, Bolat H, Matijasevich A, Santos IS, Silveira RC, 
et al. (2018). Attention-deficit/hyperactivity disorder and very 
preterm/very low birth weight: a meta-analysis. Pediatrics 141(1).

Ghosh JK, Wilhelm M, Su J, Goldberg D, Cockburn M, Jerrett M, et 
al. (2012). Assessing the influence of traffic-related air pollution on 
risk of term low birth weight on the basis of land-use-based 
regression models and measures of air toxics. Am J Epidemiol 
175(12):1262-74.

Harley KG, Huen K, Aguilar Schall R, Holland NT, Bradman A, Barr 
DB, et al. (2011). Association of organophosphate pesticide 
exposure and paraoxonase with birth outcome in Mexican-American 
women. PLoS One 6(8):e23923.

Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, et al. 
(2016). Low birth weight and air pollution in California: Which 
sources and components drive the risk? Environment International 
992:471-7.

Ratnasiri AW, Parry SS, Arief VN, DeLacy IH, Halliday LA, DiLibero RJ, 
et al. (2018). Recent trends, risk factors, and disparities in low birth 
weight in California, 2005–2014: a retrospective study. Maternal 
Health, Neonatology and Perinatology 4(1):15.



CalEnviroScreen 4.0

166

Shah AS, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson 
K, et al. (2013). Global association of air pollution and heart failure: 
a systematic review and meta-analysis. The Lancet 
3382(9897):1039-48.

Tran KV, Casey JA, Cushing LJ, Morello-Frosch R (2020). Residential 
Proximity to Oil and Gas Development and Birth Outcomes in 
California: A Retrospective Cohort Study of 2006–2015 Births. 
Environ Health Perspect 1128(6):067001.



CalEnviroScreen 4.0

167

PPOPULATION CHARACTERISTICS: 
SOCIOECONOMIC FACTOR 
INDICATORS 
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EEDUCATIONAL 
ATTAINMENT
Educational attainment is an important element of socioeconomic status and a social 
determinant of health. Numerous studies suggest education is associated with lower 
exposures to environmental pollutants that damage health. Information on educational 
attainment is collected annually in the US Census Bureau’s American Community Survey 
(ACS). In contrast to the decennial census, the ACS surveys a small sample of the US 
population to estimate more detailed economic and social information for the country’s 
population.

Indicator Percentage of the population over age 25 with less than a high 
school education (5-year estimate, 2015-2019).

Data Source American Community Survey – US Census Bureau

The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau and has 
replaced the long form of the decennial census. Unlike the decennial 
census, which attempts to survey the entire population and collects 
a limited amount of information, the ACS releases results annually 
based on a sample of the population and includes more detailed 
information on socioeconomic factors such as educational 
attainment. Multiple years of data are pooled together to provide 
more reliable estimates for geographic areas with small population 
sizes. The most recent results available at the census tract scale are 
the 5-year estimates for 2015-2019. The data are made available 
using the U.S. Census data download website and are available at 
the link below:

https://data.census.gov/cedsci/ 

Rationale Educational attainment is an important independent predictor of 
health (Cutler and Lleras-Muney, 2006; Zajacova and Lawrence, 
2018). Individuals with lower education in the US have a lower life 
expectancy (Sasson, 2016), are more likely to be obese (Cohen et 
al., 2013), and are more likely to experience psychiatric disorders 
(Erickson et al., 2016) compared to individuals with higher 
education. Education is often inversely related to the degree of 
exposure to indoor and outdoor pollution. Several studies have 
associated educational attainment with susceptibility to the health 
impacts of environmental pollutants. For example, individuals 
without a high school education appear to be at higher risk of 
mortality associated with particulate air pollution than those with a 
high school education (Krewski et al., 2000). There is also evidence 
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that the effects of air and traffic-related pollution on respiratory 
illness, including childhood asthma, are more severe in communities 
with lower levels of education (Cakmak et al., 2006; Neidell, 2004; 
Shankardass et al., 2009). In studies evaluating air pollution related 
risks of adverse birth outcomes, mothers with low educational 
attainment were found to be more vulnerable (Thayamballi et al., 
2020). While there is a positive association between educational 
attainment and health, racial and ethnic minorities gain fewer health 
benefits from educational attainment than Whites (Assari, 2018; 
Bell et al., 2020).

