BEFORE THE PUBLIC UTILITIES COMMISSION

OF THE

STATE OF CALIFORNIA

ADMINISTRATIVE LAW JUDGES JESSICA T. HECHT and MARCELO POIRIER, co-presiding COMMISSIONER CLIFFORD RECHTSCHAFFEN, in attendance

Order Instituting Investigation on) EVIDENTIARY the Commission's Own Motion into the) HEARING Operations and Practices of Southern) California Gas Company with Respect) to the Aliso Canyon storage facility) and the release of natural gas, and) Order to Show Cause Why Southern) California Gas Company Should Not Be) Sanctioned for Allowing the) Investigation) 19-06-016 Uncontrolled Release of Natural Gas from its Aliso Canyon Storage) Facility. (U904G))

> REPORTERS' TRANSCRIPT Virtual Proceeding March 23, 2021 Pages 804 - 978 Volume 6

Reported by: Karly Powers, CSR No. 13991 Andrea L. Ross, CSR No. 7896 Jason Stacey, CSR No. 14092

1	INDEX	
2	WITTNECCEC.	PAGE
3	WITNESSES:	PAGE
4	RAVI KRISHNAMURTHY Cross-Examination Resumed By Mr.	807
5	Lotterman	007
б	RAVI KRISHNAMURTHY Cross-Examination Resumed By Mr.	882
7	Lotterman Cross-Examination By Mr. Gruen	914
8	Cross-Examination By Ms. Bone Redirect Examination By Ms.	950 966
9	Frazier Recross-Examination By Ms. Bone	972
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
	PUBLIC UTILITIES COMMISSION, STATE OF CAL	IFORNIA

	March 23, 2021 806
1	VIRTUAL HEARING
2	MARCH 23, 2021 - 10:06 A.M.
3	* * * * *
4	ADMINISTRATIVE LAW JUDGE POIRIER: We
5	will be on the record.
6	Good morning. This is ALJ Marcelo
7	Poirier. It's March 23rd, 2021. This is day
8	six of the evidentiary hearing in
9	Investigation 19-06-016, the Aliso Canyon
10	Judicatory OII.
11	Prior to going on the record, we had
12	a discussion on the timing and schedule of
13	the proceeding and the impact of that on
14	service of cross estimates. It appears that
15	as of now that the schedule that has been
16	distributed including right now, the cross of
17	Mr. Krishnamurthy, and the cross of Cal
18	Advocates' witnesses by SoCalGas is
19	consistent with the schedule that was
20	distributed.
21	As that situation changes or if it
22	does, we've instructed the parties to confer
23	so that we have an accurate understanding of
24	the schedule moving forward. And that
25	parties have a good understanding of when
26	they need to serve those cross-examination
27	exhibits in conformance with the instructions
28	of the assigned ALJs.

Evidentiary Hearing March 23, 2021 807 We left off yesterday with 1 2 Mr. Lotterman crossing Dr. Krishnamurthy. 3 Mr. Lotterman are you ready to continue? 4 5 MR. LOTTERMAN: I am, your Honor. 6 ALJ POIRIER: Okay. Please go ahead. 7 RAVI KRISHNAMURTHY, resumed the stand and testified further as 8 9 follows: 10 CROSS-EXAMINATION RESUMED 11 BY MR. LOTTERMAN: Good morning, Dr. Krishnamurthy, 12 0 13 how are you? 14 А Pretty good. Thank you. 15 All right. We left off yesterday 0 16 discussing whether Blade was able to determine when the corrosion on the exterior 17 18 of that production casing on SS-25 began. Do 19 you remember that? 20 Α Yes. 21 0 And I believe you told me that 22 there was no reliable data, or at least Blade found no reliable data as to when the 23 24 groundwater replaced the drilling fluid in 25 that annulus; is that right? 26 Α Correct. 27 And I believe you also said that 0 28 Blade also was unable to find any reliable

	March 23, 2021 808
1	data as to when those SS-25 well connections
2	began to seep and began feeding carbon
3	dioxygens (sic) to the methanogens; is that
4	right?
5	A Correct.
6	Q Right. And so when I asked you,
7	"Does that mean therefore that Blade was
8	unable to determine when the corrosion
9	began?"
10	You said that, "That is correct."
11	And that if I were to press you to
12	give you a date, you would be guessing. Is
13	that still your testimony?
14	A Yeah. It would be a hypothesis.
15	It would be nonfactual; that's correct.
16	Q Fair enough. Fair enough. What
17	you did say though, which I had not focused
18	on before and I wanted to just pursue this
19	very briefly is you said that:
20	Under your hypothesis, that
21	corrosion did not start in
22	1953 when the original well
23	was drilled.
24	Correct?
25	A That's correct, yeah.
26	Q And if I understand your answer
27	and kind of a light went off in my head at
28	that point. That's because under your

1	hypothesis, those methanogens were fed by
2	carbon dioxide, and that could not have
3	started until SoCalGas converted the well in
4	1977 to gas injection. Did I get that right?
5	A Yes and no. Let me explain that
6	because I don't they were doing gas lift
7	operation to produce the oil. So I don't
8	know what gas was used to gas lift. So I
9	wouldn't be comfortable reading research how
10	oil well was operated over pre-gas storage
11	operations. So you would have to look at
12	that to confirm it.
13	But there are two items there. And
14	this was the hypothesis portion of it. Is
15	until you started storage gas operations, the
16	loading on the connections wouldn't be at the
17	level at which you may start seeping. So
18	you're interpretation is a fair
19	interpretation.
20	Q Right. And to maybe put a little
21	more blunt focus on it, I guess what you're
22	saying is although you didn't rule out the
23	hypothesis that the corrosion began before
24	the well was converted in 1977, you believe
25	it's more likely that the corrosion began
26	afterward; is that fair?
27	A That's fair.
28	Q All right. Thank you. So I want

1 to -- also I want to next talk about 2 corrosion rate. 3 And I'm going to ask Mr. Moshfegh 4 to put up a portion of one of your 5 supplemental reports, and I'm going to identify it for the record. 6 It is taken from 7 Commission Exhibit-1002. And that's Volume II of Blade's report. And it's a 8 9 supplementary report entitled "SS-25 Casing 10 Failure Analysis." And it's dated May 31, 11 2019. Do you see that, Dr. Krishnamurthy? 12 13 Yes, I do. Α 14 All right. Mr. Moshfegh, would you 0 15 turn to page 209? And it's section 5.6 16 entitled "Corrosion Rate. And would you 17 focus and highlight on that second paragraph, 18 first three-and-a-half sentences -- lines, 19 please. 20 Can you read that, 21 Dr. Krishnamurthy? 22 Α I can see it, yeah. 23 All right. So what you say there 0 24 -- what Blade says there is: 25 The exact corrosion rate 26 for the seven-inch casing, 27 which is the production 28 casing that corroded here,

1	cannot be predicted because
2	of the limited information
3	about the condition of the
4	well. Particularly the PH,
5	alkalinity, temperature,
6	and composition of the
7	fluid in context with the
8	seven-inch casing OD over
9	the entire life of the
10	well.
11	And you also say, and I think this
12	is consistent with what we just talked about.
13	You say:
14	Also the start of the
15	corrosion attack is not
16	documented.
17	So I think we've talked about the
18	second sentence, and I want to focus on the
19	first.
20	So is it true today, as you wrote in
21	2019, that the exact corrosion rate that
22	under your hypothesis attacked SS-25 cannot
23	be predicted?
24	A That's correct.
25	Q All right. And I understand the PH
26	and the alkalinity and the temperature,
27	because I believe we talked about some of
28	that earlier with drilling fluids et cetera,

1	et cetera.
2	But I was intrigued by the next
3	sentence. You say:
4	In addition the changes in
5	season in Aliso Canyon
б	could also
7	I assume have affected.
8	the factors previously
9	mentioned.
10	Would you explain to the Commission
11	how the changes of season could have affected
12	the conditions which in turn would have
13	affected the corrosion rate?
14	A Okay. The changes in season here
15	references the extent of precipitation and
16	the precipitation that gets to those depths.
17	A lot of those are impacted by the
18	hydrochemical reactions, the water level as
19	it seeps through the clay and various
20	formations to the thousand feet, the pathway
21	of that. So that is affected by season the
22	quantity, temperature, voracity. So there's
23	many factors that drive it. That's really
24	what we imply there.
25	Q Okay. And is what you're saying
26	basically: In rainy seasons, that wellbore
27	and the annulus might have more groundwater.
28	In the dry season, it might have less. That

would vary and that in turn would affect the 1 2 corrosion rate? 3 Yes; that's correct. Α 4 0 Okay. All right. 5 Yes. And depending on where you're Α measuring or trying to predict, it can be 6 7 different. Yes; that's correct. 8 And I also believe you say in your 0 9 report, and you certainly explain to us in your deposition, that the corrosion rate 10 11 itself in addition to your not being able to predict it vary -- or could vary over time; 12 13 is that true? 14 А Yes. 15 All right. I believe you called it 0 16 a "time dependent process" in the deposition. 17 Would you explain what you meant by that 18 phrase? 19 Again, the microbiological Α Yeah. 20 mechanism that we talked about, it's a 21 biochemical reaction, okay. And it's a 22 biochemical reaction dependent in this 23 particular case as a percent of -- probably a 24 (indecipherable) for the methanogens. 25 And then on top of that, you have 26 what is called a "biofilm." And inside the 27 biofilm there is an environment, there is a 28 PH, there is an alkalinity. You can not look

	March 23, 2021 814
1	at the bulk pH and bulk alkalinity for
2	predictions. And that would change with
3	time.
4	And on top of that as the corrosion
5	reaction happens, you form a corrosion
6	product. And then corrosion product will
7	change the rate of corrosion. So many
8	factors such as those will define how we
9	change over time.
10	Q And when you say "corrosion
11	product," are you referring to for example
12	the scales that can form on the side of the
13	pipe once the corrosion starts?
14	A That's correct. In this particular
15	case in the local regions because the
16	corrosion was localized. In the '80s if it
17	was corroded, it would change with time.
18	Yes.
19	Q And is it your view and I
20	believe this is correct. But is it your view
21	that and this sounds counterintuitive to
22	me, but I believe it's true.
23	Is it your view that those scales
24	can actually form a protective layer on the
25	pipe and either frankly enhance the corrosion
26	or protect against it?
27	A It normally will not enhance. Most
28	of the time the scales will reduce the

1	corrosion rate. That is well known. You
2	have mass transferred through the scale
3	depending on the diametric on the scale and
4	the nature of the scale. All of those define
5	the rate of corrosion. But, yes, your
6	interpretation is correct.
7	Q Okay. And when you extracted that
8	pipe from SS-25 in 2017, you actually saw
9	kind of variable corrosion rates on the pipe
10	itself, didn't you?
11	A Correct.
12	Q I mean
13	A May I clarify? I want to be clear
14	there. I did not see variable corrosion
15	rate. I saw variable corrosion depths.
16	Yeah? That's what I would state.
17	And the reason I clarified that is
18	it may be 5 percent in one location, 85
19	percent in another location. Which implies
20	one location started early, the other
21	location started later. So the rates may be
22	the same, but the depths are different.
23	Q Okay. Got it. And as you point
24	out in your in this Section 5.6 in the
25	bottom paragraph, which we don't need to
26	highlight. But you actually say that
27	controlled lab studies were not informative
28	in this case because lab conditions can vary

1	from field conditions; is that accurate?
2	A Yeah. It's difficult to simulate
3	the condition, the condition of methanogens
4	and, you know, the people do the work to
5	accelerate the behavior.
6	But what happens in nature and the
7	real world takes a bit more time. Like in
8	this particular case, it took a long time.
9	And so, yeah, simulating that in a lab is
10	very challenging.
11	Q And I would think so. Because
12	obviously if you have varying climates and
13	rainfall and the like at the Aliso Canyon
14	facility, I mean how would you accurately
15	replicate that in a lab? You couldn't;
16	right?
17	A Correct.
18	Q All right. Okay. So bottom line
19	as you say in this 5 Section 5.6:
20	Blade was unable to predict
21	the exact corrosion rate
22	for SS-25.
23	So if that's the case if you are
24	unable to determine when the corrosion
25	started or what its rate was once it started,
26	does it logically follow that Blade can't say
27	with any certainty when that corrosion would
28	have been detectable on SS-25?

1	A That's correct.
2	Q Okay. All right. And by the way,
3	I believe you said this in the deposition. I
4	couldn't find it in your Blade in your
5	report. Did you also conclude that the rate
6	was unlikely to be linear with time?
7	A No. Normally, you know, for
8	simplistic analysis and planning purposes you
9	would use a linear estimate. But in reality
10	corrosion is not linear, it's exponential.
11	And it will be a function of the scale and
12	temperature and various factors. So it is
13	not going to be linear.]
14	Q All right. Thank you. Okay.
15	Let's move on. And I'm trying to get through
16	this as quickly as I can without our stepping
17	on each other, and I think actually we're
18	doing a pretty good job this morning.
19	So one of the other aspects of your
20	root cause analysis was examining the past
21	field-wide practices of SoCalGas at the Aliso
22	Canyon facility; is that true?
23	A Yes.
24	Q And in your business, that's called
25	O&M, or operations and maintenance; right?
26	A Correct.
27	Q And so you went into the records
28	for the various Well Files, et cetera, et

	March 23, 2021 818
1	cetera, into SoCalGas' internal gas policies
2	and that type of thing and you examined what
3	those O&M practices were; is that true?
4	A Yes, we did.
5	Q You identified a number of leaks
6	that you believe occurred over 40 years, and
7	I believe our expert has taken issue with
8	some of that and there's some back-and-forth
9	about shoe leaks and stage collar leaks and
10	all that stuff. I'm going to table that for
11	now because what I want to focus with you on
12	this morning is what patterns, trends, or
13	correlations you found when you did that
14	analysis; okay?
15	A Yeah.
16	Q All right. So there is a volume on
17	this. It's actually in the same volume we're
18	looking at, so let's stay with the same
19	report. I want to turn to lost my place
20	here. Excuse me. You know what? Let's do
21	this: Let's turn to well, let me back up.
22	I got it.
23	ALJ POIRIER: Off the record.
24	(Off the record.)
25	ALJ POIRIER: We'll be back on the
26	record.
27	Please continue, Mr. Lotterman.
28	BY MR. LOTTERMAN:

1	Q Dr. Krishnamurthy, like I said, I'd
2	like to focus on any patterns, trends, or
3	correlations you found when you investigated
4	the O&M practices of SoCalGas. I'd like to
5	sort of summarize your findings and we can
6	walk through them and talk about them as much
7	as you deem necessary.
8	First of all, you found that casing
9	failures were not concentrated in one
10	specific area of facility or well location;
11	is that correct?
12	A Yes.
13	Q So when we saw that expanse of the
14	foothills of the old mountain and, in fact,
15	we showed that diagram of where the field was
16	divided into three sectors, there wasn't one
17	particular sector that was more corrosive
18	than the other or it wasn't by terrain or
19	anything like that, no correlations about
20	specific area; true?
21	A True.
22	Q And, in fact, I think you observed
23	in the main report that you found adjacent
24	wells to each other that often showed
25	differences; true?
26	A True.
27	Q Okay. I believe you also concluded
28	that you found no correlation at Aliso Canyon

	Evidentiary Hearing March 23, 2021 820
1	regarding geology; right?
2	A True.
3	Q What was the hypothesis you were
4	pursuing there?
5	A Can you ask me the question again,
б	please, Mr. Lotterman. I apologize, I lost
7	it.
8	Q Okay. Glad to. I was noting that
9	your report observes that you found no
10	correlation between corrosion and geology at
11	the Aliso Canyon facility. My question is
12	what hypothesis were you testing there?
13	A Got it. I'm with you. Okay. No.
14	See, if you look at the SS-25, the failure
15	happened in a basalt, if I remember right.
16	There is a formation above. There's a
17	formation below.
18	So we were wondering if there was
19	anything in the formation that may be
20	contributing even though the formation is
21	outside of the surface casings, this is
22	inside the production casing we were
23	trying to look for anything specific
24	formation that could be systemic across the
25	field or across you know, depending, on
26	west, central, or eastern zones. And we were
27	looking for any contributory factors from
28	formation such as water.

1	You could be you could be water
2	permeable or water-containing zone that may
3	be contributing some highly-corrosive liquids
4	or water. So that was some of the thinking.
5	And of course we were also looking at
6	geotechnical or other such parameters. So we
7	wanted to eliminate that. That was the
8	intent of that exercise.
9	Q Okay. And, in fact, you did;
10	right?
11	A Yes, we did.
12	Q Okay.
13	A Yes, we did.
14	Q And by the way, I believe you
15	mentioned a geologist at SoCalGas who
16	assisted you with the root cause analysis and
17	you said was that Hilary Petrizzo?
18	A Yes.
19	Q All right. Thank you. Just wanted
20	to clarify that. You also didn't find any
21	correlation between corrosion and converted
22	or newly-drilled wells; fair?
23	A That's correct.
24	Q Right. So to sort of set the stage
25	there, obviously SoCalGas converted a number
26	of wells at Aliso Canyon when it took control
27	of the facilities in the 1970s, and we talked
28	about that earlier, but they also, during

	March 23, 2021 822
1	that 38-year time period, drilled new wells;
2	right?
3	A Yes, that's correct.
4	Q And your analysis of the records
5	that were available to you indicated that
б	there were not necessarily more issues with
7	older wells or newer wells, there was no
8	correlation you were able it was about
9	50/50 is what I recall from your report; is
10	that correct?
11	A That's correct.
12	Q Okay. You also I think this is
13	along the same lines, I suspect, since many
14	of the converted wells are older than the
15	newer wells but you also found no
16	correlation between corrosion and the age of
17	a well, did you?
18	A No.
19	Q Did you expect that?
20	A Yeah. I it is, again, a bit of
21	a common tendency to to I'm looking for
22	a word, but I want to be careful which
23	word to automatically characterize older
24	wells are more at risk. In my experience
25	that is not true for most of the structures.
26	It is the environment, it is the condition
27	that it is exposed to, a lot of those
28	parameters come into play so you have to be

822

1 cautious about -- or just correlating with 2 age. I am not surprised honestly. 3 All right. Q 4 А I was not surprised. 5 And then just to wrap up a couple 0 6 topics, you found no correlation between 7 corrosion and depth of surface casing shoe; 8 true? 9 А I don't know. Depth of surface casing shoe. So the location of -- again, 10 11 I'm not sure about that. I can't recall that particular conclusion, specific conclusion. 12 13 We did look for the wells that had wall thickness inspections. We analyzed them to 14 see if the corrosion was above the shoe or 15 16 below the shoe. And of course the shoe 17 depths vary depending on which well you're 18 looking at. Some of them are 500, 580, some 19 of them are a thousand, 1,500. 20 So the shoe depths varies depending on where, you know, which well you're talking 21 22 So I am not -- I don't recall making about. that particular conclusion, but I'll have to 23 24 look at my report more carefully. 25 It's not important for these 0 26 purposes. Did you find any correlation 27 between corrosion and production casing size? 28 Α There was more in the No.

seven-inch, but that was probably because it 1 2 was more prevalent size. So, no, we did not find a correlation. 3 4 Did you find any correlation 0 5 between corrosion and depth of the well? Depth of the well. I don't believe 6 А 7 I don't think so. so. 8 All right. Did you find any 0 9 corrosion between -- sorry, did you find any correlation between corrosion and time 10 11 periods? By time periods you mean life of 12 А 13 the well; right? 14 No. Actually I was thinking more 0 of, you know, kind of this decade versus that 15 16 decade versus that decade. 17 No, no correlation. А 18 0 All right. Okay. Did you -- when 19 you looked at that -- when you undertook that 20 analysis, did you identify any kind of quiet periods where there didn't appear to be a 21 whole lot of leaks occurring for whatever 22 23 reason? 24 А I believe there was. There was a 25 phase where there was a reduction in number of leaks. There's a period where the number 26 27 of leaks were lower or -- again, I want to --I want to be careful here. I think we 28

1	define and we are very specific about
2	defining. I don't think I don't know
3	whether we called it when a casing does
4	not perform its function as defined, we call
5	it a failure. Okay. So I want to be
6	careful. And that was the number we were
7	looking for rather than just leaks. Okay.
8	So, for example, a tight spot at
9	that point the casing is not perform is
10	not performing its role as it was designed
11	for so we call that a failure. So I want to
12	kind of clarify that. That's what I mean.
13	But there were periods I believe there
14	were few periods where the problems were
15	fewer or less. That is correct, to answer
16	your question.
17	Q All right. Thank you. Appreciate
18	that clarification. All right. So let's go
19	to the back of the report to the grand
20	finale, shall we say. But before we get
21	there, I want to set the stage if I could. I
22	believe you testified yesterday and you
23	actually set it out on page 22 of the main
24	report, the scope of your root cause
25	analysis.
26	And, Mr. Moshfegh, if we could just
27	sort of highlight that second paragraph under
28	1.3. That first sentence. There you go.

1	Just the first sentence, please. There you
2	go.
3	Dr. Krishnamurthy, as I understood
4	your testimony yesterday and as I read this
5	portion of your main report, there were
6	roughly two goals of your root cause
7	analysis. One is obviously to identify the
8	root causes of the problems or events. And
9	then the second and this is what I want to
10	focus our time for this morning is
11	defining methods for responding to and
12	preventing them.
13	Do you see that?
14	A Yeah.
15	Q Okay. And is it fair to say that
16	that second piece, the "Defining methods for
17	responding to and preventing them" is more of
18	a forward-looking analysis?
19	A Yes. If I may explain that a
20	little bit. You are in order to figure
21	out in a root cause analysis, in order to
22	figure what were the root causes, you need to
23	see what actions or activities that would
24	mitigate and prevent such incident going
25	forward. So that is the process we used.
26	The RCA process we used looks to define the
27	solutions. And from the solutions you derive
28	the root causes.

1	Q Right. So let me boil that down so
2	that I can understand it and you tell me if I
3	missed the boat or not. You know, I view the
4	root cause analysis process that you went
5	through is kind of a round trip, and I take
6	this from reading your report, so this is not
7	out of thin air, but tell me if I'm right.
8	I mean basically you start with the
9	two effects from this incident, the one being
10	the leak, and the second one being that it
11	took 111 days to stop it. And then you go
12	backward through your diagrams, et cetera,
13	and you identify all potential causes for
14	those effects; is that right?
15	A That's correct.
16	Q And some of them and we'll talk
17	about it some of them are, well,
18	tangential and some of them are spot on;
19	right?]
20	A I wouldn't use the word "spot on."
21	But some of them are tangential and may not
22	have change may not have prevented the
23	incident. Some of them would've prevented
24	the incident. That's kind of the
25	categorization.
26	Q All right.
27	A I would not say "spot on." That
28	implies this exact event was prevented.

827

Evidentiary Hearing March 23, 2021 828 Got it. 1 0 2 А So that -- I want to be clear. 3 Got it. 0 4 And the best example was -- sort of 5 a really good cause-and-effect was dual barrier, wasn't it? 6 7 А Yeah. Because if I understand your 8 0 9 analysis correctly, what your root cause 10 analysis says basically is, had SoCalGas been 11 injecting or withdrawing through the tubing only and leaving the production barrier with 12 13 no pressure whatsoever, or a minimal amount 14 of pressure, and had that production casing 15 corroded to the point of having an anomaly or 16 parting, the gas still would have been 17 contained within that tubing, and we wouldn't 18 have had the leak we had. 19 So that I view as a cause-and-effect that you think quite 20 21 important in this root cause analysis. 22 True? 23 Α True. Yes. 24 So you go backward from the 0 Okay. 25 effects, and you draw these diagrams listing 26 all these potential causes -- and you listed 27 quite a few of them. But then I think at the end of this 28

1	report, you then turn around and go back
2	through those causes, and you try to identify
3	all potential measures for responding to or
4	preventing them; is that right?
5	A That is correct.
6	Q And dual barrier is a great
7	example. Because in 2015, and we'll get to
8	this in a minute, it wasn't required. It
9	wasn't a prevailing industry practice.
10	But your view is, notwithstanding
11	that, underground storage operators like
12	SoCalGas, should implement dual barriers
13	going forward to prevent what happened at
14	Aliso Canyon.
15	True?
16	A That was not my role to say what
17	operators should do. Our role was to say,
18	"What are the root Causes?"
19	And dual barrier is definitely
20	as you well articulated is a root cause
21	and would have prevented that incident.
22	Q All right
23	A I wanted to clar
24	(Crosstalk.)
25	BY MR. LOTTERMAN:
26	Q Excuse me.
27	That's a very important
28	clarification. Because I take that to heart.

1	Because what you're saying is, you're not
2	saying what operators like SoCalGas should
3	do. You're saying what could be done to
4	prevent something going forward; correct?
5	A That's correct.
6	Q Okay. Good. Good.
7	And, by the way, this round trip
8	that I talk about, or your analysis that you
9	put forward in your main report, it's not
10	dependent on whether the causes were required
11	by law or regulation; right?
12	A Absolutely not.
13	Q Not required it's not dependent
14	on whether the causes were required by
15	industry standard.
16	True?
17	A That's correct. Yeah.
18	Their own the objective of the
19	exercise of the work was to clearly identify
20	what the root causes are. Whether that is
21	common practice, whether that's regulation or
22	not regulation, doesn't enter our analysis.
23	We do articulate in one part of our
24	report I forget where, Mr. Lotterman
25	but we do articulate what the prevailing
26	regulations were and what was the regulation.
27	I believe we do in a portion of the report.
28	But that was not the objective of the not

1 the objective of our work. 2 0 And, likewise, you don't even 3 really -- you don't Judge, not really. 4 You don't judge whether such a 5 cause and effect was foreseeable by any 6 particular operator; correct? 7 А I'm trying to think. "Foreseeable" 8 means something else to me. 9 Again, our role was to say, What 10 were the root causes? What mitigative 11 practices would have prevented or may have prevented such an incident? "Foreseeable" 12 implies -- I don't believe that's our role. 13 14 I'm trying to think, Mr. Lotterman, 15 as we are asking the question. That's a good 16 question. But I don't believe -- our role is 17 to find out the root causes for the Aliso 18 Canyon incident, SS-25 incident, and what 19 were the factors, parameters that contributed 20 to the failure? And from there, deriving 21 root causes, if addressed, will prevent such 22 incident. That's --23 Understood. 0 24 I want to be --А 25 Understood. 0 26 А Okay. 27 And that's consistent with what you 0 28 told us right at the beginning of my

1	examination, where when I asked you what a
2	technical RCA was, you said you explained
3	what it was. And you said, "But let me be
4	clear. It does not address
5	management-related issues."
б	True?
7	A That is correct. That was
8	Q Okay.
9	A Yeah.
10	Q Now, you mentioned the study you
11	did of the regulations pertaining to
12	underground storage. And I believe you
13	looked at both pre-leak and post-leak
14	reservations (sic); is that right?
15	A Yes, we did.
16	Q All right.
17	And you set out these regulations
18	at page 197 of the main report, Section 4.6.
19	Do you see that?
20	A Yeah.
21	Q Okay. And if I understand your
22	analysis, which makes sense, you focused on
23	California gas storage well integrity
24	regulations.
25	True?
26	A Correct. I I want to my
27	memory is weak. But I don't believe, at that
28	point, there were other regulations. I don't

1	think PHMSA guidelines or regulations came
2	out. Or they may have come out, I don't
3	recall. So
4	Q Sir, your memory is not weak. But,
5	as I said before, if you need a lifeline in
6	the report, I'll you take it. But I think
7	your memory is actually quite good.
8	So, again, subject to check, your
9	focus because it makes sense. I mean, the
10	Aliso Canyon facility is in California;
11	right?
12	A Yes.
13	Q Okay. Did you did you also look
14	to find any relevant Federal regulations at
15	the time?
16	A I believe we did. Again, that's
17	why my memory I want to confirm. I don't
18	believe the Federal regulations were either
19	in place or were not complete. I forget
20	or they were in that form. The California
21	DOGGR regulations were in detailed, clear
22	form. So that's why we only analyzed that.
23	Q Fair enough.
24	I will get to that. I will get to
25	the Federal regulations in a minute. And I
26	can probably give you a pretty good citation
27	for that.
28	And you note in your discussion of

	March 23, 2021 834
1	the main report that there have been
2	significant changes in the regulations since
3	2015; is that right?
4	A Yes.
5	Q Including on the Federal level.
6	True?
7	A Well, I'm pretty sure. Yes.
8	Q Do you believe your investigation
9	prompted some of those changes?
10	A I don't know. I wouldn't want to
11	comment on that. I would ask the folks who
12	drafted it. No, I wouldn't no. I'm
13	not
14	Q Okay.
15	A I'm not qualified to comment on
16	that.
17	Q Okay. Have you worked with a or
18	advised any regulators on how to implement
19	the solutions you set out in the root cause
20	analysis?
21	A No, not in detail.
22	Q Okay.
23	A Not the way you're not defining
24	the regulations, no.
25	Q All right.
26	And getting all right. Fair
27	enough.
28	So let's then look at the

1	regulations themselves. And I won't take
2	much time on this. But, basically and I
3	have this in front of me.
4	You identify you actually wrote
5	a supplementary report. And this is in
6	Volume 4, which I believe is Commission
7	Exhibit 1004. And it's entitled "Gas Storage
8	Well Regulations Review."
9	Now, I'm not going to go through
10	that report, sir. But I just wanted to
11	for the record, to document your earlier
12	testimony that you had done so. And I wanted
13	the record to reflect that that effort is
14	contained in this supplemental report and is
15	summarized in the main report.
16	Okay?
17	A Yes.
18	Q So just so I'm not mistaken, do you
19	see under Volume 4 a supplemental report
20	entitled "Gas Storage Well Regulations
21	Review"?
22	A Yeah. Yes.
23	Q And is that the one you were
24	referring to earlier?
25	A Yeah. I was referring to the main
26	report and the supplementary report. Yes.
27	That's correct.
28	Q All right.

1	Mr. Moshfegh, let's go to page 234
2	of the main report, please.
3	And while he's pulling that up, Dr.
4	Krishnamurthy, let me sort of set the table
5	on this one as well. So if you look at
6	Table 42, on page 234 of the main report,
7	it's identified "Root Causes and Solutions."
8	Do you see that?
9	A Yes.
10	Q And the first column are all the
11	various I call them pods but all the
12	various causes that you identified which led
13	to the effect of both the leak and the
14	111 days that it lasted; right?
15	A Mm-hm.
16	Q You then talk about solutions. And
17	we're going to talk about those in a minute.
18	You then discuss whether they have
19	been addressed by SoCalGas. And I assume
20	that's as of 2019. And then this is what
21	I want to focus on, just briefly.
22	You also have a column called
23	"Addressed by regulation."
24	Do you see that?
25	A Yes.
26	Q And I want to make sure the record
27	is clear as to what you're endeavoring to
28	portray here. That last column, for example,

you say, "not required." 1 2 Are you saying that as of 2019, 3 there was no regulation that required the 4 solution that you set forth in the second 5 column? 6 А That's my recollection. Yes. 7 0 Good. That --8 And it -- I'm sorry. А 9 It would be specific to the DOGGR 10 regulations. Okay? 11 0 Fair enough. Fair enough. Because DOGGR is the primary 12 13 regulator in California as it comes -- visa 14 vi underground storage facilities; correct? 15 MR. GRUEN: Objection, your Honor. 16 Asked and answered. 17 ALJ POIRIER: Overruled. Let's 18 continue. 19 BY MR. LOTTERMAN: 20 Ο All right. 21 And then if you look at the next row, Dr. Krishnamurthy, under "Addressed by 22 23 regulation, "you say, "Yes." But you say, 24 "Included in the latest regulations." 25 Do you see that? 26 Α Yes. Yes. 27 And does that mean that as of 2015, 0 28 and we'll go through this in a minute, there

	March 23, 2021 838
1	was no regulation that pertained to that
2	particular solution, but there is one today?
3	A Yes.
4	Q Okay. And I'm not going to go
5	through all these, but I think that covers it
6	for now. Okay.
7	So let me pull up something a
8	minute. All right.
9	So let's turn to page 231. And if
10	I understand this portion of your report,
11	sir, this is where you lay out the specific
12	mitigation solutions that Blade believes
13	would have mitigated or prevented the primary
14	effect, and that is the uncontrolled release
15	of hydrocarbons for 111 days from the well in
16	question.
17	True?
18	A True.
19	Q All right. So I want to walk
20	through these real quickly. But I'm going to
21	set up kind of a template. And I think once
22	you get the sense of what I want to do, we
23	might be able to knock these of pretty
24	quickly.
25	So solution one set forth on
26	page 231 of the main report is called
27	"Production casing should be cemented to the
28	surface." And I believe that's basically a

1	solution that's pretty self-explanatory.
2	And that is that you believe that
3	for a production casing like the one that
4	ruptured at SS-25, going forward, they should
5	be cemented to surface; correct?
б	A Yes. That's applicable to new
7	wells. That's what we were talking about.
8	Q That was my next question, sir.
9	Because is it possible, feasibly or
10	realistically, to retroactively cement a
11	current well to surface?
12	A Anything can be done. But that is
13	not the intent of that solution. That
14	solution and I believe we are very
15	specific in some part of the report. It is
16	intended for new wells that are drilled and
17	completed.
18	Q All right.
19	A Not for existing wells.]
20	Q All right.
21	(Crosstalk.)
22	BY MR. LOTTERMAN:
23	Q And so this is a template I'm going
24	to kind of walk through with each one of
25	these solutions. Did you find in your
26	investigation whether SoCalGas had violated
27	any existing regulations by the fact that
28	SoCal that SS-25 was not cemented to

Evidentiary Hearing March 23, 2021 840 1 surface? 2 А No. 3 0 Same answer with industry 4 standards? 5 That's correct. No industry Α 6 standards. yeah; that's correct. 7 What about prevailing industry Ο 8 practices? 9 Α Yeah. That's a tougher one. I don't think so. 10 There are a lot of wells 11 particularly in the U.S. But the danger in me trying to compare this is this is -- the 12 13 wells have different applications. 14 But you are correct. It is not a 15 prevailing industry practice. 16 0 All right. And did you see whether 17 the SS-25 not be cemented to surface, did it 18 violate any of SoCalGas's internal policies? 19 No, it did not. Α 20 0 But you do make a recommendation 21 here. This is your Solution 1. You do make 22 a recommendation that if this solution were 23 to be implemented, it could either mitigate 24 or prevent a leak like SS-25; correct? 25 Α Correct. 26 Ο All right. Let's go to Solution 2 27 I believe they are, sort of, kind of, and 3. 28 one in the same. And if I read these two

	March 23, 2021 84
1	solutions correctly, what you're saying is
2	one of your mitigative measures going forward
3	that could either mitigate or prevent a leak
4	like SS-25 is if an operator were to conduct
5	periodic wall thickness inspections; true?
6	A Yes.
7	Q Okay. And, again, to set the table
8	here so the Commission understands exactly
9	what's going on, I believe we established
10	yesterday that at least at the Aliso Canyon
11	facility, DOGGR required only annual temp
12	logs as part of its mechanical integrity
13	testing; true?
14	A True.
15	Q All right. And we also, I believe,
16	established that those that to do a casing
17	inspection for wall thickness can only be
18	done during a workover; correct?
19	A I would say that a bit differently.
20	A casing inspection such as what you're
21	highlighted there, Solution 2 and Solution 3
22	requires a workover where you pull the tubing
23	under the well.
24	Q Okay. I appreciate that
25	clarification. So bottom line is: As of
26	2015, there were no regulatory requirements
27	for periodic wall thickness inspections to be
28	done in California; correct?

Evidentiary Hearing March 23, 2021 842 1 That's correct. А 2 0 And there was no industry standard; 3 correct? 4 А That's correct. 5 Was it a prevailing practice to do 0 that? 6 7 Α I don't believe so. Okay. And did you see any internal 8 Q 9 SoCalGas policies that were violated by 10 SoCalGas not conducting periodic casing 11 inspections? Can I clarify that a little bit 12 Α both of them a little bit? My previous 13 14 answer and the new question that you're 15 asking me? 16 No. 1 there was no internal policy. 17 Just to clarify, there was no internal policy 18 of SoCalGas required to do casing wall 19 thickness inspections. 20 However, pre-2015 SoCalGas -- in 21 the 2010 -- post-2010 SoCalGas did do a lot of casing inspection with different tools. 22 23 They used HRVRT or various tools. So I don't 24 want to say there was no prevailing -- there 25 was a practice. All SoCalGas and other 26 operators doing it. 27 But was there a regular 28 requirement? No. No internal policy

	Marcii 23, 2021 843
1	requirement or emissions requirements.
2	Q All right. Thank you. But I take
3	your solution here to say that
4	notwithstanding what was done before, that
5	going forward you believe if this solution
6	requiring wall thickness inspections were to
7	be put into place, it could mitigate or
8	prevent the leak like we saw at SS-25; true?
9	A That's correct. True.
10	Q All right. I want to take a little
11	detour a minute, and then we'll go back to
12	these solutions.
13	I saw a lot of I remember we
14	discussed a lot I think that I asked some
15	questions and I think a couple of other
16	lawyers in Houston asked you questions.
17	We asked you questions about the
18	accuracy of wall thickness logging tools in
19	the late 1980s. Do you remember that?
20	A Yes, I remember that. I don't
21	recall it from the deposition, but I remember
22	a data request we answered where we did a
23	more detailed study but, yes.
24	Q And the old technology that
25	SoCalGas attempted to implement or apply in
26	the 1988 timeframe was a technology called
27	"Vertilog," right?
28	A Yes.

	March 23, 2021 844
1	Q And its more updated cousin today
2	is called HRVRT; is that right?
3	A That's correct.
4	Q Okay. And if I understand your
5	reports correctly, sir, Blade did not perform
6	a formal review of the reliability of various
7	casing inspection tools circa late 1980s or
8	even 1990s; correct?
9	A Again, we did a review of what was
10	available in the literature as part of one of
11	the data request there. But we are aware
12	that these technologies are, you know, were
13	done in the 60s. And they go through various
14	generations of tools and they improve in
15	accuracy and tolerances over time; that's
16	correct.
17	Q Right
18	(Crosstalk.)
19	Q Excuse me.
20	A Sorry. I apologize. I spoke over
21	you. But they evolve over time. The
22	software evolves, the sensor evolves, the
23	interpretation technology evolves. So
24	absolutely there is improvement in these over
25	time.
26	Q Right. I guess what I was getting
27	at is I didn't see a separate report. Like I
28	have about 9 or 10 or 11 of them here. I

1	didn't see a separate report where Blade
2	performed a formal review and laid out its
3	findings on the reliability of casing
4	inspection tools circa 1988. Is that fair?
5	A That is fair. And there are
6	reasons for that. I give you context for
7	that. Because we considered the tools in
8	even in the late '80s, early '90s are
9	reasonably indicative of issues. It may not
10	be as accurate as a 2018 or 2019 tool.
11	It gave tolerances that were
12	adequate for our purposes. That's kind of
13	why we didn't end up trying to interpret how
14	would that have been different.
15	So it is more to say a wall
16	thickness tool, it was still high resolution
17	in the late 80s, early'90s, would give
18	indications of wall loss.
19	Q Right. So I understand that. But
20	I'm sort of focusing on the reliability
21	aspect of it. So let me ask my question a
22	little differently, and let me make sure I
23	understand your answer.
24	Did Blade perform a formal review
25	of the reliability of the casing inspection
26	tools available before 2000?
27	A We did not do a formal study, no.
28	We responded to a data request. That's the

1 extent of which we did it. 2 0 And was it your view at least in Houston a year and a half ago that you didn't 3 4 know how reliable that Vertilog technology 5 was in 1988? No, we did know. We did believe it 6 А 7 was reliable. It -- we knew it was not as 8 good as the current tools. But in the late '80s, early '90s, 9 10 the tool was still considered adequate for 11 the purposes of what we were trying to do. 12 So that is why we didn't pursue that angle or 13 issue or challenge to our interpretation. 14 Would you pull up --Q 15 (Crosstalk.) 16 Q Excuse me? 17 А Sorry. I'm attempting to explain 18 what we did so. 19 Mr. Moshfeqh, would you MR. LOTTERMAN: 20 pull up the deposition of Dr. Krishnamurthy, Volume I. Which I believe is Exhibit-158. 21 22 If we've got SoCalGas-158. And can you turn 23 to page 330 and highlight lines 19 24 through 25. 25 ALJ POIRIER: We'll go off the record until the document is ready. 26 27 (Off the record.) 28 ALJ POIRIER: We will be back on the

```
Evidentiary Hearing
March 23, 2021
```

1 record. 2 Please continue, Mr. Lotterman. BY MR. LOTTERMAN: 3 4 So, Dr. Krishnamurthy, this is 0 5 Volume I which was November 20, 2019, of your 6 deposition. And you were asked the following 7 question: 8 Can Vertilog technology in 1988 9 detect wall thinning in the outer diameter of a well casing prior to 10 11 a leak? I objected. And would you read your 12 13 answer into the record, sir. 14 Α Says: I don't know whether it -- how 15 16 reliable it is. It did detect 17 corrosion. 18 That's correct. See reliability, 19 Mr. Lotterman, is a quantitative number. 20 Reliability means to me -- someone like me you say "reliability," and we still don't 21 know. Reliability means what is my 22 23 confidence level? So when I say, "A tool is 24 reliable." In a quantitative fashion that's 25 what I implied here. 95 percent confidence with a 80 percent certainty that it can 26 27 detect corrosion within a certain tolerance. 28 Even today I don't know what those

1	tools did in 1988. That is what I implied
2	there. Now that is what reliability means to
3	me. Reliability is a quantitative number.
4	That is what I implied here.
5	Now, can it detect wall loss? Can
6	it detect wall loss with some tolerance?
7	Now, the next question you ask is
8	how reliable it is. Even though I don't have
9	an exact answer, but it can detect wall loss.
10	It did detect wall loss in the past. So that
11	is how I would phrase it.
12	Q All right. But be clear, and I
13	think you may have misread your answer so let
14	me just put it in the record so we're clear.
15	To the question:
16	Can Vertilog technology in 1988
17	detect wall thinning in the outer
18	diameter of a well casing prior to
19	a leak?
20	Your answer was:
21	I don't know whether it how
22	reliable it is. It did detect
23	corrosion.
24	Did I read that correctly?
25	A That's correct.
26	Q Okay. And if I understand some of
27	your other testimony in the deposition, you
28	definitely believe that the Vertilog