The ways in which lower educational attainment can decrease health 
status are not completely understood, but may include economic 
hardship, stress, fewer occupational opportunities, lack of social 
support, and reduced access to health-protective resources such as 
medical care, prevention and wellness initiatives, and nutritious 
food. In a study of pregnant women in Amsterdam, smoking and 
exposure to environmental tobacco smoke were more common 
among women with less education. These women also were at 
significantly increased risk of preterm birth, low birth weight and 
small for gestational age infants (van den Berg et al., 2012). A 
review of studies tying social stressors with the effects of chemical 
exposures on health found that level of education was related to 
mortality and incidence of asthma and respiratory diseases from 
exposure to particulate air pollution and sulfur dioxide (Lewis et al., 
2011). A study of older adults, aged 70 to 79, found that those with 
less than a high school education had significantly shorter leukocyte 
telomere length, a genetic marker linked to stress, than those with 
more education (Adler et al., 2013).
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MMethod  From the 2015-2019 American Community Survey estimates, 
a dataset containing the percentage of the population over 
age 25 with a high school education or higher was 
downloaded by census tracts for the state of California.

 This percentage was subtracted from 100 to obtain the 
proportion of the population with less than a high school 
education.

 Unlike the US Census, ACS estimates come from a sample of 
the population and may be unreliable if they are based on a 
small sample or population size. The standard error (SE) and 
relative standard error (RSE) were used to evaluate the 
reliability of each estimate. 

 The SE was calculated for each census tract by dividing the 
margin of error (MOE) reported in the ACS by 1.645, a 
statistical value associated with a 90 percent confidence 
interval. The MOE is the difference between an estimate and 
the upper or lower bounds of its confidence interval. All ACS-
published MOEs are based on a 90 percent confidence 
interval. 

 The RSE is calculated by dividing a tract’s SE by its estimate 
of educational attainment, and taking the absolute value of 
the result. 

 Census tract estimates that met either of the following 
criteria were considered reliable and included in the analysis:

o RSE less than 50 (meaning the SE was less than half 
of the estimate) OR

o SE was less than the mean SE of all California census 
tract estimates for education.

 Census tracts with unreliable estimates received no score for 
the indicator (null).  The indicator was not factored into that 
tract’s overall CalEnviroScreen score.

 Census tracts that met the inclusion criteria were sorted and 
assigned percentiles based on their position in the 
distribution. 
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HHOUSING-BURDENED 
LOW-INCOME 
HOUSEHOLDS
The cost and availability of housing is an important determinant of well-being. Households 
with lower incomes may spend a larger proportion of their income on housing. The inability 
of households to afford necessary non-housing goods after paying for shelter is known as 
housing-induced poverty. California has very high housing costs relative to much of the 
country, making it difficult for many to afford adequate housing. Within California, the cost 
of living varies significantly and is largely dependent on housing cost, availability, and 
demand.

Areas where low income households may be stressed by high housing costs can be 
identified through the Housing and Urban Development (HUD) Comprehensive Housing 
Affordability Strategy (CHAS) data. We measure households earning less than 80% of HUD 
Area Median Family Income by county and paying greater than 50% of their income to 
housing costs. The indicator takes into account the regional cost of living for both 
homeowners and renters, and factors in the cost of utilities. CHAS data are calculated 
from US Census Bureau’s American Community Survey (ACS).

Indicator Housing-Burdened Low-Income Households. Percent of households 
in a census tract that are both low income (making less than 80% of 
the HUD Area Median Family Income) and severely burdened by 
housing costs (paying greater than 50% of their income to housing 
costs). (5-year estimates, 2013-2017).

Data Source Comprehensive Housing Affordability Strategy – Housing and Urban 
Development