1 technology in 1988 was not as reliable as it 2 is today; correct? 3 I would definitely -- yeah, Α 4 absolutely. More reliable today. 5 Okay. Good, good. In fact what 0 6 tool -- when you were performing your RCA, 7 what casing inspection tool did you choose to 8 use? 9 А We used the USIT tool and we also used I believe the HRVRT. I don't remember. 10 11 I don't recall. I have to go back to my notes. We did use the Vertilog tool for the 12 13 11-and-three-quarter inch where it was not in 14 fluid. So I don't recall. I know we used USIT. I don't recall whether we used the 15 16 magnetic tool for the casing inspection. I don't remember. 17 18 I'll tell you what, let's do this, 0 19 and, your Honors, this might be a good time 20 for a break. Dr. Krishnamurthy, would you mind 21 22 confirming what tool you used? What Vertilog-sort-of-variation of tool you used 23 24 during the root cause analysis? And you can 25 let us know after we come back from the 26 break? 27 Α Sure. 28 ALJ POIRIER: I think that's a good

Evidentiary Hearing March 23, 2021 850 1 idea. We will take a 15-minute break until 2 11:19. Thank you. 3 Off the record. (Off the record.) 4 5 ALJ POIRIER: We'll be back on the 6 record. 7 Good morning. We're just returning from a mid-morning break. We will continue 8 9 with the cross-examination of 10 Dr. Krishnamurthy by Mr. Lotterman. 11 Mr. Lotterman, if you could restate the question, I think it would be helpful for 12 13 the record just at this point. 14 Thank you. 15 MR. LOTTERMAN: Glad to, your Honor. 16 0 I guess the question I was asking 17 you to research, Dr. Krishnamurthy, during 18 break was what tool Blade used during the RCA 19 to inspect wall thickness on casings? 20 Α You can hear me now? I'm sorry. Т 21 was on mute. 22 We used a lot of tools, 23 Mr. Lotterman. We used a Vertilog or a 24 magnetic tool called the HRVRT tool. We also 25 used ultrasonic. I'm talking specifically to wall thickness, okay? Not the other tools. 26 27 The other one we've used is ultrasonic. 28 So there are two technologies for

March 23, 2021 85.
wall thickness measurement: Magnetic and
ultrasonic. The Vertilog is a magnetic
it's a magnetic equivalent from the 1988 to
mid '90s. And it went through various name
changes and different companies.
So the magnetic tools are good at
finding small pits. Corrosion that is
really, really small. And it will also find
large. But it won't be very good at
characterizing the large ones very clearly.
Whereas the USIT log or the
ultrasonic log will do a very good job
mapping the wall thickness especially for
larger corrosion sites. So for the RCA, we
used both.
Q Got it. And for I believe this
might come up later on, and I believe those
technologies are called both MFL and USIT,
U-S-I-T; is that correct?
A MFL is correct. Its Magnetic Flux
Leakage. But USIT is a propriety tool by
Schlumberger. So the way I would call that
is an ultrasonic tool. USIT is a
Schlumberger ultrasonic tool. I just want to
be clear.
Q Understood. Thank you for that
clarification.
By the way when you said you used a

	March 23, 2021 852
1	Vertilog as part of the RCA, are you saying
2	you used a 1988 vintage of the Vertilog in
3	your 2017 RCA?
4	A No. Let me clarify. The
5	nondestructive evaluation principle was
6	magnetic flux leakage, which is common to
7	Vertilog and the HRVRT in 2017. That's
8	really all I meant to say.
9	Q Right, right. So just to be clear
10	to the extent you have an old vintage 1988
11	Vertilog sitting on a shelf at Blade, you
12	didn't fly that out to Los Angeles and use it
13	as part of your root cause analysis; correct?
14	A No.
15	Q All right. Let's turn to Solution
16	4, Dr. Krishnamurthy, on page 231 at the
17	bottom. And, again, I'm going to try to move
18	through these as quickly as I can.
19	MR. LOTTERMAN: And, Mr. Gruen, I think
20	you should anticipate that I'll be done by
21	early afternoon, sir, if that helps for your
22	planning purposes at all.
23	MR. GRUEN: Understood. Thank you,
24	Mr. Lotterman. Do you have a bit of
25	precision on a bit more precision on that?
26	MR. LOTTERMAN: My expectation would be
27	to take this through lunch, look at my
28	outline during lunch, and probably go for

1 another hour if that. 2 MR. GRUEN: Understood. Thank you, 3 sir. BY MR. LOTTERMAN: 4 5 All right. Dr. Krishnamurthy, back 0 6 to your report. Solution 4 addresses quote: 7 A risk based well integrity 8 management system should be 9 implemented. 10 Correct? 11 Α Yes. And I don't want to get into the 12 0 13 details of risk management plans because 14 we're going to talk about some of the current 15 regulations in minute. But basically I get 16 the sense what you're looking for here is a 17 risk management plan that assesses risk and 18 that assesses both the probability of failure 19 with the consequence of failure. Classic risk analysis; correct? 20 21 А Yes. All right. And in your description 22 Ο 23 here on the bottom of page 231, you cite both the Transmission Integrity Management Program 24 25 which, I believe is called "TIMP." And the 26 Distribution Integrity Management Program, 27 which I believe is called "DIMP," right? 28 А Yes.

	March 23, 2021 854
1	Q And to be clear, those two
2	programs, TIMP and DIMP, are required by
3	federal regulation; correct?
4	A Yes.
5	Q And as you point in your summary
6	here and it's elsewhere as well, but let's
7	stick with the summary because I think it's
8	in a more cogent form.
9	You point out that notwithstanding
10	your requirements under transmission and
11	distribution assets, there was no comparable
12	regulation in place for storage; true?
13	A Yes.
14	Q All right. So if I were to ask
15	you: Did Blade find that SoCalGas had
16	somehow violated existing regulations or
17	standards regarding the implementation of a
18	risk management plan, what was your answer?
19	A I apologize, Mr. Lotterman. Can
20	you repeat the question?
21	Q Probably not. But I will try to
22	restate it. If I were to ask you whether
23	SoCalGas had violated any regulations or
24	standards by its not having a fully up and
25	running integrity management system in 2015,
26	would your answer be no?
27	A Yes. They did not violate
28	anything. There was no such regulation in

	Maich 25, 2021 655
1	place.
2	Q And in fact in your brief
3	description here, you observe that
4	notwithstanding the absence of any
5	requirements or standards, SoCalGas in fact
6	launched an integrity management system for
7	storage in 2014; true?
8	A Yeah. Again, I have to be careful
9	how I say this. There was a general rate
10	case submission in 2014 for I believe 2016.
11	And there SoCalGas articulated a SIMP
12	program. Recognizing that a proactive
13	integrity management was necessary for
14	underground storage wells and that other than
15	a reactive program. And that was what we are
16	referencing here in this statement that you
17	have on the screen.
18	Q Okay. And I think that's
19	consistent with what you wrote elsewhere and
20	that is that basically SoCalGas filed
21	testimony in 2014 pertaining to the 2016
22	general rate case seeking regulatory approval
23	to implement the program; right?
24	A That's correct.
25	Q Okay. And in fact SoCalGas was
26	waiting for regulatory approval of that
27	program when the leak occurred in October of
28	2016; true?

85	6
----	---

1	A I believe so. I'm not aware of the
2	details of what happened. So, yes. That
3	sounds about right.
4	Q All right.
5	(Crosstalk.)
6	A Go ahead.
7	Q Fair enough, sir. And I appreciate
8	your clarification there. Was the program
9	that SoCalGas launched in 2014 proactive?
10	A Yes, it was proactive. And I
11	believe we have discussed it somewhere in our
12	report. I don't remember where. But, yes.
13	Q Okay. And was that program
14	pioneering in the gas storage industry?
15	A Yes. And I it predated API
16	1120(c) and 1121 I believe. We articulate
17	that in some place in the report. I
18	apologize. I don't remember where.
19	Q And that's where I was going next,
20	Dr. Krishnamurthy, because I think part of
21	your analysis that you set out in the report
22	is not only to identify what, if anything,
23	was in place from a regulatory regime at the
24	time of the leak. But you also from time to
25	time point out what has been done since the
26	<pre>leak; correct?</pre>
27	A Yes.
28	Q And in this context in your

	March 23, 2021 857
1	proposed Solution 4 to require underground
2	storage operators to have risk based well
3	integrity management systems, that approach
4	is now a federal regulation through PHMSA;
5	correct?
6	A I believe so. So I have not
7	federal regulations. So I will have to look
8	at it to confirm that. But if you say so,
9	Mr. Lotterman, I haven't looked at it lately.
10	I apologize.
11	Q Is it fair to state, sir, that API
12	1171 was put into place in 2018 at a minimum?
13	A Yes, that's definitely true. It
14	was part of our review.
15	Q And obviously the regulation
16	we'll see what the regulation says so you
17	don't need to go there.
18	Okay. Let's go to Solution 5 and
19	let's plow through this. So Solution 5 is in
20	the middle of page 232 of your main report,
21	and it's entitled "Conduct a Casing Corrosion
22	Study." Do you see that?
23	A Yes.
24	Q Okay. I want to ask you about the
25	first actually the second line in that
26	narrative. First of all you say:
27	Storage wells with good casing and
28	tubing design can last for long

1	periods and operate safely.
2	I think that's what we talked about
3	earlier where age may not be or certainty
4	wasn't a correlation at Aliso Canyon. And in
5	fact old wells if managed properly can
6	operate a long time safely; true?
7	A Yes, that's true.
8	Q And then you state quote:
9	Casing corrosion is not uncommon
10	and its existence does not
11	automatically mean that the casing
12	is going to fail or is unsafe.
13	Do you see that?
14	A Yes.
15	Q And in fact you say that elsewhere
16	in the report on page 221. But we don't need
17	it. It's pretty much the same thing.
18	So I interpret that statement as
19	saying, "Hey, reader. You need to understand
20	something. Corrosion cannot be eliminated
21	from a gas storage field."
22	Is that correct?
23	A I'm thinking. Yeah. Elimination
24	is different. Mitigation is different to me.
25	Elimination meaning removing everything that
26	causes corrosion. That is not practical. So
27	it may have it will occur. So the issue
28	is how do you mitigate against it and manage

Evidentiary Hearing March 23, 2021 859 1 it? 2 0 That's right. 3 А Eliminate is not a word that comes 4 to mind. 5 You're right. And not only is it 0 6 not practical, it's really not possible, is 7 it? 8 I mean, you've got 116 wells at 9 Aliso Canyon over a six square mile area, you 10 know, being dug a mile and a half deep into 11 the cap rock of a gas storage facility. 12 You're going to have corrosion somewhere at 13 that facility; true? 14 А Yes. 15 All right. And I think what the Ο 16 point you just tried to make is the point of 17 your Solution No. 5 was you want that 18 corrosion studied to develop an understanding 19 of why it occurs and what potential measures 20 can be taken to mitigate either its effects 21 or its consequences; true? 22 That's correct. Α 23 All right. So in light of that --0 24 and I assume you're talking about a formal 25 study? 26 Α Again, formal is separate. A true 27 study where the vision I would have in this 28 -- I'm talking about this particular topic.

Г

1	
1	Theoretically many of these may go into a
2	risk management program. But the intent here
3	is to understand what may be causing the
4	corrosion if there is a corrosion factor in
5	each well. And it required a far more
6	detailed dive than we did as part of this
7	work. So that is what we implied by this
8	particular solution.
9	Once you know what may be causing
10	it, then you can monitor it and mitigate it
11	at the right time. You don't have to
12	mitigate all of them today. Some of them may
13	take another 30 years. You can plan your
14	mitigation appropriately. That is where the
15	value of something like that comes in.
16	Q Understood. And if I understand
17	your kind of the scope of your technical
18	root cause analysis, that your investigation
19	didn't delve into whether for example
20	SoCalGas employees were discussing corrosion
21	et cetera on an informal basis; true?
22	A That's correct.
23	Q And likewise your investigation
24	wasn't for example investigating whether
25	SoCalGas was briefing DOGGR on an annual
26	basis as to the corrosion it was experiencing
27	at its operating facilities; true?
28	A Again, the documents we checked, we

1	didn't see a formal report or a study on this
2	topic. So, yes; that's correct.
3	Q Right. Okay. But as far as
4	communications between and among employees or
5	communications between SoCalGas and it's
6	regulator, DOGGR, you didn't do a deep dive
7	on that, did you?
8	A We did not check e-mails
9	communications between SoCal employees,
10	DOGGR, or within SoCal. No, we did not.
11	Q Okay. And
12	(Crosstalk.)
13	A Just to explain just to make sure I
14	give it context, Mr. Lotterman. So our
15	entire work, the entire report, was based on
16	extensive data that we obtained from SoCalGas
17	and from DOGGR records. The main records
18	from general rate case.
19	And we had probably three in-person
20	meetings with SoCalGas teams that is no more
21	than an hour or two hours long. But we
22	depended on formal written documents that
23	detailed anything. That was the basis of our
24	work as we have put in the report.
25	Q Thank you for that clarification.
26	Okay. So to kind of wrap up this solution
27	and then we'll move on. Is it accurate to
28	say that in investigating this Solution

	Marcii 23, 2021 802
1	No. 5, Blade did not find any instances where
2	a casing corrosion study was required by
3	regulation or industry standard?]
4	A Yeah. It was not required by
5	regulations. There's no industry standard
6	requiring it.
7	Q Okay.
8	A That's correct.
9	Q And do you know if sitting here
10	today the underground storage industry is
11	required to conduct casing corrosion studies
12	as you propose in Solution 5?
13	A I don't recall actively at the
14	11.17, so that is the only standard that is
15	there other than the regulations. I don't
16	remember whether they require that,
17	Mr. Lotterman.
18	Q Okay.
19	A I'll have to refer to it.
20	Q Okay. The other thing I was going
21	to ask you is sort of a clarification and
22	then we'll move on. Do you know elsewhere in
23	the main report and I'm thinking at
24	page 17 in particular, and this was under the
25	fact that there was no internal policy on
26	wall thickness inspections.
27	Do you know what, Mr. Moshfegh?
28	Why don't we just pull this up a minute.

1	It's page 217. In fact, the 5th or 6th line
2	from the bottom that begins "The MIT
3	monitoring system did find casing leaks on
4	other wells in the fields which were
5	successfully repaired or remediated."
6	Do you see that, Dr. Krishnamurthy?
7	A Yes.
8	Q Is that an accurate statement from
9	Blade?
10	A Yes. It's in the report.
11	Absolutely.
12	Q Okay. And is it fair to say that
13	when SoCalGas saw an issue with one of its
14	wells; i.e., especially a casing leak, it
15	took action?
16	A Yes.
17	Q Okay. All right.
18	A By action, I mean mitigated it
19	right away.
20	Q Right.
21	A Or removed.
22	Q All right. Okay. Let's move to
23	Solutions 6 and 7 because I believe they're
24	sort of the same ilk. These address Solution
25	6. You say, "Conduct a Casing Failure
26	Analysis." And Solution 7 is called,
27	"Regulations Should Require a Level 1" and
28	then in parens you say, "(Per API RP 585)

863

Evidentiary Hearing March 23, 2021 864 Analysis of All Failures." 1 2 Do you see that? 3 Α Yes. It kind of, you know -- it kind of 4 0 5 cut into the chase on this one, because I've read this a couple times. It's my sense, 6 7 sir, that you're saying bottom line prospectively casing failures need to be more 8 9 formally investigated; is that right? 10 Α That's correct. 11-1 or a casing 11 failure analysis is really attempting to 12 understand and recognizing you do not have 13 all the data, you don't have -- you may have 14 a log analysis, you may not, or you may want 15 to conduct a log analysis, you may want to 16 run a camera depending on what the problem 17 is. 18 It organizes the -- it gets a bit 19 organized and systematic understanding if 20 there is a pattern to all these failures. Τf there is a pattern, then the mitigation is 21 22 easy and you can execute a mitigation on wells that have not exhibited that problem. 23 24 So that was the intent of 6 and 7 there. 25 And I believe you say in these 0 26 narratives -- you don't sort of lay out a 27 specific type of investigation that's 28 warranted or that should be pursued, but you

1	say really the type of investigation should
2	be commensurate with the risk and the
3	consequences involved; is that right?
4	A Absolutely. Yes. That's correct.
5	Q All right. All right. So, so just
б	to be clear and I think you mentioned this
7	earlier, but let's put it on the record
8	you're not advocating under Solutions 6 and 7
9	that gas storage facilities, including the
10	utilities, undertake full-blown RCAs every
11	time they find a casing failure, are you?
12	A No, we are not. We are very
13	specific about it. We discussed this in
14	another portion of the report, I believe.
15	What we are suggesting is when there is a
16	casing integrity failure, a compromised
17	casing integrity, it is important to
18	understand why. And probably 80, 90 percent
19	of the time these will require a Level 1 or
20	some formal process. That's what we're
21	proposing.
22	Q And when you talk about Level 1,
23	that's one of the levels that's set out in
24	API RP 585; right?
25	A Yes, we didn't want to describe a
26	Level 1 from a Blade perspective. We were
27	looking for standards that existed and we
28	found a standard and we felt that that

```
Evidentiary Hearing
March 23, 2021
```

866 1 adequately and appropriately described it. 2 (Crosstalk.) 3 The regulator or SoCal THE WITNESS: may desire mediation of that. This is more 4 5 of our suggestion. 6 BY MR. LOTTERMAN: 7 0 And what does API stand for? American Petroleum Institute 8 А 9 Recommended Practice, RP, Recommended Practice 585. 10 11 0 And that is not an industry 12 standard applicable to storage wells, is it? No, it is not. 13 А 14 Okay. And, in fact, I saw Q 15 elsewhere in your report -- and I can pull it 16 up -- not in your, I'm sorry, in one of your 17 data responses. You said basically -- and I 18 have that -- I think this is a quote -- "As 19 of the date of the incident, there were no 20 documented industry standards related to investigation of casing failures and gas 21 storage operations." 22 Is that true? 23 24 If you said it, it must be true. Α Т 25 don't remember the dates, but if we answer it 26 that way, Mr. Lotterman, that is correct. 27 0 Okay. ALJ POIRIER: This is ALJ Poirier. 28

```
Evidentiary Hearing
March 23, 2021
```

	March 23, 2021 86
1	Mr. Lotterman, do you have a
2	specific document that references that? I
3	think that would be helpful.
4	MR. LOTTERMAN: I came to the same
5	conclusion, your Honor.
6	So, Mr. Moshfegh, if you would pull
7	up SED Exhibit 215, please.
8	THE WITNESS: I apologize. I can't
9	remember some of these.
10	BY MR. LOTTERMAN:
11	Q Doctor, it's Victoria's got the
12	right idea, and that is instead of pressing
13	you to embrace something that you may not
14	have a clear recollection of, it's best to
15	pull up the document.
16	Let's go to page 17, Mr. Moshfegh.
17	Let's get it in the record and we can move
18	on. This should be on page 17.
19	ALJ POIRIER: And, Mr. Lotterman, if
20	you could read the Bates number in the bottom
21	right-hand corner as well, that will be
22	helpful for the record.
23	MR. LOTTERMAN: Thank you, your Honor.
24	I will. I want to make sure before I read
25	the Bates number we've got the right page.
26	Mr. Moshfegh, is that SED
27	Exhibit 215?
28	ALJ POIRIER: Let's go off the record.

Evidentiary Hearing March 23, 2021 868 (Off the record.) 1 2 ALL POIRIER: On the record. 3 Please continue, Mr. Lotterman. BY MR. LOTTERMAN: 4 5 So let us -- let's see. So that 0 6 is -- we are looking, Dr. Krishnamurthy, at 7 SED Exhibit 215. What it is, is it's your 8 responses to the SED's Data Request 69. The 9 Bates number of the initial document is 295, 10 SED SUR-REPLY 00295. 11 Let's go to page 17, Mr. Moshfegh. If you would pull up the quote in question. 12 13 There it is. All right. 14 So, Dr. Krishnamurthy, if you look 15 at Section 2.2, Question 2, the question on 16 page 9 states: "As of the date of the 17 incident, there was no documented industry 18 standard related to investigation of casing 19 failures in gas storage operations." 20 Do you see that? 21 А Yes. And I agree with that 22 conclusion. Yes. Absolutely. I apologize, I couldn't recall -- I didn't recall API 585 23 24 so that's why I was struggling. Okay. I'm 25 fine now. Before we leave this exhibit, in 26 0 27 Section 2.2.1(a) it says, "Does Blade agree with the statement?" 28

	Evidentiary Hearing March 23, 2021 869
1	And what was your answer?
2	A Yes, we agree.
3	Q All right. So to wrap up this
4	piece, basically, there were no existing
5	regulations or standards that required
6	SoCalGas to conduct casing failure analyses
7	as you set out in Solutions 6 and 7; is that
8	accurate?
9	A Yes, that is accurate.
10	Q Let's go to Solution 8. Solution 8
11	is entitled, "Well Specific Detailed
12	Well-Control Plan."
13	Do you see that?
14	A Yes.
15	Q I'm not going to dwell on this one,
16	sir, but I'm going to ask you just a couple
17	questions. Was Blade able to identify any
18	regulations or standards in place as of
19	October 15 that required well-specific
20	detailed well-control plans?
21	A No.
22	Q And is it safe to say that,
23	therefore, Blade did not find that SoCalGas
24	had violated any existing regulations or
25	standards as of the incident?
26	A Yes, there was no violation. No,
27	we did not.
28	Q And do you know if your Solution 8

870	8	7	0
-----	---	---	---

1	has been adopted by either California
2	regulators or federal regulators as of today?
3	A I don't know. I'm not aware
4	whether it has or not been. Again, it was
5	I want to repeat. This report was meant for
6	Aliso Canyon. It was meant as solutions for
7	Aliso. It was never meant beyond that, it
8	was not our vision for this.
9	Q Fair enough. Next solution is the
10	one we talked about I think when we were
11	talking about the round trip you took with
12	the root cause analysis, and that is
13	Solution 9, "Tubing Packer Completion-Dual
14	Barrier System."
15	Do you see that?
16	A Yes.
17	Q And, again, we don't need to
18	re-plow this field, but basically what you're
19	saying there is that going forward, injection
20	and withdrawal should be done only through
21	the tubing, and your root cause analysis
22	says, "And if that were done in the future,
23	an incident like SS-25 where the production
24	casing burst and a leak occurred would likely
25	not occur"; correct?
26	A Yes.
27	Q Okay. And I believe we also talked
28	about the fact that as of 2015 just before

	March 23, 2021 8/1
1	the leak, it was not an industry practice to
2	have single barrier or excuse me to
3	have dual barrier wells; correct?
4	A Yes, that's correct.
5	Q So to wrap this one up, is it safe
6	to say that as of 2015, SoCalGas did not
7	violate any existing regulation or standard
8	by operating most of its wells at Aliso
9	Canyon using a single barrier?
10	A There were no standards or
11	regulations in 2015.
12	Q Thank you. My apologies.
13	Do you know whether SoCalGas
14	currently operates any of its wells in Aliso
15	Canyon on single barrier?
16	A I don't believe so because we
17	reviewed the current practices. I believe we
18	addressed that somewhere in the report.
19	That's why I know.
20	Q So as far as you know and as far as
21	I know, you are correct. As of today, there
22	is not a single active well at Aliso Canyon
23	that does not have the dual barrier system
24	that you identify on page 233 of the main
25	report; is that right?
26	A That's correct, that's my
27	understanding.
28	Q Have regulations been put into

	March 23, 2021 872
1	place in California to require dual barriers
2	on gas storage wells?
3	A I believe that was part of the
4	DOGGR regulations. I have to again I'm
5	pretty sure it is part of the DOGGR
б	regulations. I don't remember. I'd have to
7	look.
8	Q It's okay. And are you aware,
9	Dr. Krishnamurthy, whether other operators in
10	California, including PG&E, are currently
11	running their wells with single barrier?
12	A No, I am not aware. I am not
13	familiar what they're operating.
14	Q Let's turn to Solution 10 shown at
15	page 233 as well right in the middle. It
16	says, "Implement Cathodic Protection as
17	Appropriate." I don't want to belabor this
18	one either, but under that solution, you give
19	sort of a thumbnail sketch of what that
20	entails, and I actually believe you have a
21	more robust discussion in one of your
22	sub-reports.
23	But I want to just sort of tease
24	out a couple of thoughts here. One is that
25	putting cathodic protection on a field where
26	there are other wells and other operators
27	makes it complicated, doesn't it?
28	A Yes. It is complex.

872

Q And, in fact, there's a
possibility, which may not be intuitive
there's a possibility that by doing so, you
could actually encourage corrosion on other
nearby wells; true?
A Yeah, if it is inappropriately
designed, you know, it has to be there are
specialists in this area, and I'm talking in
the area of cathodic protection. It has to
be appropriately designed. It is not
straightforward, but it's done. It's done in
some cases where we have where there are
surface casing access to water. That's what
you're looking for.
Q And is it also true that to put
it very bluntly as well CP will not work
on all wells?
A Again, I want to be very clear.
The CP we are talking about here is only for
the outermost surface casing where there is a
cement issue, which is in the second sentence
there. You have either cement isolation or
there is access to water. So that is the
situation we are talking about. We are not
talking about production casing. We are only
talking about surface casing that is shallow.
By shallow, I mean shallow related to the
total depth of the well.

]	
1	Q Understood. Thank you for that
2	clarification. To sort of follow up on that
3	thought, I think you just said it, but let me
4	make sure we're clear on this as well. Is it
5	your view that on a well like SS-25, to the
6	extent you could put cathodic protection on
7	the outside surface casing, you could not
8	technically also put it on the inside
9	production casing?
10	A That's correct.
11	Q All right. And let's wrap this one
12	up as well. Did Blade identify any
13	regulations or standards in place at time, in
14	the time of October 2015, that required
15	SoCalGas to have cathodic protection on any
16	of its wells, including SS-25?
17	A As we articulated in the report,
18	there are no regulations. There are
19	standards that discuss, it may discuss CP,
20	but it is not a requirement. It is more of
21	if you apply CP, what do you do, how do you
22	apply CP.
23	Q Got it. All right. Let's go down
24	through Solution 11. I think we have just
25	two more to go and then maybe we could break
26	for lunch.
27	Solution 11, Dr. Krishnamurthy,
28	says, "Ensure Surface Casings Are Cemented to

	March 23, 2021 875
1	Surface for New Wells." And maybe to cut
2	this one short, this is for new wells only;
3	correct?
4	A That's correct, yeah.
5	Q All right. SS-25 was not a new
6	well; right?
7	A No, it was not.
8	Q So just cutting to the chase here,
9	is it fair to say that as of October 2015,
10	SoCalGas was not violating your recommended
11	Solution 11 at SS-25?
12	A No.
13	Q "No," it was not correct or, "no,"
14	there was no violation?
15	A Sorry. It was consistent with
16	regulation and SoCalGas was cementing surface
17	casing to surface.
18	Q All right. Thank you. That leaves
19	one more solution. And I got a bone to pick
20	with you on this one, but it won't take long.
21	Basically your final solution is "Well
22	Surveillance Through Surface Pressure" and in
23	parens you put, "(Tubing and Annuli)."
24	Do you see that?
25	A Yes.
26	Q And I don't want to get into a
27	whole lot of detail about this because I
28	don't think it's important, at least for my

purposes, but what you are saying here
basically is there is value in putting or
having realtime pressure measurements on
wells like SS-25 so that you can constantly
monitor both the tubing, the production
casing, and the surface casing pressures and
provide better insights as to whether you
might have a leak, that type of thing.
Is that a gross but accurate
summary?
A Yes, that's an accurate summary.
Q Okay. And, in fact, SoCalGas was
in the process of implementing realtime
pressure monitoring systems at its facilities
before the incident; true?
A I don't recall that, Mr. Lotterman.
I don't remember. But I know that such a
system was installed when we were there.
Q Okay.
A So whether it was considering it
prior, we didn't investigate that, but it
I believe it was being installed or it was
installed during the time we spent at Aliso.
Q Fair enough. Fair enough. And I
believe Ms. Kitson from SoCalGas will be
addressing that later for the Commission so
there's no need for you to go there and I
appreciate that.

	March 23, 2021 87
1	So bottom line on this one is as of
2	October 2015 when the incident occurred, were
3	there any regulations and standards in place
4	that required well surveillance through
5	pressure through surface pressure realtime
6	measurements?
7	A No, there were no regulations that
8	required it.
9	Q The bone I have to pick with you on
10	this one, sir, is I'm not sure what impact,
11	if any, it would have had on addressing the
12	SS-25 leak. And here is why I say that:
13	It's my understanding that on the morning of
14	October 23, 2015, in Blade's view the leak
15	occurred. And, in fact, I believe, if my
16	recollection is correct, within a short
17	amount of time not only did the casing get a
18	hole, as you saw in the pictures, but, in
19	fact, it parted completely.
20	It's my understanding and I
21	believe this is actually set out in your
22	chronology on I'll find the page for that.
23	Yeah, there it is. On page 126 of the main
24	report, that leak was discovered at 3:15 p.m.
25	and that SoCalGas closed the injection header
26	valve 15 minutes later.
27	Do you see that?
28	A Yeah.

1	Q Okay. And then, to make a long
2	story short, SoCalGas worked all night
3	bringing in contractors and the like and
4	attempted to kill the well itself on the
5	morning of October 24, 2015.
6	Is that your recollection, sir?
7	A That's correct, yeah.
8	Q All right. So let me ask you kind
9	of a picky question, but I feel like I should
10	ask it since we've spent so much time
11	together. Why would it matter if that leak
12	were detected at 3:15 in the afternoon or
13	7 o'clock that morning?
14	A Good question. We discussed this
15	quite a bit, as you can imagine,
16	Mr. Lotterman, within Blade as we articulated
17	the solution. This is an important point.
18	The pressure for a production engineer, the
19	tubing pressure, the casing pressure, and the
20	surface casing annuli pressures will
21	immediately tell you in the morning of 23rd
22	that the valve was potentially flowing or it
23	was flowing at 90 or 93 million a day. I
24	forget the exact numbers, so don't quote me
25	on that, but the exact number is in the
26	report.
27	That number will tell you right
28	away that this is a very complex well-control

1	issue. It will define your well-control plan
2	immediately. That is the intent of that. It
3	is it that pressure data you can use,
4	which we discuss in the report, but I don't
5	recall where, but we do this because where we
6	discuss the estimate of flow rates, that that
7	is the value of that pressure. That pressure
8	data on an ongoing basis where if it's a
9	little leak, you know it's a little leak and
10	the reaction can be commensurate with that.
11	If it's 80-, 90-million-a-day leak,
12	the reaction will be commensurate with that.
13	That is the value of that pressure
14	measurement, and that is the reason we put it
15	in the solution.
16	Q One last question and then, Judge
17	Poirier, I think this would be a good time to
18	take lunch.
19	Dr. Krishnamurthy, looking at the
20	12 mitigation solutions that you set out on
21	pages 231 through 233 of your main report,
22	which has been identified as Commission
23	Exhibit 1000, are you aware that SoCalGas has
24	implemented or is in the process of
25	implementing each one of them?
26	A I believe we discussed as part
27	of the same program, I believe SoCalGas had
28	already implemented quite a few of them. I

have not followed up, Mr. Lotterman, to see 1 2 if all of them have been implemented, but I 3 absolutely believe that they would have, 4 yeah. 5 I quess what I was asking -- my 0 6 apologies, Judge. I'm going to do one 7 follow-up question if you don't mind. 8 I guess what I was asking, 9 Dr. Krishnamurthy, have you read, for 10 example, Ms. Kitson's testimony that was submitted in this case? 11 I don't -- I receive -- if we read 12 Α 13 it in context of the DR, I don't recall. I 14 can read it tonight or this evening, but --15 No, sir. I wasn't suggesting 0 No. 16 you do so, and Ms. Kitson will testify on her 17 I just didn't know if you knew of what own. 18 the current status of the measures that 19 SoCalGas are. If you don't, we'll break for lunch and we'll talk to you afterward. 20 21 А I don't recall right away. Thank you, Mr. Lotterman. I will look at it. 22 23 MR. LOTTERMAN: Your Honor, this might 24 be a good time to break for lunch. 25 ALJ POIRIER: Okay. Let's go off 26 record. 27 (Off the record.) 1 ALJ POIRIER: Back on the record. 28

1	While off the record, we were
2	discussing some timing for the afternoon,
3	cross-examination, and witness orders and so
4	we have a better idea of that moving forward.
5	We're going to take a lunch break
6	now until 1:15. And we'll be off the record.
7	(Whereupon, at the hour of 12:06 p.m. a recess was taken until 1:18
8	p.m. a recess was taken until 1.18 p.m.)
9	* * * * *]
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
	PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA
	CALIFORNIA CALIFORNIA

1 AFTERNOON SESSION - 1:18 P.M. 2 * * * * 3 ALJ HECHT: We'll be back on the 4 5 We were off the record for a lunch record. 6 break. 7 So we are beginning the afternoon session on March 23rd of the hearings in 8 I.19-06-016. We are going to pick up where 9 we left off with cross-examination of Witness 10 11 Krishnamurthy by Mr. Lotterman. 12 So, please qo ahead. 13 Thank you, your Honor. MR. LOTTERMAN: 14 RAVI KRISHNAMURTHY, resumed the stand and testified further as 15 16 follows: 17 CROSS-EXAMINATION RESUMED 18 BY MR. LOTTERMAN: 19 Good afternoon, Dr. Krishnamurthy. 0 20 Good afternoon. А 21 All right. I have a couple of 0 22 clarifications, and then I want to turn to 23 the final topic of my examination. 24 Mr. Moshfegh, would you pull up 25 that portion of the main report at page 215, right in the middle of the first long 26 27 paragraph, before Figure 152? 28 And I'm going to ask you to

	Maich 25, 2021 005
1	highlight the following language. It says
2	I think it was the fourth line down:
3	While a cathodic protection
4	system would have provided
5	casing protection to the
6	11-and-3/4-inch casing, it
7	would not have provided
8	(sic) the 7-inch casing
9	inside the 11-and-3/4-inch
10	casing.
11	Do you see that, Dr. Krishnamurthy?
12	A Yes.
13	Q And to, sort of, shift from casing
14	sizes to casing names, are you saying there
15	that while it's possible that a cathodic
16	protection system would have protected the
17	surface casing of SS-25 from corrosion, it
18	would not have been able to protect the
19	production casing from the same?
20	A That's correct.
21	Q All right. Okay.
22	The second thing I was going to
23	mention to you and don't worry, I'm going
24	to go back to your mitigation solutions.
25	But I want to note that I didn't
26	see a solution for annular flow safety
27	systems which I call subsurface safety
28	valves, but you prefer to call annular flow

	March 23, 2021 884
1	safety systems.
2	And, I guess, my question to you
3	is, why was that not included as a potential
4	mitigation solution in your root cause
5	analysis?
6	A Yeah. We studied and I don't
7	have the I believe we have a supplemental
8	report or some discussion of that system. We
9	did look at it. It was as we went through
10	the well files, it was it was installed in
11	1978, '79. And then there was some issues,
12	it was removed.
13	That technology in the oil patch
14	has never been successfully applied. There
15	is some indication that there is some
16	technologies, but we didn't find any
17	(Audio interruption.)
18	(Court reporter clarification.)
19	ALJ HECHT: We'll be back on the
20	record. We went off the record, once again,
21	due to technical problems with our telephone
22	line. I appreciate everybody's patience. I
23	believe Mr. Krishnamurthy was in the middle
24	of his response.
25	And I will say, Mr. Krishnamurthy,
26	do you want Mr. Lotterman to repeat his
27	question? Or can you pick up about where you
28	left off?

1	THE WITNESS: I can pick up. I can
2	pick up roughly where I left off.
3	ALJ HECHT: Great. Thank you very
4	much. And you can err on the side of
5	restating anything that you think might have
6	been missed, based on the update the court
7	reporter gave us before we went back on the
8	record.
9	THE WITNESS: Thank you.
10	So the annular surface systems or
11	subsurface safety valve is another annular
12	safety valves were installed in '79. And I
13	believe there were some issues with it, and
14	it was removed in '80. We researched it
15	quite a bit. We attempted to understand what
16	it's supposed to look like. And we are quite
17	familiar with subsurface valves that are
18	commonly used in the oil patch, especially in
19	offshore wells and some land wells, depending
20	on what application they are on. And that
21	technology is highly evolved and used
22	commonly.
23	However, the annular safety system
24	that was being considered for Aliso was not
25	viable, necessarily, in '80. And we didn't
26	see its viability in the period we were
27	looking at. And so we didn't see it as a
28	solution or as a root cause of the problem.

1	Because that technology was not where it
2	needed to be to be an effective solution,
3	perhaps, even at least in 2019 when we
4	wrote the report. That is why we didn't have
5	it as part of our root causes. It didn't fit
б	the explanations it didn't fit the
7	solutions we were looking for.
8	BY MR. LOTTERMAN:
9	Q And is it safe to say, Dr.
10	Krishnamurthy, that in light of the
11	infeasibility or impracticability of those
12	type of safety systems in gas storage wells,
13	that there were no regulations in place that
14	required SoCalGas to have them in place?
15	A I don't believe DOGGR had any
16	regulations. That is correct.
17	Q All right. Thank you. All right.
18	Let's oh, by the way, when you
19	say, "annular flow systems," are you talking
20	about a valve that would be able to somehow
21	block the flow of gas between the tubing and
22	the production casing?
23	A Yes, that is
24	Q Okay. And is that
25	(Crosstalk.)
26	BY MR. LOTTERMAN:
27	Q Excuse me.
28	And is that the challenge visa vi

oil production wells, where they are 1 2 typically flowing up one pipe sort of in one 3 direction; but in a gas storage well, they 4 could be flowing up the tubing, they could be 5 flowing up the annular flow, they could be flowing up both, and, by the way, you could 6 7 be injecting gas six months later? 8 That is correct. It is a А 9 challenging, challenging operation, as you well described, Mr. Lotterman. You described 10 11 it very, very well. It is through the tubing

12 or through the casing. And you have to 13 isolate both. You have to be effective 14 during injection, and then when you're doing 15 the withdrawal. So there are quite a few 16 challenges. So, yes, we studied it quite a 17 bit. And we didn't identify it as a solution 18 here.

19QOkay. One final area, sir. And I20want to talk about the well kill.

And when I say, "well kill," that's sort of the industry way of saying stopping the flow of gas from the reservoir up into the well head or the atmosphere.

True?

25

26 A That is correct.

Q All right. So, let's set the stagea minute. And then I've got a handful of

1 questions for you. 2 You set out on pages 125 and -- I'm 3 sorry -- 126 and 127 of your main report, the 4 chronology of key events during the SS-25 5 incident. Would you mind turning to that page 6 7 a minute? 8 А Yes. I'm there. 9 Q Okay. And, in fact, in your main 10 report and then some of your sub-reports, you 11 review the various attempts to kill the leak 12 at SS-25, which started, according to 13 chronology, on October 23, 2015. 14 True? 15 Α Yes. 16 And you note in your chronology Q 17 that the first attempt -- first attempt --18 first kill attempt was made on October 24, 19 2015. 20 Do you see that? 21 Α Yes. 22 And then they were six additional Q 23 attempts. And the last one was made on the 24 next page on December 22, 2015. 25 Do you see that? 26 Yes, I do. Α 27 All right. 0 And I believe it's your 28

889 1 understanding that the first attempt on 2 October 24 was conducted by SoCalGas. 3 True? 4 Correct. Kill attempt number one. Α 5 Yeah. 6 0 Right. 7 And then kill attempts 2 through 7 8 were conducted by various representatives of 9 Boots and Coots; right? 10 Α That is correct. All right. 11 0 Had you heard of Boots and Coots 12 13 before you took on this project? 14 А Yes. 15 Were they pretty well known 0 Okay. 16 across the world for their expertise in 17 killing wells? 18 Yes, they are. А 19 And have you -- and are you aware 0 20 that they indeed have killed wells across the 21 world? 22 Α Yes. 23 Have you ever been involved 0 Okay. 24 with them when they are killing a well? 25 Α Not me, personally, no. No. 26 Okay. What I would next like to do 0 27 is, Mr. Moshfegh, to turn to main report page 28 227 and highlight or elaborate on Figure 164.

Evidentiary Hearing March 23, 2021 890 And, again, this is Commission Exhibit 1000. 1 2 Are you with me, Doctor? 3 Yes, I am with you. Α 4 All right. 0 5 So it's my understanding, sir, that this configuration, or this figure, depicts 6 7 basically what SoCalGas and what Boots and 8 Coots did, generally, to try to kill the leak 9 at SS-25. Is that your understanding? 10 11 Α That is correct. 12 0 All right. 13 And then if we just sort of walk 14 through this very quickly, if you start at 15 the top of the figure where it says, "Kill 16 fluid, " that's where, basically, they would 17 attach a pump truck to the appropriate well 18 head and, basically, try to pump, kind of 19 force feed, kill fluid down that tubing; 20 right? 21 А Yes. 22 Okay. And depending on the plan Ο and modeling and whatever, you pick a certain 23 24 weight of the fluid, and pick a certain pump 25 rate, and then you go out there and hope for 26 the best; right? 27 А Correct. 28 And then if you follow that Q

1	diagram, the kill fluid goes all the way down
2	that tubing. And then when it gets to the
3	bottom, what you see are two arrows which go
4	out of the tubing and into the annulus
5	between the tubing and the production casing;
6	is that right?
7	A Yes.
8	Q And if I understand how this well
9	was configured, that was able to occur
10	because that tubing actually had perforations
11	in it
12	A Yes.
13	Q And so I believe there's
14	actually a phrase for that, something about
15	communication between the two pipes or
16	whatever. But the idea is that given a
17	certain configuration, gas could flow from
18	the tubing into the production casing or vice
19	versa; correct?
20	A Yes.
21	Q All right.
22	And then if I understand your
23	Figure 164, that kill fluid then, once it
24	goes down the tubing to the end and hits that
25	obstruction and goes out either way through
26	the tubing perforations, it's then in the
27	annulus between the tubing and production
28	casing, then it's got a couple options.