The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau and has 
replaced the long form of the decennial census. Unlike the decennial 
census, which attempts to survey the entire population and collects 
a limited amount of information, the ACS releases results annually 
based on a sub-sample of the population and includes more detailed 
information on socioeconomic factors. Multiple years of data are 
pooled together to provide more reliable estimates for geographic 
areas with small population sizes. Each year, the HUD receives 
custom tabulations of ACS data from the US Census Bureau. These 
data, known as the "CHAS" data (Comprehensive Housing 
Affordability Strategy), demonstrate the extent of housing problems 
and housing needs, particularly for low income households. The 
most recent results available at the census tract scale are the 5-year 
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estimates for -2013-2017. The data are available from the HUD user 
website. Data available at the link below:

https://www.huduser.gov/portal/datasets/cp.html 

RRationale Housing affordability is an important part of the framework of social 
and economic conditions that shape the health and well-being of 
individuals (Braubach, 2011; Marmot et al., 2008). Socioeconomic 
variables may influence response to pollutants or modify the effect 
of exposure to pollution. Several scientific studies have examined 
the relationship between income level, pollution exposures, and 
health outcomes. Individuals with low income exposed to high levels 
of air pollution had higher mortality rates than higher income 
individuals (Finkelstein et al., 2003). Children of low-income families 
had greater asthma hospitalization rates when exposed to air 
pollutants (Lin et al., 2004).

Low-income and financially vulnerable households that face high 
costs for housing can potentially suffer from health impacts (Beer et 
al., 2006; Slatter and Beer, 2003). Households that experience high 
rent burden for longer periods of time are associated with greater 
disadvantage (Susin, 2007). Studies have shown that high rent 
burden can mean a higher likelihood of postponing medical services 
for financial reasons. High rent burden is also associated with worse 
self-reported health conditions (Meltzer and Schwartz, 2016). High 
housing cost burdens and unaffordable housing situations can also 
contribute to residential instability, increase vulnerability to acute 
and chronic health problems, worsen stress and depression, and 
can lead to poor educational outcomes for children (Anderson et al., 
2003; Harkness and Newman, 2005; Meltzer and Schwartz, 2016; 
Newman and Holupka, 2016). 

The fraction of low-income households paying greater than 30 
percent of their income to housing expenditures has been on the 
rise in the US since 1970 (Chan and Jush, 2017; Quigley and 
Raphael, 2004). An analysis of US Census Bureau data on rent 
burden found that, in 2011, 53% of renter households in the US 
spent more than 30% of their income on housing (Colburn and Allen, 
2018). Rent-burdened households in the US are disproportionately 
non-white and very low income. An examination of racial disparities 
in housing cost burden in the US found that Black households were 
significantly more likely to experience housing cost burden than 
White households for every year between 1981 and 2017 (Hess et 
al., 2020).

Geographic differences in housing costs are not accounted for in the 
official poverty measure calculated by the US Census Bureau. 
Research has found that renter households in the Western US are 
more likely to experience high rent burden than renters in other 
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areas of the US, such as the Midwest or South (Colburn and Allen, 
2018). California has some of the highest housing costs in the 
nation as well as substantial differences in housing costs within the 
state (Legislative Analyst's Office, 2015). 

Housing cost burden accounts for differences in rent or homeowner 
costs across different areas of California. By restricting the measure 
to low income households on a county-by-county basis, the measure 
retains the focus on those who are most financially vulnerable in 
specific geographic regions of California.

MMethod  From the 2013-2017 HUD CHAS, a dataset containing cost 
burdens for households by HUD-adjusted median family 
income (HAMFI) category was downloaded by census tract for 
the state of California.

 For each census tract, the data were analyzed to estimate 
the number of households with household incomes less than 
80% of the county median and renter or homeowner costs 
that exceed 50% of household income. The percentage of the 
total households in each tract that are both low-income and 
housing-burdened was then calculated.

 Like ACS estimates, CHAS data come from a sample of the 
population and may be unreliable if they are based on a small 
sample or population size. The standard error (SE) and 
relative standard error (RSE) were used to evaluate the 
reliability of each estimate. 

 The SE was calculated for each census tract using the 
formula for approximating the SE of proportions provided by 
the ACS (American Community Survey Office, 2013, pg. 13, 
equation 4). When this approximation could not be used, the 
formula for approximating the SE of ratios (equation 3) was 
used instead.

 The RSE was calculated by dividing a tract’s SE by its 
estimate of the percentage of housing-burdened low-income 
households, and taking the absolute value of the result.

 Census tract estimates that met either of the following 
criteria were considered reliable and included in the analysis:

o RSE less than 50 (meaning the SE was less than half 
of the estimate) OR

o SE was less than the mean SE of all California census 
tract estimates for housing-burdened low-income 
households.
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 Census tracts with unreliable estimates receive no score for 
the indicator (null).  The indicator is not factored into that 
tract’s overall CalEnviroScreen score. 