Evidentiary Hearing

	March 23, 2021 892
1	One, it can continue to go down and
2	actually go into the storage reservoir;
3	right? which is depicted at the very
4	bottom of the figure?
5	A Yes.
б	Q And the other option, which I think
7	we're well aware of it at this point, is it
8	goes up the annulus between the production
9	casing, the tubing, and, as we found out
10	later given your extraction of the production
11	casing, it went out of a parted casing at
12	about 892 feet into the formation; right?
13	A That is correct.
14	Q All right.
15	And if there had been no parted
16	7-inch casing where you show in this diagram,
17	the kill fluid would have gone down the
18	tubing and up the production casing and would
19	have basically, sort of, stopped at the top,
20	because it would have nowhere else to go;
21	right?
22	A I think I followed the question.
23	So what you're saying is, if the
24	casing was not parted, it would just be on
25	top of the reservoir. That is correct.
26	Q Yes. Yes.
27	And the idea is, at some point in
28	this time, if you put enough kill fluid into

1	that wellbore, the weight of that fluid is
2	greater than the weight of the pressure
3	pushing the gas up into the well, and you
4	effectively stop the leak and you kill the
5	well operation; is that right?
6	A That is correct.
7	Q Okay. And, in fact, you know, when
8	you do a workover, isn't that exactly what
9	you do? you sort of kill the well?
10	obviously, it doesn't have any holes or
11	casing partings. But you kill the well, that
12	allows you to pull the tubing, go in and do
13	your workover, and do whatever you want to
14	do.
15	So, I mean, but for those case
16	that parted casing, this diagram would show
17	sort of a successful, routine well kill;
18	right?
19	A Yes and no. The situation is a bit
20	different when you're talking about just
21	pulling the tubing and killing the well for a
22	workover. Because you do not have gas
23	flowing at a very high rate, like in this
24	case. Okay? So the situation is different.
<u>ог</u>	
25	It's not the same.
25 26	
	It's not the same.
26	It's not the same. The kill the fact that you

	Malch 25, 2021 094
1	similar. But what is important in a case
2	like this, not just density, is also pump
3	rate. So those are the two things that will
4	overwhelm the reservoir in a case like where
5	you have parted casing or gas flowing at a
6	very high flow rate from the top.
7	Q Fair enough.
8	So I guess what you're saying is
9	the principles are same for a routine or
10	standard well kill where you're just going to
11	do a workover, and what happened here. But
12	the calculations as far as the pump rates and
13	the density of the fluid, that's all a very
14	different operation when you're trying kill
15	an uncontrolled well; right?
16	A That's correct.
17	Q Okay. And so that's helpful.
18	Because I want to talk about a couple of
19	things here.
20	First of all, when you first
21	arrived at the SS-25 well pad, in
22	February 2016, you didn't the know the depth
23	of that where that casing parted, did you?
24	A When we arrived, we didn't know.
25	But when we looked at the temperature log, we
26	had some estimates of various depths. That
27	is correct.
28	Q Fair enough. Fair enough.

	Marcii 23, 2021 895
1	And you also didn't know, really,
2	what specifically failed on the well
3	although, I think you said at one point your
4	suspicions were was the production casing;
5	right?
6	A That is correct.
7	Q And you certainly didn't know
8	whether the issue was a joint, a pinhole, a
9	big hole, or a parted casing, like, as
10	depicted in Figure 164; right?
11	A Yes. We didn't know; but, yeah.
12	I'm I will wait for your next question.
13	But you had some data telling you it was bad;
14	it was pretty big kill rate. But, yeah, we
15	didn't know it was a big pinhole or a failure
16	or a parted casing. That is correct.
17	Q Understood. And I appreciate that
18	clarification. So you didn't know those
19	things.
20	And is it fair to assume that when
21	SoCalGas attempted its first well kill on
22	October 24, 2015, it didn't know that either?
23	A That is correct.
24	Q And, in fact, those are critical
25	elements, or they could be very critical
26	elements, when designing and planning a well
27	kill.
28	True?

б

·
A Can you repeat what is the
critical element, please? I didn't hear the
first part of the question.
Q Depth of the leak, what specific
leak failed, size of the breach, those types
of factors.
A Yes. Often in a well kill, you
don't know those exactly. What you're
looking for is what rate is the possibly,
the well is slowing at. And that's really,
your only indication at that point
Q Right.
A that is correct.
Until you run the temperature log
or some other parameters.
Q Right.
And I'm not saying you can't model
for contingencies. All I'm saying is, if you
have that information, like the depth of the
leak, the size of the breach, and all that
kind of stuff, that makes your modeling a
little easier, doesn't it?
A Yeah. But the again, I need to
articulate this.
We did do the modeling with
information that would have been available at
that point. And we also did the modeling
with a lot more information that we had we

1	were privy to after the RCA or after we
2	pulled the casing.
3	But with the pressure measurements
4	on the surface, which is the tubing pressure
5	measurement and the flowing casing
6	measurement of the shutting casing pressure
7	measurements, you could estimate the rate of
8	the leak, and that would have given an
9	estimate of the flow rate. We talk about
10	that in the report
11	Q Right
12	A So I
13	Q Okay. And what I want to stop
14	and just talk about very quickly before we
15	actually talk about the specific well kills
16	themselves is that your report acknowledges,
17	I believe, in the one or two spots that as a
18	general matter, SoCalGas was able to stop
19	well leaks at Aliso Canyon; correct?
20	A Correct. Two other underground
21	I forget the number. And SS-34, I believe,
22	was successfully done in the past.
23	Q Right. I've got Frew 3, and then I
24	think Fernando Fee 34-A.
25	Does that roughly comport with your
26	recollection?
27	A That is correct. Yes.
28	Q And both of those wells are at

Evidentiary Hearing March 23, 2021 898 Aliso Canyon; right? 1 2 Α Yes. 3 And both of those wells were 0 4 successfully killed by pumping fluid down to 5 tubing of the well, as you see in Figure 164; right? 6 7 А Yes. And both of those wells were killed 8 0 9 almost immediately, at least within a day or 10 so of finding the leak; right? That's what I 11 Α That's correct. 12 remember, yes. 13 And that's what SoCalGas tried to 0 14 do on October 24 for SS-25, didn't it? 15 Α That's correct. 16 But your analysis, if I'm not Q 17 mistaken, showed that there was significant differences between Frew 3 and Fernando Fee 18 19 34-A and SS-25; right? 20 Α Yes. 21 0 And so, unfortunately, in this 22 circumstance -- and maybe add this to the 23 list -- past experiences that SoCalGas had in 24 almost immediately killing two large leaks at 25 the Aliso Canyon facility were not helpful at SS-25, were they? 26 27 Α That is correct. We discuss that 28 in the report, I believe.

1	Q Good. All right.
2	And to make a long story short
3	here, if you turn to page 148 of the main
4	report, if you're looking at what SoCalGas
5	did, you conclude right underneath Table 19
б	and that's actually kill attempt number 1,
7	alternative. And I'm not going to get into
8	all that, 'cuz I have I really have no
9	idea which what you mean.
10	But if you look at the sentence
11	below the table, it says:
12	This kill attempt was a
13	reasonable response,
14	because the extent of the
15	failure at SS-25 was
16	unknown.
17	A That's correct.
18	Q True?
19	A Yes.
20	Q Okay.
21	And, in fact, I think you told me
22	at the deposition, you called it a good first
23	pass; right?
24	A That's correct.
25	Q Okay. So let me stop you there a
26	minute.
27	Sitting here today, looking at what
28	SoCalGas did in attempt number 1 and, by

	Malchi 25, 2021 900
1	the way, looking at the attempts Boots and
2	Coots did, do you believe that well was
3	capable of being killed from a top kill?
4	A Yeah. Our conclusion is yes, which
5	was discussed in the report.
6	Q Right. All right.
7	Now, let's skip ahead. All right.
8	So let's talk about Boots and
9	Coots's six attempts. Okay? And, again, I'm
10	not going to get into mud rates and rate
11	pump rates and all that stuff.
12	But you say in your report first
13	of all, you assume in your report that Boots
14	and Coots did no modeling on its first six
15	attempts. So remember, kill attempt number
16	one was SoCalGas. Boots and Coots were 2
17	through 7.
18	So you say for kill attempts 2
19	through 6, there was no modeling done by
20	Boots and Coots; is that right?
21	A Let me carefully phrase this. We
22	requested data around modeling multiple
23	times, because we were looking for models
24	that were done. And that we had probably
25	about 3 to 5 requests on this topic. And we
26	also had this discussion in person to get
27	some data, any data, to show that modeling
28	was done. We didn't find any.

1	And based on that, is the only way
2	we can prove. Yeah. We requested quite a
3	few times on this topic, explicitly and
4	implicitly. And we didn't get any
5	information. So that is why we concluded.
6	Q And so your critique of one of
7	your critiques of Boots and Coots kill
8	attempts 2 through 7 or 2 through 6, I
9	guess, since I believe you acknowledged that
10	kill 7 did have some modeling done. So let
11	me rephrase the question.
12	So your critique of Boots and
13	Coots's kill attempts 2 through 6 assumed,
14	rightfully or wrongly, that no modeling was
15	done in preparation of those attempts.
16	True?
17	A I wouldn't say rightly or wrongly,
18	Mr. Lotterman. Because there was extensive
19	discussions, extensive data requests, there
20	were requests to talk to Boots and Coots. We
21	never managed that. So, we were very clear
22	about this. There was not data that
23	indicated transient modeling was ever done to
24	design these kill attempts.
25	And when we looked at the kill
26	attempts I don't want to say basically,
27	the same mud rate was used 2 through 6, with
28	some variations to it. And whereas, when

1	the modeling was done after 6, there was a
2	clear change in weight and pump rate. I
3	don't have the details in front me. I can go
4	to my tables. So take that into account,
5	plus the fact that we had no data, that is
6	why we made the conclusion.
7	Q Fair enough. But I don't want to
8	get there yet. I want to focus on the one
9	assumption in your analysis. And let me
10	phrase it this way.
11	As far as you were concerned, as
12	far as you knew, Boots and Coots did no
13	modeling in preparing and implementing kills
14	2 through 6; correct?
15	A That's correct. Based on the data
16	we had and based on the conversations we had,
17	yeah.
18	Q And do you now believe or do you
19	now know that that assumption is incorrect?
20	A No. I don't know anything to to
21	change my mind. I haven't been given we
22	have not looked at it with any additional
23	information. We haven't seen any additional
24	information.
25	Q Okay. All right.
26	So let's turn to the seventh kill
27	attempt. That one, I believe, you just said
28	did have some transient modeling; right?

	March 23, 2021 903
1	A Well, yeah. Because that was
2	shared with us. There was a lot of data
3	shared with us
4	Q Right. Right. Right.
5	And, again, I don't want to get
6	into the mud weights and all that stuff.
7	But at the end of the day, were you
8	satisfied that Boots and Coots did model that
9	kill and then went out there and tried to
10	implement its plan?
11	MR. GRUEN: Your Honor, if I may, just
12	before that answer. And this may be an
13	objection for vagueness for the record.
14	Is this a question specific to well
15	kill attempt number 7, at this point?
16	MR. LOTTERMAN: Yes. And I will
17	clarify, your Honor, for the record. And
18	let's find the page here a minute. I'm
19	trying to find the chron right.
20	If you go back to the chronology,
21	Mr. Gruen, and you go to page 127, this would
22	be the well kill showing up on December 22,
23	2015, called kill attempt number 7 failed.
24	MR. GRUEN: And for clarity, for the
25	record, the questions are relating to that
26	<pre>specific kill attempt; correct?</pre>
27	MR. LOTTERMAN: They are. They are.
28	MR. GRUEN: Thank you. Understood.

903

ALJ HECHT: Thank you for clarifying. 1 BY MR. LOTTERMAN: 2 So, Dr. Krishnamurthy, in light of 3 0 that clarification, I want to focus on Boots 4 5 and Coots's last kill attempt. 6 Okay? 7 А Yeah. And if I understand your analysis, 8 0 you acknowledge that modeling was done. And, 9 obviously, you're aware that Boots and Coots 10 11 and SoCalGas implemented the plan. But you believe, and your modeling shows, that if 12 13 Boots and Coots had continued pumping and not 14 stopping when it did, it would have been able to bring that well under control; correct? 15 16 А That is correct. 17 Now, the reason they couldn't keep 18 it under control, I believe, we al- -- we 19 discuss that somewhere. There were practical 20 challenges for them to continue pumping. That is why they couldn't pump. So it was 21 well understood that by well kill number 7, 22 the conditions had deteriorated, there were 23 24 challenges all -- like we talk about there. 25 You have it on the screen -- the gas flow out of a two-range outlet, the crater enlarged, 26 27 so -- so it was a challenge. So it was 28 understandable why 7 didn't hap -- didn't

1 work. 2 Right. And I want to actually talk Q 3 about that. But maybe we should -- and this 4 is my last line of questions, sir. So I'll 5 ask you to be patient. But maybe we should 6 pull up a picture here. 7 Mr. Moshfegh, why don't we go with 8 Figure 17 on main page 33. There you go. Ιf 9 you could just enlarge that a bit? 10 So, Dr. Krishnamurthy, is that the 11 crater you're talking about? 12 Α Yeah. Yeah. That is a picture, 13 probably, we took April 1, 2016. 14 Q Right. 15 And, by the way, are those the two 16 brother wells right on the same pad, the 17 SS-25A and -25B? 18 Α Yes. That is correct. 19 And do you see that bridge that 0 20 goes across the crater? 21 Was that put in by SoCalGas to allow, basically, access to that well head 22 23 that you see in the middle of the bridge 24 there, where the bridge seems to not have any 25 footing? 26 А Yes. 27 All right. 0 And if I understand how that last 28

1	well kill on December 22, 2016, '15,
2	excuse me transpired, you pull up the pump
3	truck, you attach the pump truck to that well
4	head which you can't really see that well;
5	but it's just that kind of piece of equipment
6	that you can see sticking up in between that
7	sort of like a cage with no bars.
8	Do you see that?
9	A Yes.
10	Q Yeah. Yeah. Okay. So you
11	there you go. There you go.
12	So you attach the pump truck,
13	you've got your plan, and then when it's time
14	to go, you start force-feeding that kill
15	fluid down that tubing with the hope that at
16	some point you can overcome the reservoir
17	pressure and stop the flow of gas to
18	atmosphere; right?
19	A That is correct.
20	Q All right.
21	And it's my understanding, sir,
22	that there are two paramount concerns when
23	killing a well. One is, maintain safety.
24	And what I mean by that is, you avoid
25	injuries, you avoid deaths.
26	Do you agree?
27	A Yes.
28	Q And, as far as you know, have

1	people been injured and died attempting to
2	kill wells like that around the world?]
3	A Yes.
4	Q Okay. Second paramount concern is:
5	Don't make the leak worse or don't make the
б	situation worse. And what I mean by that is
7	if somehow you overpressure the wellbore
8	during a kill attempt, you can for example
9	fracture the rock and lose fluid to
10	formation, can't you?
11	A Yes.
12	Q Why is that a bad thing?
13	A Since you don't successfully kill,
14	you'll have more gas coming at you. So that
15	could be one problem if you fracture the
16	rock.
17	Q Okay.
18	A You could have an underground
19	well, there are a lot of scenarios, yes.
20	Q Okay. The other aspect of don't
21	make the situation worse is you don't want to
22	do further damage to the wellbore; right?
23	A That's correct.
24	Q Because you got now you got a
25	leak at 892 feet. You don't want one at
26	2,000 feet; right?
27	A Sure. You don't want to have
28	additional leaks; that is correct.

Evider	ntia	ry Hearing
March	23,	2021

90	8
----	---

1	Q Right. You don't want to go to one
2	failure mode to two; right?
3	A Correct.
4	Q And if you do, you might make a top
5	kill like we depicted earlier more
6	complicated or even impossible; true?
7	A If you did that, yes. Correct.
8	Q Right. Right. So when on
9	December 22, 2015, when SoCalGas and Boots $\&$
10	Coots stood on that well pad and hooked up
11	that pump truck to that wellhead and began
12	their planned modeled well kill, they had
13	those two paramount concerns in mind didn't
14	they?
15	A Yes.
16	Q Okay. And I assume you learned
17	later on that during that kill the wellbore,
18	that piece of equipment that's sort of shown
19	there between that cage with no bars, started
20	flopping around like a loose fire hose. Is
21	that your understanding?
22	A Yeah, it was vibrating. That was
23	the reason for stopping of the kill attempts;
24	that's correct.
25	Q Yes.
26	(Crosstalk.)
27	MR. GRUEN: I am sorry, your Honor. I
28	couldn't hear the witness finish his answer

1 to the question. 2 ALU HECHT: Yes. Please avoid 3 crosstalk. Let's hear from the witness, and 4 then we'll keep going. 5 I am sorry. I'm trying THE WITNESS: to speak slowly, Mr. Lotterman. 6 So 7 occasionally I pause. I apologize for that. 8 But, yes, we were -- we had read 9 detailed reports from the order from SoCal. 10 And I believe there was some reports from 11 Boots & Coots where it was very clear when --12 this type of pumping on seven, the density 13 was good. But this time the location had 14 become so challenging that the wellhead was 15 vibrating and the pump lines -- the pumping 16 lines were moving. 17 And now the imagery that, 18 Mr. Lotterman, you depicted I don't have that 19 imagery in my mind. But we understood it was 20 vibrating and it was moving. So definitely 21 at that point you want to stop. 22 Got it. Because you told me in the Ο 23 deposition that those were indications --24 there were indications that things were 25 shaking, moving, vibrating, so it was 26 dangerous to continue; true? 27 Α That's correct. Kill No. 7, we 28 write that in the report and absolutely.

1	Q Right. So that was a pretty
2	serious situation involving possible harm to
3	persons and/or more damage to the well; true?
4	A Yes. The wellhead was moving. So
5	that is not a good idea.
6	Q Right. And so at that point in
7	time at that pad and at that moment, SoCalGas
8	needed to make a realtime decision using its
9	best judgement involving many moving parts
10	with very serious consequences; true?
11	A Yes. And the decision was solid.
12	Yeah.
13	Q Good. And only SoCalGas was in a
14	position to make that decision; isn't that
15	right?
16	A That's correct.
17	Q And so from what I hear you saying
18	to me now, you meaning Blade you are
19	not contesting the decision by SoCalGas to
20	suspend the top kill on December 22, 2015, as
21	they did; correct?
22	A That's correct.
23	Q And are you contesting the decision
24	at that point to stop top kills altogether
25	and to focus on the relief well?
26	A No, we are not.
27	Q Okay. And in fact that relief well
28	was in the process of being drilled when this

	March 23, 2021 911
1	kill attempt was being performed; correct?
2	A Yes.
3	Q And that relief well drilled
4	1.5 miles into the formation and successfully
5	intercepted that SS-25 wellbore at its base,
б	or roughly at its base. And it hit that
7	wellbore at a spot about the size of a coffee
8	can. Is that your understanding?
9	A Absolutely.
10	Q And then at that point, SoCalGas
11	pumped kill fluids not down the well but
12	through the relief well into the bottom of
13	the SS-25 wellbore. And that in turn flowed
14	the well-kill fluid up the wellbore and
15	killed it; true?
16	A Up and down, yes.
17	Q Right. Was that a pretty
18	remarkable feat in your view?
19	A Yes. Relief wells are done
20	again, I'm an oil patch guy. It's a very
21	unique achievement and unique application of
22	technology in the oil and gas industry. And
23	it's amazing every time we do it.
24	Q And was it amazing here?
25	A Yeah. It was successful here.
26	Yeah.
27	MR. LOTTERMAN: No further questions,
28	your Honor.

ALJ HECHT: All right. Thank you very 1 2 much. So I think at this point, we have 3 4 some additional clarifying cross from Safety 5 and Enforcement Division. And I don't know if there will be any redirect from 6 7 Ms. Frazier for Blade. 8 MR. GRUEN: Thank you, your Honor. Ι 9 see Blade is raising their hand. If I may, will your Honors indulge us for a short break 10 11 just to consult and be sure that we have everything in order in light of 12 13 Mr. Lotterman's most recent line of 14 questions? 15 ALU HECHT: Let's hear from 16 Ms. Frazier, and then it is likely that we 17 will take at least a short break. 18 MS. FRAZIER: Mary Frazier on behalf of 19 Blade. Your Honor, I was just going to 20 mention we do have a few clarifying points. I think it will be less than 30 minutes. But 21 I just wanted to make you guys aware of that. 22 23 ALJ HECHT: Okay. You're breaking up a little bit for me. I do not know if the 24 25 court reporters are also having the same 26 issue or if it's on my end. 27 I think what we're going to do is we 28 will take a 10-minute break until 2:10, and

912

	March 25, 2021 91
1	then we will come back and pick up with SED
2	and then with Blade for redirect. Okay.
3	MS. BONE: Your Honor, Traci Bone from
4	Cal Advocates.
5	ALJ HECHT: Yes.
6	MS. BONE: Before we signed off for
7	lunch, Cal Advocates also requested that we
8	have 15 minutes to do some cross-examination
9	of Blade, and we understood that ALJ Poirier
10	would allow that.
11	ALJ HECHT: Yes.
12	MS. BONE: We would go after SED.
13	ALJ HECHT: Yes. Thank you for
14	reminding me of that. That is what we will
15	be doing. At this point, we will take that
16	break until 1:10.
17	We'll be off the record.
18	(Off the record.)
19	ALJ HECHT: We'll be on the record.
20	We just took a short afternoon
21	break. And now we are going to pick back up
22	with more cross-examination of Witness
23	Krishnamurthy. We will be starting with the
24	Safety and Enforcement Division and then the
25	Public Advocates Office and then redirect by
26	Blade's Ms. Frazier.
27	Mr. Gruen, are you ready to proceed?
28	MR. GRUEN: Yes, your Honor. We are.

913

	March 23, 2021 914
1	ALJ HECHT: Thank you.
2	CROSS-EXAMINATION
3	BY MR. GRUEN:
4	Q Good afternoon, Dr. Krishnamurthy.
5	A Good afternoon.
6	Q So, Dr. Krishnamurthy, if I may
7	just through the understandably
8	Mr. Lotterman and Ms. Frazier indicated they
9	had not practiced before the Commission
10	before. And as a matter of practice, if I
11	may just ask you a few basic foundational
12	questions about the Blade Report.
13	So if I may, where there are facts
14	in both the Blade report and the four
15	supporting attachments, both Commission's
16	Exhibits 1000, 1001, 1002, 1003, and 1004,
17	where there are facts identified in the Blade
18	the Blade report and those supporting
19	attachments, are those facts true and correct
20	to the best of your knowledge and
21	understanding?
22	A Yes, they are.
23	Q Thank you. And in those reports
24	where there are opinions, conclusions, or
25	interpretations expressed, are those
26	expressed to the best of yours and your
27	colleagues at Blade's professional judgement
28	and expertise?

1	
1	A Yes, they are.
2	Q Thank you very much. Okay. So
3	with that basic out of the way, if I can turn
4	you if you recall to when Mr. Lotterman had
5	referred to, if you will, rolling credits
6	looking at the acknowledgements page in the
7	main report. And he was asking you about
8	SoCalGas's efforts related to that. Do you
9	recall being asked about that?
10	A Yes, I do.
11	Q Okay. Thank you. And would it be
12	accurate to say that without SoCalGas, you
13	could not have done the root cause analysis?
14	A Yes, we could not have.
15	Q Okay. So without SoCalGas
16	providing you with the information it did,
17	that was a necessary component for the root
18	cause analysis; is that correct?
19	A Yes.
20	Q And that would include information
21	from its well file for well SS-25; is that
22	also correct?
23	A That's correct.
24	Q And would it be accurate to say
25	that SoCalGas controlled the information it
26	provided to you regarding well SS-25?
27	A I don't know about control. But,
28	yeah. They were giving us information;

1	that's correct. We procured information on
2	that from SoCalGas. And also we would look
3	at DOGGR websites being publicly available.
4	But the crucial information would come from
5	SoCalGas.
б	Q Understood. And that what you
7	just described well SS-25, was that also
8	accurate for SS-25A, the sources of
9	information from SoCalGas with cross checking
10	from DOGGR?
11	A Yes. 25A, 25B, yes.
12	Q Yes. Thank you, Dr. Krishnamurthy.
13	Do you recall Mr. Lotterman also asking you
14	if you found the well file for SS-25 to be
15	complete for your analysis?
16	A Yes, I do remember. Yes, I
17	remember him asking, yes.
18	Q And if I recall correctly, you
19	answered something to the effect of:
20	As far as we could see, we had all
21	the information we needed.
22	Does that comport with your
23	recollection?
24	A Yeah. You know, I couldn't comment
25	on things missing because we didn't see any
26	gaps in information. And if there's some
27	additional information not that we don't
28	know about it. But information for what it

1	appeared complete to us.
2	Q Okay. Thank you. And that
3	addresses just for the record, if SoCalGas
4	had provided you with incomplete well file
5	information, you would have no way of
6	knowing?
7	A Yes and no. Occasionally depending
8	if there's a question on 25 and 25-A, we go
9	through every information all the data bits.
10	So if there are obvious gaps, let's say I
11	look at daily reports and then five days are
12	missing in the daily reports. We would know
13	and we would ask and we would tell them.
14	So very similar to the modeling
15	information we just talked about. We know
16	that was not there. So we asked.
17	So to me, yes. If there are some
18	really massive additional information that we
19	didn't have, yeah we wouldn't know. But if
20	things don't fit we know. Because we're
21	analyzing the information. And we look for
22	data trends and stuff like that. So as far
23	as we could see, it appeared complete.
24	That's all I could say.
25	Q Thank you, Dr. Krishnamurthy. And
26	you were jumping into the next question.
27	Your answer related to it. But just for the
28	record if I could. What if SoCalGas provided

1	you with certain inaccurate information from
2	the well file well SS-25? In that instance
3	would you be able tell certain of the
4	information from the SoCalGas SS well 25 well
5	file was inaccurate?
6	MR. LOTTERMAN: Your Honor, I will
7	object to this for calling for speculation.
8	MR. GRUEN: Well, your Honor, I'm not
9	sorry.
10	ALJ HECHT: Go ahead, Mr. Gruen.
11	MR. GRUEN: Your Honor, I'm asking for
12	his stated knowledge. I'm not asking him to
13	guess.
14	ALJ HECHT: He can answer to the best
15	of his abilities.
16	Go ahead, Mr. Gruen.
17	MR. GRUEN: Thank you.
18	Q Just to restate, would you be able
19	to tell if certain of the information from
20	the SS-25 well file was in accurate?
21	A Okay. Sticking to SS-25,
22	Mr. Gruen. So for example we had a lot of
23	the temperature surveys, we had a lot of
24	special surveys. So with a lot of that
25	information, we can assess that really no
26	workover happened in SS-25.
27	So I don't know the answer to the
28	question because inaccuracy can be small, can

1	be large, and it's very difficult for me to
2	even state of the intelligence on that.
3	Yeah, the data tells us a lot. When you
4	analyze the data, the data tells you a story.
5	If the story doesn't fit or there are gaps,
6	we normally can figure that out and we didn't
7	see any.
8	But that doesn't mean I don't
9	know how to answer that question. I don't
10	know if I answered your question, but.
11	Q Did you have an opportunity to
12	quality check all of the information on the
13	SS-25 well file for accuracy?
14	A Oh, yeah. Because if we see a temp
15	so I'll give you an example. If the
16	temperature log indicated some issues, and so
17	what you look in the data is that trend will
18	continue or the trend will appear. So you're
19	looking for other things.
20	So we do do quality checks
21	absolutely. We have to. We use that
22	information to model and analyze. So the
23	information that's provided, we do quality
24	checks.
25	Q Okay. Thank you. And the quality
26	checks I think you had begun to answer
27	that certain pieces of data, maybe the
28	smaller pieces of data, might have been

	March 25, 2021 920
1	inaccurate without you knowing. Could the
2	quality checks have pulled for the smaller
3	pieces of data or inaccurate data whether
4	those were in fact inaccurate?
5	A Let me phrase it another way,
6	Mr. Gruen. So if the data impacts any of my
7	conclusions, we would throw it out. If there
8	is something I made a conclusion that wall
9	thickness inspection is necessary or required
10	and wall thickness was done or some such
11	thing, then I would drill down. So I don't
12	know if I'm answering the question.
13	But any data that would impact my
14	conclusion, I we would throw it out
15	whether it's small or big. I don't know
16	whether I'm answering the question.
17	So I we did do QC on all the
18	data pretty much. So we analyzed normally
19	in a normal course of operations, you will
20	have some information not match exactly and
21	we pick those up.
22	Q Okay.
23	A But I can't say every little issue
24	we picked up, no. I wouldn't be able to say
25	that.
26	Q Okay. Thank you,
27	Dr. Krishnamurthy. Moving on do you recall
28	being asked by Mr. Lotterman whether you

1	found a quiet period? I believe that was the
2	term he used and forgive me if I misstated
3	it. But whether you found a quiet period
4	where there were no leaks in the Aliso Canyon
5	field for whatever reason?
6	A Yeah, again, I am going by my
7	memory, which is sometimes dangerous. There
8	was a period if I remember right if you read
9	the casing Aliso Canyon casing integrity
10	section. The period of time where the number
11	of incidents dropped, the number of casing
12	integrity incidents dropped, and I believe
13	that's what Mr. Lotterman was referencing,
14	and that's what I that's how I answered.
15	Q And in response to that, I believe
16	part of your response was also that there was
17	a period where a number of leaks were lower.
18	And you added that when a casing does not
19	perform its function as defined, Blade called
20	it a failure. And you included the term
21	"tight spot" in what you considered a
22	failure. Do you recall that?
23	A Yes. Yes, I recall it.
24	Q Thank you. And we reviewed the
25	Blade report as best we could, SED did, and
26	could not find a tight spot identified in the
27	Blade report specifically with regards to
28	well SS-25.

	March 23, 2021 922
1	Do you recall whether the Blade
2	report identified any tight spots on the
3	SS-25 well casing?
4	A No. We did not find a tight spot
5	in SS-25; that's correct.
6	Q Okay. Thank you. And if Blade had
7	identified so hypothetically if Blade had
8	in fact identified a tight spot on well
9	SS-25, would you have considered that to be a
10	casing failure then?
11	A Yes. In our report on the
12	historical casing failures section, we
13	defined what compromises the functionality of
14	casing. And tight spot is one of them.
15	Q Okay. Thank you.
16	A It is an important factor if there
17	was an event like that.
18	Q Thank you, Dr. Krishnamurthy. So
19	another hypothetical if I can. If there was
20	an indication of a leak above or below the
21	packer in SS-25 that you described to
22	Mr. Lotterman in some detail yesterday I
23	believe, would that impact the findings and
24	conclusions of your root cause analysis?
25	A Above the packer, you know, let's
26	review it's a hypothetical question. We
27	didn't find one of course. However it may.
28	At most probably it may not, Mr. Gruen,

1	because it so deep in the well, you know,
2	8,500 feet. And (inaudible). So it's
3	much shallower. So it may not have a
4	material impact on it. We would have
5	attempted to figure out why it did. It would
6	be important because it happened in SS-25.
7	But it may not have directly impacted the
8	failure analysis. May or may not. So
9	probably not.
10	Q Okay. And why given your answer
11	"probably not," why not?
12	A Because, again, you have a packer
13	issue. The packer implies maybe a tubing
14	issue, okay. So if it is a tubing issue,
15	that's really not relevant for a casing
16	failure. Tubing may be a separate problem.
17	We would have flagged it if there was an
18	issue with that.
19	But it won't have a material impact
20	on the interpretation of the failure at 892
21	and root causes.
22	The root cause to be identified if
23	you the definition of a root cause: If it
24	needs to address events similar to SS-25 and
25	any other casing integrity instance. It
26	should. The root cause analysis all sorts of
27	incidents. Not just the type of failure
28	to address the packer in any of these so.

	March 23, 2021 924
1	Q Thank you, Dr. Krishnamurthy. And
2	just to clarify, I believe you were talking
3	about tubing leaks there if I understand
4	correctly.
5	Let me change the hypothetical
6	slightly. What if there was an indication of
7	a casing leak above or below the packer in
8	SS-25? Would that impact the findings and
9	conclusions of your root cause analysis?
10	A It would be very important because
11	we ran logs not all the way to the packer or
12	below the packer above the packer in the
13	casing if I remember right. So we didn't
14	find any indications or any trends that
15	showed us the seven
16	Q Okay.
17	(Crosstalk.)
18	A However, if there was a leak at the
19	packer, yeah. It may impact. It may impact.
20	Q Okay. Thank you. And do you
21	recall just turning to another point. Do
22	you recall being asked whether there was any
23	other way to check for why or how SS-25
24	failed other than through the process of
25	pulling the tubing?
26	A Yes.
27	Q And you said "no" in that case; is
28	that right?

,	
1	A Yes. Because the SS-25 just to
2	explain that answer. SS-25 ruptured and
3	parted, yeah? So that is a big failure. You
4	can't run logs in that case. You can run
5	tubing logs like we ran, but you won't know
6	enough about it. You will know it's parted,
7	but that is really all you will know at that
8	point.
9	Q Thank you. And under what
10	conditions would SoCalGas, if any, under what
11	conditions would SoCalGas be able to check
12	for how or why a well failed without pulling
13	the tubing?
14	A Again, without pulling tubing,
15	that's a different question. Without pulling
16	the tubing the way the weight has been
17	monitored with temperature logs and noise
18	logs, you know there's a hole, there's a
19	leak. That's really what you would know.
20	Now, based on that information you
21	can then look and say, "Okay. Is there an
22	environment internal to the casing that could
23	cause corrosion?
24	And if you like the gaps, you
25	conclude like we concluded the gaps cannot
26	cause the corrosion.
27	So by process of elimination, you
28	could assess then, "Hey, this has to be

	Malchi 25, 2021 920
1	happening from the outside. If it's not
2	happening from inside, it has to be happening
3	from the outside."
4	So that is one way of doing it.
5	But it would be a hypothesis. You would come
6	up with two or three possible reasons and you
7	would attempt to mitigate all of them
8	assuming you cannot pull the tubing, you
9	can't do any of these other things.
10	Q Thank you. Okay. Turning to
11	another point another line, do you recall
12	being asked in Mr. Lotterman's
13	cross-examination about SoCalGas's
14	communications with DOGGR to inform the Blade
15	report?
16	A Can you repeat, Mr. Gruen? I
17	apologize. I didn't follow.
18	SoCalGas communication with DOGGR.
19	Q Yes. Just generally if I recall
20	Mr. Lotterman did ask just this morning about
21	if you had reviewed specifically the
22	communications that SoCalGas had with DOGGR
23	in order to inform your the Blade main
24	report. Do you recall him asking about that?
25	A Yes, yes, yes.
26	Q And if I understood your answer
27	correctly, you said you did not check
28	communications between SoCalGas employees and

1	DOGGR. But the entire report is based on
2	extensive data that was obtained from
3	SoCalGas and DOGGR records. And I believe
4	you also included general rate cases. Did I
5	understand that answer correctly?
6	A That's correct.
7	Q Okay. So with that understanding,
8	if we could pull up the Blade main report?
9	A Can I explain expand a little
10	bit, Mr. Gruen, on that answer?
11	Q Yes.
12	A And clarify?
13	If DOGGR if DOGGR if DOGGR
14	included those communications as part of the
15	documentation for their well on the website,
16	we would have it. Or if SoCalGas had it as
17	part of the well file, we would have it. I
18	want to be very clear.
19	Q Understood. Thank you
20	Dr. Krishnamurthy. And if I may with that if
21	we could turn and using the screen share pull
22	up the main report, the Blade main report.
23	And just for while we're doing
24	that, I use the term "Blade main report." I
25	believe that was the same term Mr. Lotterman
26	used. You'll understand that I'm referring
27	to Blade's root cause analysis; is that
28	correct? Of the Aliso Canyon the release

Evidentiary Hearing March 23, 2021 928 1 from Aliso Canyon well SS-25?] 2 Α Yes. 3 0 Thank you. So turning to page 245 4 here, I believe. You see that this is 5 page 245 of Blade's main report? 6 Α Yes. 7 0 And if you look at references 54, 8 for example, do you see that? There's a reference to DOGGR's "History of Oil or Gas 9 10 Well, " from September 8, 1988. 11 Do you see that? 12 Α Yes, I do. 13 And also reference 65 toward the 0 14 bottom of the screen as we see that that's 15 the "P-50A Well History File from SoCalGas." 16 Do you see that as well? 17 Yes, I do. А 18 And that one references -- the date 0 19 in that one is 2016, I believe. 20 Do you agree? 21 Α Yes. 22 And the date for the top one, I 0 failed to mention, looks like 1988. 23 24 Does that look right to you as 25 well? 26 Α Yes. 27 So would you agree that these are 0 28 examples of history records?

	Evidentiary Hearing March 23, 2021 929
1	A Yes.
2	Q Okay.
3	A Or Well Files, or it could be from
4	the Well File.
5	Q History records or Well Files.
б	Understood. And do you recall how in the
7	let's stick with history records for a
8	second. How did you acquire those documents
9	if you would?
10	A So looking at 54, that would be
11	from DOGGR. Okay. It says, "Division of
12	Oil, Gas, and Geothermal Resources." That's
13	where we would have got that data set. Now,
14	the bottom data set we obtained from Southern
15	Cali from SoCalGas, so that's the source
16	document.
17	Q I see. And this illustrative, is
18	it not, that these history files, the sources
19	of those documents were either from DOGGR or
20	from SoCalGas; is that right?
21	A That's correct.
22	Q Okay. Turning to Well SS-25, the
23	Well File there that you reviewed, did that
24	contain a folder titled "Well History"?
25	A That is very specific, Mr. Gruen.
26	I'll need to check. I don't recall.
27	Q I don't know if it will be
28	necessary for this line of cross. I could

	Marcii 23, 2021 930
1	maybe ask it more generally and see if this
2	refreshes your recollection just to keep
3	things moving forward.
4	Do you recall if Well SS-25 had
5	well history information akin to what we're
6	reviewing on this page?
7	A I'll have to check. My guess is
8	yes. Okay. Now, it may not be titled that.
9	I see I'm looking at the references now.
10	We got an SS-25 Well File so that had 2,000
11	pages in it. I'm reading from a reference
12	here, Mr. Gruen. And also we got from DOGGR
13	an SS-25 chronology summary, so an SS-25
14	event every which way to get data.
15	And there was also towards early
16	2019 we got a lot more electronic data on 25,
17	25A, 25B, which in many cases we had already
18	been provided. But as an abundance of
19	caution, there was some additional
20	information provided by SoCalGas and so we
21	did get a lot of data. But, yeah, looking at
22	"History of Oil and Gas Well," did we have a
23	file titled exactly that for SS-25? I cannot
24	answer. But we did get a Well File on SS-25.
25	Q Understood. I'm tracking you.
26	Thank you, Dr. Krishnamurthy. And do you
27	recall just with regards to the history
28	documents that we've been talking about, do

930

	March 25, 2021 951
1	you recall seeing history documents on Well
2	SS-25 between 1997 and 2015?
3	A I don't recall. That doesn't mean
4	it's not there so I want to be careful. I
5	need to check. I can get back to you.
6	Q Understood. If it was there, would
7	it show up in the Blade report in these
8	references here?
9	A It may or may not. Can you go to
10	Reference Number 8.
11	Q Sure.
12	A I'm looking at Reference Number 8.
13	It may show up in 8, so it may be a subset of
14	that. Okay. So I want to so you can see
15	the facility. That is one. And then you go
16	back at 6, it tells you the chronology
17	summary. So there was a lot of data and
18	information on SS-25 so I want to be careful
19	to say. It may be contained in that so I
20	don't want to say it is or it isn't.
21	Q I see. Okay. Would there be any
22	other references that we could check to see
23	if that information is available was
24	provided to Blade?
25	A Those would be the two references.
26	I'll have to look carefully and talk to my
27	team because, as you can imagine, everybody
28	who has worked on it has gone through the 25

Evidentiary Hearing March 23, 2021 932 1 data set for sure. 2 0 Yes. Understood. Your Honor, if I may, if we could 3 ask for an answer. If Blade could consult 4 5 and get back to us with an answer to that question, we'd appreciate it for the record. 6 7 ALJ HECHT: Are there any objections to 8 that request? 9 MR. LOTTERMAN: I quess my only 10 concern, your Honor, is this going to be a 11 written submission or are we going to drag poor Dr. Krishnamurthy back into this 12 13 What did Mr. Gruen have in mind? proceeding? 14 Your Honor, I certainly MR. GRUEN: 15 have no intent of having Dr. Krishnamurthy 16 testifying any further than he needs to. It 17 was -- in asking this question --18 Maybe I should clarify, 0 19 Dr. Krishnamurthy. How burdensome for you is 20 this question? 21 Α Let me rephrase your question, Mr. Gruen, and see if it makes sense and then 22 23 I'll answer the question. 24 ALJ HECHT: I'm going to ask to pause 25 for a moment. I believe that Ms. Frazier 26 would like to say something and I'd like to 27 give her that opportunity before we continue. 28 MS. FRAZIER: Thank you, Your Honor.