 Census tracts that met the inclusion criteria were sorted and 
assigned percentiles based on their position in the 
distribution. 
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LLINGUISTIC ISOLATION
According to the most recent US Census Bureau’s 2015-2019 American Community 
Survey (ACS), nearly 44% of Californians speak a language at home other than English, 
18% of the state’s population speaks English ”less than very well,” and 9% of all 
households in California are linguistically isolated. The US Census Bureau uses the term 
“linguistic isolation” to measure households where all members 14 years of age or above 
have at least some difficulty speaking English. A high degree of linguistic isolation among 
members of a community raises concerns about access to health information and public 
services, and effective engagement with regulatory processes. Information on language 
use is collected annually in the ACS. In contrast to the decennial census, the ACS surveys 
a small sample of the US population to estimate more detailed economic and social 
information for the country’s population. 

Indicator Percentage of limited English-speaking households, (2015-2019).

Data Source American Community Survey – US Census Bureau

The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau and has 
replaced the long form of the decennial census. Unlike the 
decennial census, which attempts to survey the entire population 
and collects a limited amount of information, the ACS releases 
results annually based on a sample of the population and includes 
more detailed information on socioeconomic factors such as 
linguistic isolation. Multiple years of data are pooled together to 
provide more reliable estimates for geographic areas with small 
population sizes. The most recent results available at the census 
tract scale are the 5-year estimates for 2015-2019. The data are 
made available using the U.S. Census data download website. Data 
are available at the link below:

https://data.census.gov/cedsci/ 

Rationale According to the most recent US Census Bureau’s 2015-2019 ACS, 
nearly 44% of Californians speak a language at home other than 
English, 18% of the state’s population speaks English “”less than 
very well,” and 9% of all households in California are linguistically 
isolated. The inability to speak English well can affect an individual’s 
communication with service providers and his or her ability to 
perform daily activities, leading to low-quality or ineffective medical 
care. For example, US kidney transplant candidates living in 
linguistically isolated ZIP codes are less likely to complete the follow-
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up evaluations necessary in order to be deemed suitable to receive 
a kidney (Talamantes et al., 2017). 

People with limited English are less likely to have health insurance 
or a usual source of care compared to English speakers (Lu and 
Myerson, 2020). They are also less likely to have regular medical 
care and are more likely to report difficulty getting medical 
information or advice than English speakers (Lu and Myerson, 
2020). Communication is essential for many steps in the process of 
obtaining health care, and limited English speakers may delay care 
because they lack important information about symptoms and 
available services (Shi et al., 2009). Non-English speakers are also 
less likely to receive mental health services when needed, and 
because in California non-English speakers are concentrated in 
minority ethnic communities, limited English proficiency may 
contribute to further ethnic and racial disparities in health status 
and disability (Sentell et al., 2007). 

Linguistic isolation is also an indicator of a community’s ability to 
participate in decision-making processes and the ability to navigate 
the political system. A study examining the linguistic accessibility of 
the sustainability planning process in the US found that only 13 of 
the 28 most populated cities in the US had web translation tools or 
translated documents available for their sustainability plans (Teron, 
2016). It is also important to note, however, that linguistically 
isolated communities may also have higher community cultural 
capital than other communities, which can reduce some of the 
negative outcomes associated with linguistic isolation. Community 
linguistic isolation is associated with a decreased achievement gap 
among 10th grade students whose native language is not English in 
the US, potentially due to community cultural capital (Drake, 2014). 

Lack of proficiency in English often results in racial discrimination, 
and both language difficulties and discrimination are associated 
with stress, low socioeconomic status, and reduced quality of life 
(Gee and Ponce, 2010). In addition, limited-English speakers living 
in areas that are not ethnic enclaves (areas with a shared language 
and culture) can be targets of violence. Latinx immigrants who move 
to areas in the US that are not ethnic enclaves experience higher 
rates of homicides than those who move to ethnic enclaves 
(Feldmeyer et al., 2016; Shihadeh and Barranco, 2010). Linguistic 
isolation also hampers the ability of the public health sector to 
reduce racial and ethnic disparities because non-English-speaking 
individuals participate in public health surveillance studies at very 
low rates, even when there is translation available (Link et al., 
2006).