1	Mary Frazier on behalf of Blade. If I I
2	guess what I would suggest is maybe we take a
3	break so that I can visit with
4	Mr. Krishnamurthy to figure out what this
5	entails and then we can report back on
6	whether it's something we're able to do or
7	not.
8	ALJ HECHT: I think that's a better
9	idea.
10	Mr. Gruen, is it possible to
11	continue with other questions and take a
12	break later after that to find this out or
13	would it make more sense to take a break now?
14	MR. GRUEN: Your Honor, we can do
15	whatever your druthers are. We can move on
16	or, if you would prefer, we can take a break
17	now. Either way.
18	ALJ HECHT: All right. I'm having
19	computer bandwidth problems so we will take a
20	break. We will take a break for 10 minutes
21	coming back at 2:48. Thank you.
22	MR. LOTTERMAN: Your Honor, I'm sorry,
23	before we do
24	THE REPORTER: Are we off the record?
25	ALJ HECHT: No. We are not yet off the
26	record, and I apologize. I was about to say
27	that.
28	THE REPORTER: Thank you, Judge.

```
Evidentiary Hearing
March 23, 2021
```

ALJ HECHT: 1 Mr. Lotterman, you were 2 saying. 3 MR. LOTTERMAN: Yeah, I wanted to get 4 this on the record. Could I understand 5 exactly what Mr. Gruen's ask is. 6 ALJ HECHT: That's a good idea. 7 Why don't you repeat that. 8 MR. GRUEN: The question is any history 9 documents, either the DOGGR History of Oil and Gas Wells or SoCalGas Daily Well 10 11 Activities in the SS-25 Well File for the period from 1997 to October 2015. 12 13 MR. LOTTERMAN: And so are you asking 14 Mr. Krishnamurthy to confirm they exist or to 15 produce them or what? 16 MR. GRUEN: The question is whether or 17 not Blade had access to that information 18 while during the preparation of the Blade 19 root cause analysis and supporting 20 attachments. 21 ALJ HECHT: To be clear, you're not asking that they actually produce those 22 documents because --23 24 That is --MR. GRUEN: 25 ALJ HECHT: -- the --26 MR. GRUEN: That is correct, your 27 Honor. We're not asking Blade to do a data 28 gathering exercise at this point.

Evidentiary Hearing March 23, 2021 ALJ HECHT: 1 Okay. 2 MR. GRUEN: My apologies if we left a 3 different impression. 4 ALJ HECHT: Thank you. 5 With that understanding, I'm 6 hopeful, Ms. Frazier, that you can check with 7 your witness and when we get back, we can address this. 8 That being the case, it is now 2:40. 9 We'll take a 10-minute break until 2:50. 10 We will return then. Thank you, everyone, and 11 12 thank you Dr. Krishnamurthy. 13 THE WITNESS: Thank you. 14 ALJ HECHT: Appreciate your time. 15 THE WITNESS: Thank you. 16 (Off the record.) 17 (Recess taken.) 18 ALJ HECHT: We'll be back on the 19 record. 20 While we were off the record, we got 21 some clarification on the ability to answer 22 that last question. 23 Mr. Gruen, I believe that you will 24 ask the question again and we'll go from 25 there. 26 MR. GRUEN: Yes, your Honor, certainly.

27 Dr. Krishnamurthy, before the 0 28 break, do you recall I had asked you just for

1	the record do you recall seeing any history
2	documents, either the DOGGR "History of Oil
3	and Gas Wells" or "SoCalGas Daily Well
4	Activities" in the SS-25 Well File for the
5	period 1997 to October 2015.
6	I understand you have a preliminary
7	answer to that question and that you are
8	going to check to be sure that the answer is
9	accurate by tomorrow.
10	A Yes.
11	Q Very good.
12	A Yeah. Thank you, Mr. Gruen. Yeah,
13	we believe we have a lot of we have data
14	post-1997 to 2015. We have we believe we
15	have logs, we have various things regarding
16	data from SS-25. Like Mary mentioned, we
17	will confirm by tomorrow, but we believe we
18	have data post-1997.
19	Q Okay. And if you could, just for
20	clarification, if you could clarify whether
21	you got that data from DOGGR or from
22	SoCalGas.
23	A Yeah. We should we'll try to
24	confirm that.
25	Q Okay.
26	A But we do have substantial data.
27	We also have the weekly pressure measurements
28	and other information that we've used so I'll

1	confirm that.
2	Q Okay. Thank you.
3	MS. PATEL: Your Honor, this is Avisha
4	Patel for SoCalGas. May I interject an
5	objection for this line of questioning?
6	ALJ HECHT: Before we do that, I am
7	going to say I'm still having technical
8	difficulties so I am going to hand the lead
9	back to Judge Poirier for the rest of the
10	afternoon, so he will be the one responding
11	to your question and I apologize for that.
12	It's a video problem. My audio is fine.
13	ALJ POIRIER: Ms. Patel, please go
14	ahead.
15	MS. PATEL: Sure. The basis for my
16	objection is that in December of 2019 SED
17	data requested all the documents that Blade
18	reviewed in the course of its investigation
19	from Blade, and Ms. Frazier provided a copy
20	of that to SED, again, December of 2019 and
21	we actually got a copy of that hard drive as
22	well. So Mr. Gruen is actually in possession
23	of this information that he's asking the
24	witness to go research tonight.
25	ALJ POIRIER: Mr. Gruen.
26	MR. GRUEN: Your Honor, it's my
27	understanding from our witness that we
28	haven't been able to get certain of this

1	information from SoCalGas, so we have
2	concerns that it hasn't been provided to
3	Blade. But if we're mistaken, we'll
4	certainly defer to Blade to provide that
5	answer. But we think it's helpful for the
6	record just to be sure that Blade was given
7	the information. In light of Blade saying
8	they can provide this by tomorrow, we don't
9	think it's a particularly onerous task. We
10	think it's quite doable. This is a quick
11	check of a drive it seems.
12	ALJ POIRIER: Ms. Frazier.
13	MS. FRAZIER: I just wanted to point
14	out one thing. We weren't anticipating
15	producing anything. We were just going to
16	confirm whether the information exists.
17	ALJ POIRIER: Okay. I'm going to
18	overrule the objection. I think if it's just
19	the confirmation, let's go ahead and do that.
20	I'd like to move on with the hearing today.
21	So, Mr. Gruen, please continue.
22	MR. GRUEN: Thank you, your Honor. And
23	just to confirm, our understanding matches
24	that of Ms. Frazier's, that this is only for
25	a request for confirmation.
26	Q With that, moving on, this is the
27	next line of questioning. That's all I had
28	on that one.

Dr. Krishnamurthy, do you recall 1 2 being asked questions yesterday from 3 Mr. Lotterman about SS-25 having both tubing 4 and casing? Sorry, Dr. Krishnamurthy, I 5 think you may be on mute. Yes. I apologize. I was on mute. 6 А 7 Yes. 8 Not at all. And the purpose of the Q 9 tubing? Do you recall being asked about that 10 as well? 11 А Yes, I believe, yeah. 12 0 And if I -- okay. Pardon me. Now 13 I'm talking over you. I'll do my best not 14 to. You responded, if I understood 15 correctly, that tubing was initially for oil 16 production. 17 Do you recall that? 18 А Yes. 19 Was the original construction of 0 20 SS-25 as an oil well intended to include service for extraction and injection of 21 high-pressure gas through the annulus between 22 23 the tubing and the casing? 24 The original design of the well was А 25 an oil well as you mentioned and Mr. Lotterman mentioned. It was converted 26 27 into a gas well in the late 1970s, I believe, 28 mid to late 1970s. So, yeah, the initial

	March 23, 2021 940
1	intent of the well was probably an oil well,
2	that's correct.
3	Q Okay. And just to be sure I have a
4	clear understanding to my question, the
5	original construction of SS-25 as an oil
6	well, was that intended to include service
7	for extraction and injection of high-pressure
8	gas through the annulus between the tubing
9	and casing?
10	A That design would not have
11	envisioned that. That design would have
12	envisioned what you do normally in an oil
13	well or a gas well is in conventional oil
14	or gas well, I'm not talking about storage
15	you produce through the tubing and you design
16	the production casing to handle that entire
17	pressure, so that's really would have been
18	intent of the design.
19	Q Thank you.
20	A As an oil well.
21	Q Yes. Understood. Thank you.
22	Dr. Krishnamurthy, do you recall
23	being asked if you heard Ms. Felts testifying
24	earlier prior to you testifying?
25	A Yes.
26	Q And you said that you had listened;
27	is that correct?
28	A Very little. It was a half hour or

	March 23, 2021 94
1	so. I just couldn't peel off some other
2	things I was doing so I did not attend as
3	much.
4	Q Okay. Did you happen to hear
5	SoCalGas asking Ms. Felts if she had seen
6	information that Blade did not have for
7	purposes of producing the Blade main report
8	and the supporting reports?
9	A No, I did not hear that question.
10	Q Okay. Following the Blade report,
11	the issuance of it in May 2019, you're aware
12	that the Commission ordered opened an
13	Order Instituting Investigation and an Order
14	to Show Cause; is that correct?
15	A Yeah.
16	Q Okay. And that's the incident
17	proceeding where you're testifying.
18	You understand that?
19	A Yes.
20	Q And were you aware that during the
21	course of this proceeding, SED
22	(Reporter call dropped.)
23	ALJ POIRIER: We'll be back on the
24	record.
25	Why don't you restate, Mr. Gruen.
26	Mr. Gruen, you're on mute.
27	MR. GRUEN: I'm sorry. Can you hear
28	me?

Evidentiary Hearing March 23, 2021 942 ALJ POIRIER: 1 Yes. BY MR. GRUEN: 2 Dr. Krishnamurthy, during the 3 0 4 course of the Order Instituting Investigation 5 and Order to Show Cause, were you aware that the Safety and Enforcement Division asked 6 7 Southern California Gas Company data 8 requests? 9 Α I'm not aware, but I'm sure that 10 happened. 11 0 Okav. So that's after Blade issued 12 its root cause analysis; is that right? 13 Α Correct. Correct. 14 And since you're not aware, you did 0 15 not review any of the data responses that 16 SoCalGas provided in response to SED's data 17 requests of SoCalGas during the course of 18 this proceeding. 19 Is that also true? 20 Α That's correct. That's true. Thank you. Mr. Krishnamurthy, if I 21 0 22 could turn to another line of questioning --23 I'm sorry, Dr. Krishnamurthy. I should be 24 more careful and accord you the respect that 25 you're due. Do you recall that you had 26 originally told SoCalGas -- and I believe it 27 might have been the Commission as well --28 that Blade intended to produce its root cause

1	analysis; that is, the main report and
2	supporting attachments, in March of 2019?
3	A I don't remember saying that, but
4	it's possible. I don't remember saying the
5	March deadline, Mr. Gruen, but it's possible.
6	Q Okay. Maybe if I just state it
7	more generally. Do you recall that Blade had
8	let SoCalGas and SED know that Blade was
9	intending to publish its main report and
10	supporting attachments prior to May of 2019?
11	A Yes. We had a couple of deadlines
12	and March was one of them. We were thinking
13	of finalizing it in March.
14	Q Okay. Thank you. And so I'm
15	noticing the discrepancy in dates there
16	between Blade's intent to finalize in March
17	and Blade actually finalizing in May. So if
18	I may, why wasn't Blade able to finalize the
19	main report and supporting attachments that
20	it produced until two months after it had
21	initially projected?
22	A Yeah, our target was, if I remember
23	right and, again, I'm going back deep into
24	my memory bank. Sometimes it's
25	challenging it was around middle of March,
26	if I remember right, Mr. Gruen, middle of
27	March. And then we got some additional data,
28	electronic data. For me, the most important

part of this project was to make sure we are 1 2 not missing any data because the data there is crucial to our conclusion, in addition to 3 all the physical evidence. And so we were 4 5 given data, I believe in February, February 6 of -- or January. I forget. Don't hold me 7 to the dates -- in electronic form to con --I believe that that (inaudible) from SoCal 8 9 was just to make sure we are not missing 10 anything.

And so we went through that data to make sure, and really that data had been provided in other forms and we had already had it so it didn't make any change to our conclusion but we wanted to check everything. It gave us a bit more time to tighten up a few things and so that's why it went to me.

So I don't want to say it was only the data. Data was part of it. And also we wanted to tighten and couple of things, but I did want -- we did want to confirm that we had anything materially new in the data set that could change our conclusions or modify or inform it differently.

25 Q Understood. Thank you. And did 26 that new data -- do you recall whether that 27 came in before or --

28

(Reporter call dropped.)

]

ALJ POIRIER: We'll be back on the 1 2 record. 3 Mr. Gruen, please go ahead and 4 proceed. 5 BY MR. GRUEN: Dr. Krishnamurthy, before the 6 0 7 break, we experienced some technical difficulties there. But before the break, we 8 9 were discussing the discrepancy between when Blade announced, initially, it would finalize 10 11 its main report and when Blade actually 12 produced the main report. 13 And if I understood right, the 14 approximate dates, the initial statement was March of 2019 when Blade would finalize. And 15 16 Blade actually ended up publishing in May of 17 2019. 18 Is that accurate? 19 That's accurate. Α Yes. 20 0 And I had understood your answer to 21 be that Blade -- you -- -- that Blade had 22 received some additional data from SoCalGas 23 prior to the finalization March date of the 24 Blade data report. And that was part of the 25 reason for change in dates. 26 Did I characterize that accurately? 27 Α That is correct. I want to be 28 careful. That is part of the reason. Of

	March 23, 2021 946
1	course, it also gave us a chance to work it
2	and make sure everything was right.
3	So we had to review the data just
4	to check and make sure everything was there,
5	and it was not an issue. It didn't change.
6	But we had to check a few things, make sure
7	some new information was not there that we
8	may miss.
9	Q Okay. And did SoCalGas provide the
10	new data that you were just referencing
11	before or after Blade mentioned that it was
12	intending to finalize the main report in
13	March? Do you recall?
14	A I don't recall, Mr. Gruen. I don't
15	recall that at all.
16	Q That's okay.
17	A That is quite a challenge. No, I
18	don't recall.
19	Q I agree with Mr. Lotterman. I'm,
20	frankly, in awe of your memory. So I
21	certainly appreciate your answers.
22	If I can, the data that Blade
23	received that you were just referencing,
24	would were these data provided in response
25	to data requests that Blade had issued?
26	Do you recall?
27	A I don't recall. But I can go back
28	and check. It would be in request (sic) to

1	some of our data requests. But, like I
2	mentioned, we checked everything. And I
3	believe it was I want to I want to say
4	it was 25-A there was some data, 25-B there
5	was some data. But this data we had already
6	received before, I believe. And so it didn't
7	really have an impact. But we had to check
8	everything.
9	Q Okay. Let me just let me ask
10	you, if I could, I believe that Mr. Lotterman
11	had asked you about your knowledge of Boots
12	and Coots as a well-kill contractor.
13	Do you recall being asked that?
14	A Yes.
15	Q And I believe your answer and
16	correct me if I'm misstating this.
17	I believe your answer to that was
18	you were familiar with them?
19	A Yes.
20	Q Okay. And that you had wanted to
21	talk to Boots and Coots and ask them
22	questions.
23	Did I understand that correct?
24	A Yeah.
25	Again, I don't want to phrase it
26	"ask them questions." It was more our
27	goal was, there was as I had mentioned to
28	Mr. Lotterman earlier, we didn't see any

	March 23, 2021 948
1	modeling, data, results, anything. And we
2	were a bit curious.
3	And, whereas, kill number 7, there
4	was a lot of good information. We understood
5	what was done. The other kills, 2 through 6
6	we couldn't see it. And that was the intent
7	of the question.
8	That was the clarification we
9	wanted to have. That was the reason for
10	wanting to meet with them and understand what
11	was the thinking behind each of the kills so
12	that we can reflect that in our analysis.
13	Q Thank you
14	A That was the intent of our request.
15	Q Thank you, Dr. Krishnamurthy.
16	And in was Blade granted access
17	to asking questions of Boots and Coots, or to
18	communicating with them about what you just
19	described?
20	A No, we couldn't. We didn't have
21	the ability to do that yet.
22	Q Okay. So that's an example of
23	information that you wanted to get but
24	weren't able to get during the course of root
25	cause analysis; is that right?
26	A Yes. Yes.
27	So the assumption we made so
28	consequently, as we articulated in our

948

	March 23, 2021 949
1	report, we assumed modeling was not done.
2	And other factors guided us in that
3	conclusion. So that is why we were
4	comfortable to write the report at that
5	point.
6	If I were if we were not
7	comfortable writing the report, we would have
8	attempted to do some other stuff. But we had
9	enough information to write our report. So
10	we decided to go without that information.
11	Q Understood.
12	Your Honor, at this time, that's
13	all I have on redirect.
14	ALJ POIRIER: Thank you, Mister
15	MR. GRUEN: And if I could just thank
16	Dr. Krishnamurthy and Blade for all their
17	hard work and their contributions to the
18	proceeding.
19	Thank you very much.
20	ALJ POIRIER: Thank you, Mr. Gruen.
21	I believe Ms. Bone indicated that
22	she had a short amount of clarification
23	cross.
24	Ms. Bone, are you ready to proceed?
25	MS. BONE: I am. Thank you, your
26	Honor.
27	ALJ POIRIER: Please go ahead.
28	///

1 CROSS-EXAMINATION BY MS. BONE: 2 3 Dr. Krishnamurthy, good afternoon. 0 4 А Good afternoon. 5 My name is Traci Bone. And I'm 0 6 representing Cal Advocates in this 7 proceeding. And I wanted to be clear that I'm 8 9 not an engineer. So please bear with me and 10 correct me where you need to. 11 Can you do that for me? 12 Yes, I will. А 13 Okay. 0 Thank you. 14 On cross-exam with Mr. Lotterman, 15 you seem to agree that SS-25 was pressure 16 tested at over-the-average pressure in the 17 well field, at an operating pressure over 18 that of the general field. 19 Do you recall that discussion with 20 Mr. Lotterman? 21 Α Yes, I recall. May I clarify that statement a little bit, just so that --22 23 Please. 0 24 Is that okay? А 25 What I -- what we wrote in Yeah. 26 the report, and what I meant to say to make 27 sure I say it correctly, is that the well was 28 tested above the pressure it was supposed to

operate at as a gas storage well, giving 1 2 yourself a safety factor. That is what I 3 meant. Okay? I want to clarify. 4 All right. Thank you for that 0 5 clarification. Do you know when that pressure test 6 7 was performed? I believe it was '73 or '77. 8 Α That's the timeline that sticks in mind. 9 But, yes, that would be the time. 10 11 0 Did the utility perform any other pressure test after that time on SS-25? 12 13 А No. 14 Is there anything that you know of 0 15 that prevented SoCalGas from pressure testing the well after that time? 16 17 You would have to pull the tubing А 18 to do the pressure test. That's the only way 19 I can think of. There are other ways to do with the tubing, but it's more complicated, 20 so -- so that would be one issue. And then 21 22 we would kill the well. 23 Those are some things to do, which 24 I believe Mr. Lotterman asked me questions on 25 So those are things you would do. You that. would pull the tubing, kill the well, and 26 27 then do the pressure test. 28 So how often do you believe that a 0

1	pressure test should be done to ensure the
2	mechanical integrity of a well?
3	A Yeah. I'm not a fan of the
4	pressure test. So I'm talking as a technical
5	opinion, Ms. Bone. Because the way I would
6	which we articulate in our root cause of
7	solutions, we don't recommend a pressure
8	test. What we would recommend is a wall
9	thickness inspection instead and periodic
10	timeframe. And there's a reason for that.
11	What a pressure test does for you
12	is, if you have a corrosion that is deep
13	enough to fail, it will cause it to fail.
14	And that is what we would call a trailing
15	indicator. By that time, the casing has
16	failed. So you would want to do wall
17	thickness so that you prevent it prevents
18	a pressure test or underoperation. That is
19	what you want to do.
20	That is why a pressure test is not
21	an ideal way. It is a more complicated way.
22	It's not a simple way in a wellbore. And
23	like a pipeline, which is the result when
24	external pressure is constant, when you look
25	at a downhole casing, there is an external
26	pressure to the casing, which we call pore
27	pressure. And that changes with depth, so
28	Q Okay. So, it sounds to me like you

	March 23, 2021 953
1	would prefer ultrasonic imaging tools or
2	magnetic flex leakage tools to be used;
3	correct?
4	A Yeah. Those are better options and
5	more practical and easier options. Yeah.
6	That would be the better option.
7	Q So when you say, "easier," they are
8	easier to implement than a pressure test?
9	A No. It is easier from a mitigation
10	point of view. So you you don't go to the
11	point of which a pressure test and you have a
12	hole. You want to do it before that. So
13	that is why a well-thickness inspection is
14	better.
15	Q So do you believe that a USIT or an
16	MSL tool could have detected the corrosion in
17	SS in SS-25's casing before 2015?
18	MR. LOTTERMAN: Objection, your Honor.
19	I'm going to object on several grounds,
20	vagueness is one.
21	What time period is she talking
22	about? The day before? Or let's say 1982?
23	I guess that's my main objection. I
24	would like a timeframe.
25	ALJ POIRIER: Ms. Bone, can you
26	restate, please?
27	BY MS. BONE:
28	Q Sure.