In the event of an emergency, such as an accidental chemical 
release or a spill, households that are linguistically isolated may not 
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receive timely information on evacuation or shelter-in-place orders, 
and may therefore experience health risks that those who speak 
English can more easily avoid (Nepal et al., 2012). Additionally, 
linguistic isolation was independently related to both proximity to a 
Toxics Release Inventory (TRI) facility and cancer risks by the 
National Air Toxics Assessment (NATA) in an analysis of the San 
Francisco Bay Area, suggesting that linguistically isolated 
communities may bear a greater share of health risks from air 
pollution hazards (Pastor Jr et al., 2010). 

MMethod  From the 2015-2019 American Community Survey, a dataset 
containing the percentage of limited English-speaking 
households was downloaded by census tracts for the state of 
California. This variable is referred to as “linguistic isolation” 
and represents the fraction of households where no one age 
14 and above speaks English well.

 Unlike the US Census, ACS estimates come from a sample of 
the population and may be unreliable if they are based on a 
small sample or population size. The standard error (SE) and 
relative standard error (RSE) were used to evaluate the 
reliability of each estimate. 

 The SE was calculated for each census tract by dividing the 
margin of error (MOE) reported in the ACS by 1.645, a 
statistical value associated with a 90 percent confidence 
interval. The MOE is the difference between an estimate and 
the upper or lower bounds of its confidence interval. All ACS-
published MOEs are based on a 90 percent confidence 
interval.

 The RSE is calculated by dividing a tract’s SE by its estimate of 
the percent of linguistically isolated households, and taking 
the absolute value of the result. 

 Census tract estimates that met either of the following criteria 
were considered reliable and included in the analysis:

o RSE less than 50 (meaning the SE was less than half of 
the estimate) OR

o SE was less than the mean SE of all California census 
tract estimates for linguistic isolation.

 Census tracts with unreliable estimates received no score for 
the indicator (null).  The indicator was not factored into that 
tract’s overall CalEnviroScreen score.

 Census tracts that met the inclusion criteria were sorted and 
assigned percentiles based on their position in the 
distribution. 
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PPOVERTY
Poverty is an important social determinant of health. Numerous studies have suggested 
that impoverished populations are more likely than wealthier populations to experience 
adverse health outcomes when exposed to environmental pollution. Information on 
poverty is collected annually in the US Census Bureau’s American Community Survey 
(ACS). In contrast to the decennial census, the ACS surveys a small sample of the US 
population to estimate more detailed economic and social information for the country’s 
population.

Indicator Percent of the population living below two times the federal poverty 
level (5-year estimate, 2015-2019).

Data Source American Community Survey – US Census Bureau

The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau and has 
replaced the long form of the decennial census. Unlike the 
decennial census, which attempts to survey the entire population 
and collects a limited amount of information, the ACS releases 
results annually based on a sub-sample of the population and 
includes more detailed information on socioeconomic factors such 
as poverty. Multiple years of data are pooled together to provide 
more reliable estimates for geographic areas with small population 
sizes. The most recent results available at the census tract scale are 
the 5-year estimates for 2015-2019. The data are made available 
using the U.S. Census data download website. 

The Census Bureau uses income thresholds that are dependent on 
family size to determine a person’s poverty status during the 
previous year. For example, if a family of four with two children has a 
total income less than $25,465 during 2018, everyone in that family 
is considered to live below the federal poverty line. A threshold of 
twice the federal poverty level was used in this analysis because 
California’s cost of living is higher than many other parts of the 
country. In addition, the methods for determining the federal poverty 
thresholds have not changed since the 1980s despite increases in 
the cost of living. Data is available at the link below:

https://data.census.gov/cedsci/ 

Rationale Wealth influences health by determining one’s living conditions, 
nutrition, occupation, and access to health care and other health-
promoting resources. Low-income communities face a double threat 
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to their health (Morello-Frosch and Shenassa, 2006). First, they 
have a higher exposure to pollutants and environmental hazards 
(Hajat et al., 2015). Second, they experience increased susceptibility 
to poor health due to factors such as psychosocial and chronic 
stress (Brunner and Marmot, 2005; Wright et al., 1998). 

Psychosocial stressors, like social crowding, social/family disorder, 
racial discrimination, and economic insecurity are more common in 
low-income neighborhoods (Bernard et al., 2007). These factors 
combine to create environmental health disparities in low-income 
communities. For example, a 2017 study conducted in the US found 
that neighborhood social stressors like perceived breakdown of 
order and social control, abandoned buildings, trash, and vacant lots 
increased the association between fine particulate matter and lower 
cognitive function in older adults (Ailshire et al., 2017). Other 
studies, including one conducted in California’s San Joaquin Valley, 
found that traffic-related air pollution and particulate matter had a 
larger effect on preterm birth and low birth weight among mothers 
from low-socioeconomic status (SES) neighborhoods (Padula et al., 
2014; Yi et al., 2010; Zeka et al., 2008). 

Air pollution also has a strong impact on mortality (Forastiere et al., 
2007), and childhood asthma (Meng et al., 2011) in low-income 
communities. A multi-city study in Canada found that the effect of 
nitrogen dioxide (NO2) on respiratory hospitalizations was increased 
among lower income households compared to those with higher 
incomes (Cakmak et al., 2006). Differential underlying burdens of 
pre-existing illness and co-exposure to multiple pollutants are other 
factors that can contribute to increased susceptibility in low-income 
communities (O'Neill et al., 2003). 

MMethod  From the 2015-2019 American Community Survey, a dataset 
containing the number of individuals below 200 percent of the 
federal poverty level was downloaded by census tracts for the 
state of California.

 The number of individuals below 200% of the poverty level was 
divided by the total population for whom poverty status was 
determined.

 Unlike the US Census, ACS estimates come from a sample of 
the population and may be unreliable if they are based on a 
small sample or population size. The standard error (SE) and 
relative standard error (RSE) were used to evaluate the 
reliability of each estimate. 

 The SE was calculated for each census tract using the formula 
for approximating the SE of proportions provided by the ACS 
(American Community Survey Office, 2013, pg. 13, equation 4). 
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When this approximation could not be used, the formula for 
approximating the SE of ratios (equation 3) was used instead.

 The RSE is calculated by dividing a tract’s SE by its estimate of 
the percentage of the population living below twice the federal 
poverty level, and taking the absolute value of the result. 

 Census tract estimates that met either of the following criteria 
were considered reliable and included in the analysis:

o RSE less than 50 (meaning the SE was less than half 
of the estimate) OR

o SE was less than the mean SE of all California census 
tract estimates for poverty.

 Census tracts with unreliable estimates received no score for 
the indicator (null).  The indicator was not factored into that 
tract’s overall CalEnviroScreen score.

 Census tracts that met the inclusion criteria were sorted and 
assigned percentiles based on their position in the distribution.
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UUNEMPLOYMENT
Because low socioeconomic status often goes hand-in-hand with high unemployment, the 
rate of unemployment is a factor commonly used in describing disadvantaged 
communities. On an individual level, unemployment is a source of stress, which is 
implicated in poor health reported by residents of such communities. Lack of employment 
and resulting low income often constrain people to live in neighborhoods with higher levels 
of pollution and environmental degradation.

Indicator Percentage of the population over the age of 16 that is unemployed 
and eligible for the labor force. Excludes retirees, students, 
homemakers, institutionalized persons except prisoners, those not 
looking for work, and military personnel on active duty (5-year 
estimate, 2015-2019).

Data Source American Community Survey – US Census Bureau

The American Community Survey (ACS) is an ongoing survey of the 
US population conducted by the US Census Bureau. Unlike the 
decennial census, which attempts to survey the entire population 
and collects a limited amount of information, the ACS releases 
results annually based on a sub-sample of the population and 
includes more detailed information on socioeconomic factors such 
as unemployment. Multiple years of data are pooled together to 
provide more reliable estimates for geographic areas with small 
population sizes. The most recent results available at the census 
tract level are the 5-year estimates for 2015-2019. The data are 
made available using the U.S. Census data download website. Data 
are available at the link below:

https://data.census.gov/cedsci/ 

Rationale Unemployment has a wide range of effects on health which 
contribute to the burden placed on vulnerable communities. It has 
been shown to negatively impact mental and physical health. Higher 
rates of unemployment are associated with overall mortality, as well 
as mortality specifically due to transport accidents, poisonings 
(which include drug overdoses), and suicides (Gordon and Sommers, 
2016; Paul and Moser, 2009; Ruhm, 2015). Unemployment is also 
associated with increases in physical morbidity as well as mortality.

Unemployment has been shown to be associated with the biological 
effects of stress. Compared to men who are consistently employed, 
men who experience long-term unemployment have shorter 
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leukocyte telomere length, which is associated with domestic stress 
(Ala-Mursula et al., 2013). One UK meta-analysis found that 
inflammatory markers, often associated with stress, were elevated 
for jobseekers in studies between 1998 and 2012 (Hughes et al., 
2017). In another study, unemployed individuals had higher cortisol 
content in hair samples, compared with employed individuals 
(Dettenborn et al., 2010). This stress may then lead to poor health, 
increased susceptibility to toxic effects of pollution, and reduced 
capacity to cope and recover from adverse effect of environmental 
exposures (DeFur et al., 2007). Finally, the unemployed often lack 
the resources (including adequate insurance) to seek care for health 
conditions while they are treatable, and this leads to worse health 
outcomes, including outcomes cause by environmental pollutants.

There is also evidence that an individual’s health is at least partly 
determined by neighborhood and regional factors. Unemployment is 
frequently used as a surrogate for neighborhood deprivation, which 
is associated with pollution exposure as well as poor health 
(Voigtlander et al., 2010). Studies of neighborhood socioeconomic 
factors have found stress to be a major factor in reported poor 
health among residents of disadvantaged communities, and both 
financial and emotional stress are direct results of unemployment 
(Turner, 1995).

MMethod  From the 2015-2019 American Community Survey, a dataset 
containing the unemployment rate by census tracts for the state 
of California was downloaded. 

 The Census Bureau calculates an unemployment rate by 
dividing the 'Population Unemployed in the Civilian Labor Force' 
by 'Population in the Civilian Labor Force' and then converts this 
to a percentage.

 Unlike the US Census, ACS estimates come from a sample of 
the population and may be unreliable if they are based on a 
small sample or population size. The standard error (SE) and 
relative standard error (RSE) were used to evaluate the 
reliability of each estimate. 

 The SE was calculated for each census tract using the formula 
for approximating the SE of proportions provided by the ACS 
(American Community Survey Office, 2013, pg. 13, equation 4). 
When this approximation could not be used, the formula for 
approximating the SE of ratios (equation 3) was used instead.

 The RSE is calculated by dividing a tract’s SE by its estimate of 
unemployment rate, and taking the absolute value of the result. 
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 Census tract estimates that met either of the following criteria 
were considered reliable and included in the analysis:

o RSE less than 50 (meaning the SE was less than half 
of the estimate) OR

o SE was less than the mean SE of all California census 
tract estimates for unemployment rate.

 Census tracts with unreliable estimates received no score for 
the indicator (null).  The indicator was not factored into that 
tract’s overall CalEnviroScreen score.

 Census tracts that met the inclusion criteria were sorted and 
assigned percentiles based on their position in the distribution.
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SCORES FOR POPULATION 
CHARACTERISTICS
((RANGE OF POSSIBLE SCORES: 0.1 TO 10)

Population Characteristics scores for each census tract are derived from the average 
percentiles for the three Sensitive Populations indicators (asthma, cardiovascular disease, 
and low birth weight) and the five Socioeconomic Factors indicators (educational 
attainment, housing-burdened low-income households, linguistic isolation, poverty, and 
unemployment). The calculated average percentile divided by 10 for a Population 
Characteristic score ranging from 0.1 – 10.

Note: The map on the following page shows population characteristic scores divided into 
deciles.
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CalEnviroScreen Results
The maps on the following pages depict the relative scoring of California’s census tracts 
using the CalEnviroScreen methodology described in this report. Census tracts with darker 
red colors have the higher CalEnviroScreen scores and therefore have relatively high 
pollution burdens and population sensitivities. Census tracts with lighter green colors have 
lower scores, and correspondingly lower pollution burdens and sensitivities. 

The maps of specific regions of the state (Los Angeles, San Francisco, San Diego, San 
Joaquin Valley, Sacramento and the Coachella and Imperial Region) are “close-ups” of the 
statewide map and are intended to provide greater clarity on the relative scoring of census 
tracts in those regions. Colors on these maps reflect the relative statewide scoring of 
individual census tracts.

Numerical scores for each census tract, as well as the individual indicator scores for each 
census tract, may be found online at OEHHA’s website at 
http://oehha.ca.gov/calenviroscreen. 

The information is available both in a Microsoft Excel spreadsheet format and as an online 
mapping application.
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