	March 23, 2021 954
1	Do you believe that a USIT or an
2	MSL tool could have detected the corrosion in
3	SS-25 in 2015?
4	A Yes. In 2015, it could have.
5	Q And could it have detected
6	corrosion in 2010?
7	MR. LOTTERMAN: At this point, your
8	Honor, I will object on speculation grounds
9	as well.
10	MS. BONE: Your Honor, I would remind
11	everyone that yesterday Mr. Krishnamurthy
12	testified that the corrosion was very, very
13	slow. And so it seems like he may have a
14	sense of how long, how far back the corrosion
15	would have been existent in the pipe.
16	ALJ POIRIER: Objection overruled.
17	Mr. Krishnamurthy, please answer to
18	the extent you can.
19	THE WITNESS: Yeah. It would be I
20	don't want to use the word "speculative." I
21	would be making an educated estimate of some
22	of this. So we want to be careful.
23	The data we looked at in literature
24	for metallogens and bacterial corrosion
25	showed a low corrosion rate. And depending
26	on how you measured it in this well, it could
27	be a bit higher, could be a bit lower, so
28	that is why I called it it's a hypothesis

	March 23, 2021 955
1	or a speculation. But I would say in 2010,
2	you would have seen it. That would be my
3	guess.
4	BY MS. BONE:
5	Q What about in 2005?
6	A I would have to do I would have
7	to do some thinking to come up with those.
8	So wha the way an engineer or a scientist
9	would do that is, you would bring a lower
10	bound and upper bound and say, "How back
11	could I go?" And I would have to do that
12	kind of an analysis to go beyond, say, 2010
13	or 2005 to understand what is an upper bound
14	of cor so if you can understand my
15	question, is the corrosion rate at 17 mils
16	per a year mills is 1,000th of an inch
17	then I would say, "Hey, probably 2010 is the
18	limit." But if the corrosion rate is 15 mils
19	per a year, then 2,000 is the limit, you know
20	what I mean?
21	I haven't done what I would call an
22	upper bound, lower bound corrosion rate to
23	truly establish what those boundaries are.
24	So I would it would be close speculation
25	at this point, if I go beyond that 2010. But
26	by "beyond," I mean before 2010.
27	Q So do you have an opinion as to how
28	often an MSL or a USIT inspection should be

1 performed? 2 Α Yeah. 3 Again, like we discussed earlier, 4 you don't want to remove the tubing every 5 year or two years. It's too -- it is not a 6 -- it is not something necessary. So you 7 have to understand the corrosion rate 8 phenomenon. So what I would do in a case like 9 10 this is, I would say every 10 years, every 11 15 years to be conservative. 10 or 15 years is more than adequate, if not longer. Depend 12 13 -- see, the problem with that answer is, it 14 depends on the corrosion mechanism. That 15 goes back to the root causes or solutions we 16 identified. 17 You want to understand the 18 mechanism of the corrosion, which will then 19 inform you on what rate this corrosion is 20 growing. If it's microbiological, it's one 21 way. If it's CO2, it's another way. And once you understand that, then you can come 22 23 up with the frequency. But the frequency has 24 to be defined by or -- informed by the 25 mechanism in place. 26 0 Thank you, Mr. Krishnamurthy. 27 Could you -- we've heard some 28 discussion about pressure tests and also

1 pressure surveys. 2 Can you tell us what the difference 3 is between a pressure test and a pressure 4 survey? 5 Absolutely. I -- and I want to А clarify something that I answered earlier 6 7 when Mr. Lotterman asked me. 8 So the pressure test is what was 9 done in 1973. I just found the date on the 10 report, so that's why I'm a little bit more 11 confident. In 1973 when the conversion 12 happened, a pressure test was done. 13 So you're actually putting a 14 retrievable bridge plug at the bottom, 15 separating the reservoir from the well. And 16 so that pressure test actually pressures the 17 casing. And you go -- they go back up and 18 they pressure different portions of the 19 casing like they did in '73. And, like I 20 mentioned earlier in your O and A, that 21 pressure test was above the safety factor --22 or above the pressure anticipated in the wellbore. 23 24 Whereas, a pressure survey is, 25 you're open to the reservoir at that point, 26 your reservoir is still there, and you're 27 running a transducer mapping the pressure 28 inside the tubing. Okay? That is a pressure

	Malch 25, 2021 956
1	survey done.
2	Now, I misspoke when Mr. Lotterman
3	asked me this question. This is one of the
4	clarifications I was going to make is, you
5	would have since you're running it through
6	the tubing, a small casing leak would not be
7	picked by the pressure survey. The pressure
8	survey quite often is done to establish the
9	reservoir pressure, understand what the
10	reservoir pressure is over time, which is an
11	important data point to have.
12	So when you're running it through
13	the tubing, you're going to see that now the
14	casing had a massive rupture or leak which,
15	of course, other things would have found it.
16	You would see the bottom hole pressure shift.
17	But in the leak situation, or under other
18	failure situation, a pressure survey will not
19	help. The temperature and the noise is far
20	better tools that were used.
21	Q Far better tools to do what?
22	A To monitor leaks or identify leaks.
23	Q Would a pressure survey be expected
24	to reveal the corrosion from the SS-25
25	production casing?
26	A Not the way I understand the
27	pressure survey that is done, yes. No, I
28	don't believe so.

	March 23, 2021 959
1	Q Okay. And do you believe that a
2	noise log or a temperature survey would be
3	expected to reveal the corrosion in the SS-25
4	production casing?
5	A No. Those are what we call
6	trailing indicators. So you need to have a
7	leak already in place. And then the
8	temperature will tell you right away. So it
9	would be a very good indicator to that. But
10	prior to that, it won't. And that is why in
11	SS-25 there was never any indication of leak
12	ever in the history. We didn't find any.
13	Q Thank you, Dr. Krishnamurthy.
14	Mr. Lotterman also asked you about
15	what kind of tests might be available to
16	measure the wall thickness of a surface
17	casing.
18	Do you remember that?
19	A Yes.
20	Q And as I understood it and,
21	again I'm not an engineer it's saying that
22	you agreed with him that if you wanted to
23	measure the wall thickness of a surface
24	casing, you would have to remove the
25	production casing to measure the wall
26	thickness.
27	Do I have that right?
28	A That is correct. Again, let me

	March 23, 2021 960
1	clarify and explain further. Yeah? Because
2	that's an important so the way we did it
3	in SS-25 as part of our RCA, we wanted to
4	have had a good handle on where was the
5	corrosion, how much. So we did a direct
6	measurement.
7	Now, since I don't know the
8	timeline on this, close 2016 or 2015 or
9	there are tools today, they are not accurate
10	by any means, they what they do is they
11	run through your tubing, and they identify
12	leaks in multiple casing
13	ALJ POIRIER: I'm sorry
14	THE WITNESS: They are not the
15	reliability
16	ALJ POIRIER: I'm sorry, Mr.
17	Krishnamurthy. We have some background
18	noise.
19	(Off the record.)
20	ALJ POIRIER: Let's go back on the
21	record. Please continue. I apologize for
22	interrupting you, Mr. Krishnamurthy.
23	THE WITNESS: That is okay.
24	So that is correct. To do a good
25	measurement of well thickness loss, you have
26	to pull the casing to render evaluation. But
27	as part of SS-25, our RCA, we identified
28	technology that per I don't know when it

1	came to market. It was new to me when I
2	when we looked at it in 2016. I and this
3	technology has been floating around. It's
4	still reliability is an issue.
5	But what they do is, they give you a
6	qualitative estimate of wall loss in
7	different strengths. They are not as
8	accurate as some of the tools we ran. But,
9	currently, there are some technologies that
10	do the reliability or repeatability, all
11	that should be reviewed in detail. We did it
12	for an RCA where that was we wanted to
13	get an indication. But when I'm attempting
14	to do this on a field-wide basis, I would
15	work it a lot harder before I come to that
16	conclusion. That is an option.
17	Q Okay. Thank you for those
18	clarifications. My question is a little more
19	simplistic than all of that.
20	And it's just that I got the
21	impression that it was a very significant
22	undertaking to remove production casing; is
23	that correct?
24	A That is correct. It is a
25	significant undertaking.
26	Q Okay. And but, there's a
27	difference between a surface casing and a
28	production casing; is that correct?

1	A Yes, it is.
2	Q Okay. And so in your report, you
3	found that SoCalGas's failure to perform a
4	a wall thickness inspection for the
5	production casing was the issue, not whether
6	they had measured the wall thickness of the
7	surface casing; is that correct?
8	A That is correct.
9	Q And that, in fact, SoCalGas's
10	failure to perform a wall thickness
11	inspection for the production casing was a
12	root cause of the incident; is that correct?
13	A Yes. That was one of the root
14	causes. That is correct.
15	Q So SoCalGas did perform wall
16	thickness inspections between 1988 and 1990
17	for the seven wells that were Vertilogged; is
18	that correct?
19	A That is correct.
20	Q Do you know why they didn't perform
21	Vertilog on the other 13 wells that their
22	engineer recommended?
23	A We didn't find any record of the
24	rationale for it in the documentation. I
25	believe, at some point, we requested it
26	and, again, I'm testing my memory here and
27	SoCalGas gave us the rationale for it. I
28	I don't recollect what that rationale was.

]	
1	But we didn't find any records from 1988,
2	1991, '94 stating this is why it was stopped.
3	And we articulated that in the report.
4	Q Thank you.
5	Dr. Krishnamurthy, I just have one
6	other short line of questioning and then
7	we'll be done, if we can continue.
8	I believe that yesterday you
9	testified that the water found around the
10	surface casing for SS-25 was from rain and
11	that that was the only source of water; is
12	that correct?
13	A That is correct. Yes.
14	Q So is it strange or surprising to
15	you to find rainwater around the surface
16	casing?
17	A I don't want to call it strange.
18	But when you look to the shallow geology in
19	Aliso, about 200, 300 feet shallower, I mean
20	0 to 200, 300 feet, the rock is weathered and
21	it has a lot of permeability. So it makes
22	sense that you would have precipitation at
23	145 80 to 145, which is where some of the
24	largest external corrosion was on the surface
25	casing. And the challenges of cementing the
26	surface casing all add up.
27	So it going in, I would not have
28	expected that. But, again, I didn't know

	March 23, 2021 964
1	enough about Aliso at that point. But the
2	shallow geology clearly indicates the rock is
3	weathered and highly permeable where it's
4	the shallow result. So it kind of makes
5	it adds up.
6	Q So do you think that the rainwater
7	was present there for a long time?
8	And by "a long time," I mean, you
9	know, 10 or 20 years?
10	A I don't know. I wouldn't see
11	the challenge there is, what you're dealing
12	with this water is two things. There are two
13	mechanisms possible with water. I'm talking
14	shallow now. Okay? I'm not talking deep in
15	the seven-inch.
16	When you go down around the
17	seven-inch, around the shoe, which is what we
18	believe initially happened, what you're
19	dealing with is, the water will deoxygenate
20	at different so water has some oxygen in
21	its rainwater. The oxygen comes from the air
22	at 20 percent whatever the oxygen number
23	is, it will dissolve in the rainwater.
24	So your first source of corrosion
25	is the oxygen in the water. Once that oxygen
26	is depleted, then other mechanisms step
27	forward. But that oxygen corrosion, with a
28	finite amount of oxygen and finite amount of

964

	March 25, 2021 90
1	water, there will be little bit of wall loss
2	due to it. And then the mechanism may shift
3	the microbiology and other things.
4	So my expectation is, this would
5	take a long time. How long? You know, those
6	are the things where I would be speculating.
7	Q Mr Dr. Krishnamurthy, the water
8	that was found around the surface casing for
9	SS-25, is that something that would have been
10	visible during an inspection of the well?
11	A No, I don't think so. No, it
12	wouldn't be visible.
13	Q And that concludes my
14	cross-examination. Thank you very much.
15	It's been a pleasure meeting you.
16	A Thank you.
17	ALJ POIRIER: Thank you, Ms. Bone.
18	I think now we'll turn now to Ms.
19	Frazier.
20	Are you ready to proceed?
21	MS. FRAZIER: If we could take a short
22	break, I think that would be helpful.
23	Mr. Krishnamurthy, do you need that?
24	THE WITNESS: Yeah. Can we talk for
25	2 minutes, 5 minutes?
26	ALJ POIRIER: Let's take a 5-minute
27	break until 3:40. And then we'll be back on
28	the record.

Evidentiary Hearing March 23, 2021 966 So, off the record. 1 2 (Off the record.) 1 ALU POIRIER: Back on the record. 3 4 We took a short break, and now we're 5 Ms. Frazier is going to do redirect back on. for Dr. Krishnamurthy. 6 7 Please proceed. 8 REDIRECT EXAMINATION BY MS. FRAZIER: 9 10 0 Dr. Krishnamurthy, my name is Mary 11 Frazier. Obviously I'm the attorney for Blade and for yourself here at this 12 13 proceeding today. You understand that; 14 correct? 15 Δ Yes. 16 It has been a relatively long two 0 17 days, and I understand you would like to make 18 some clarifications to your testimony; is 19 that correct? 20 Α Yes. Okay. So I'm going to bounce 21 0 around a little bit. But to the extent that 22 23 you need to provide further details on the 24 scope of the question, please feel free to do 25 so. 26 The first line of questioning 27 relates to the first day when you were asked 28 about a stage collar leak in casing

	March 25, 2021 907
1	integrity. Is there anything that you would
2	like to clarify as it relates to the stage
3	collar leak on the SS-25-A?
4	A Yes, I do. A casing stage collar
5	is part of the production casing, which
6	provides pressure containment. So a leak in
7	the stage collar does affect casing
8	integrity. I misspoke that day. I was
9	focused on problems with the casing itself.
10	But when you put a stage collar in a casing,
11	it becomes part of the casing strength.
12	So I wanted clarify that.
13	Mr. Lotterman asked me that question. I
14	wanted to make sure I clarified that.
15	Q There was also a discussion on well
16	mains. Do you know how the well mains in
17	Aliso were selected?
18	A See I don't know how they were
19	selected in Aliso. But that day I was
20	focused on standard Sesnon which was another
21	formation. When when you especially
22	when you look at land base wells, they're
23	based on leaseholder names. So my assumption
24	is that Aliso was something similar.
25	There's somebody more qualified to
26	answer that. But I wanted to make sure I
27	clarify that.
28	Q Okay. The next area that I want to

	March 23, 2021 968
1	visit with you about is surface casing. Can
2	you please provide some additional detail on
3	the purposes of surface casing?
4	A Yeah. I wanted to clarify this.
5	Again, this is a detail I believe I may have
6	neglected a couple of points when I addressed
7	this. I want to clarify and enhance my
8	answer.
9	Of course the primary one of the
10	functions of the surface casing is isolate
11	and protect the fresh and groundwater.
12	The other two are also important
13	roles. It is to provide structural support
14	during well construction. That means during
15	drilling the next section of the well.
16	And also once you have the surface
17	casing, that is when you put the BOP on and
18	you can drill containment for drilling.
19	So it has multiple objectives in
20	addition to what I mentioned. So I just
21	wanted to make sure I clarify that.
22	Q And who is it if you know that
23	proposes the surface casing depth?
24	A Surface casing depth, normally it
25	would be coming from the that depends.
26	Normally the person who is drilling the well
27	will propose the depth for the regulatory
28	(indecipherable) to make sure it covers the

9	6	9
---	---	---

1	water zone. That is our understanding.
2	Q Right. Mr. Lotterman asked you
3	some questions about Blade's involvement in
4	revising regulations. Was Blade involved in
5	the revision of storage gas well regulations
6	for California or any other state?
7	A No. I want to clarify that. Our
8	since May 2019, we generate the report.
9	We have not been involved with DOGGR or PHMSA
10	or any other regulators in terms of
11	contributing to any regulations. Nobody had
12	asked us and we have not volunteered.
13	UNIDENTIFIED SPEAKER: Be careful.
14	(Crosstalk.)
15	BY MS. FRAZIER:
16	Q You confirm reliability several
17	times during your deposition or your trial
18	testimony. So the record is clear, can you
19	please describe what you mean by the term
20	"reliability"?
21	A Yeah. This is a very important
22	term for us. I hate to use the word "nerds,"
23	but engineers and scientists. Reliability is
24	a statistical term. You cannot say something
25	is reliable, not reliable. You can say
26	something is less reliable, more reliable.
27	But it has to be quantified.
28	For example an inspection tool such

1	as USIT or HRVRT, you would run it 20 times
2	in a well whether it's 1998 or 2016. And you
3	would say it runs just as the I have
4	95 percent confidence it will sight the
5	corrosion within plus or minus 10 or
6	20 percent. That is the reliability.
7	So when you say so just looking
8	at growth of technology and computers and
9	everything else, 1998 would have been less
10	reliable than 2016.
11	So we have to frame that it is not
12	reliable, it is reliable. That's not the way
13	we look at it even today. And the downhole
14	tools have do not have well documented
15	reliability not even today.
16	Q All right. Just two more short
17	topics. You provided some testimony
18	regarding API recommend practice 585 and how
19	it applies to gas storage wells failure
20	investigation. Do you need to clarify
21	anything as it relates to that testimony?
22	A Yeah. Again, we recognized 585 is
23	not for gas storage. We were looking for
24	analogous pipelines that we could reference
25	other than just put up a Blade approach to
26	this.
27	We followed API 585, which was very
28	good. And the API 585 they are explicit that

1	other components that are pressure containing
2	such as could be gas storage, could be other
3	wells, other components, could draw and apply
4	their approach. So we researched it. So I
5	wanted to give context to our reference.
6	Q All right. And then finally before
7	we took our last break before I started
8	asking you questions, Mr. Lotterman believed
9	that you had an incorrect date for the dates
10	the pressure tests were performed.
11	Could you please look to page 197
12	of the main report, which I believe is
13	Exhibit-1000, and confirm the dates that the
14	pressure test was done on the SS-25 A?
15	A Yeah. The just to clarify, the
16	pulses of conversions started in May 1973.
17	And pressure tests were done during that
18	time. That is the pressure I was
19	referencing.
20	But as Mr. Lotterman said, there
21	were additional pressure tests done in '76,
22	'79, in addition to 1973. And that is on
23	page 197. That is correct. I wanted to make
24	sure I clarified my dates from before.
25	MS. FRAZIER: All right.
26	Dr. Krishnamurthy, that's all the questions I
27	have. Thank you for your time.
28	THE WITNESS: Thank you.

```
Evidentiary Hearing
March 23, 2021
```

1 ALJ POIRIER: Thank you. 2 Mr. Lotterman, do you have any 3 additional recross on what was covered by 4 Ms. Frazier? 5 MR. LOTTERMAN: I do not, your Honor. 6 I have one question to ask Dr. Krishnamurthy 7 off the record but nothing else. 8 Thank you. 9 ALJ POIRIER: Mr. Gruen, do you have 10 any additional cross based on what 11 Ms. Frazier raised? MR. GRUEN: Nothing further from SED, 12 13 your Honor. 14 ALJ POIRIER: Ms. Bone, do you have anything? 15 16 MS. BONE: Yes, your Honor, actually I 17 do. Give me a second to come put myself back 18 on. 19 RECROSS-EXAMINATION 20 BY MS. BONE: 21 0 So, Dr. Krishnamurthy, as I 22 understand it then, there was a pressure test 23 performed in 1976 and then another one in 24 1979? 25 Yes; that's correct. А 26 0 What do you understand that these 27 pressure tests would have revealed at that 28 time?

1	A Well, the 1973 pressure test was a
2	big one. Okay. And then they had some
3	workovers after that, '76, '79. And there
4	were pressure tests at each site. That is my
5	understanding from the records from SS-25.
6	Q So the pressure tests that you were
7	discussing with Mr. Lotterman yesterday is
8	that the 1973 pressure test? The one that
9	was done at a certain level above the
10	reservoir?
11	A That's correct. The others we
12	would have to calculate because it was a
13	single number. So we need to look at
14	because remember you have a hydrostatic of
15	2,500 on surface. What is it on bottom? We
16	haven't checked all that. But either equal
17	or higher. I'll have to check.
18	Q And is that something that you can
19	do and report back on?
20	A Sure.
21	MS. FRAZIER: Let me just interject.
22	And maybe I can visit with Dr. Krishnamurthy
23	off line and figure out what is involved and
24	whether we're able to comply with that
25	request.
26	MS. BONE: Understood.
27	Q So you said that the 1976 and 1979
28	tests were associated with workovers. Is

9	74
---	----

that something that would normally occur with 1 2 a workover? You would then do a pressure test? 3 It would not be normal. 4 А No. It would be something you would have to actually 5 6 do. 7 And do you have any understanding 0 8 of why it was done? 9 Α No. My guess would be because it 10 was being converted to a gas storage well. 11 It was part of that process would be my That would be a guess though. I 12 quess. 13 don't want --14 0 Okay. And we don't want you to 15 quess. So thank you. 16 MS. BONE: That's all I have. 17 ALJ POIRIER: We'll go around once 18 more. 19 Ms. Frazier, any redirect? 20 MS. FRAZIER: Nothing from me. 21 Thank you. 22 ALJ POIRIER: Mr. Lotterman, do you 23 have anything based on what Ms. Bone just 24 asked? 25 MR. LOTTERMAN: No, your Honor. 26 Thank you. 27 ALJ POIRIER: And, Mr. Gruen? 28 MR. GRUEN: Nothing from SED at this

```
Evidentiary Hearing
March 23, 2021
```

1 time. 2 Thank you, your Honor. 3 ALJ POIRIER: Okay. Dr. Krishnamurthy, 4 sounds like you're done. Thank you. 5 We'll go off the record. (Off the record.) 6 7 ALJ POIRIER: We'll be back on the record. 8 While off the record, we just 9 10 discussed some matters in terms of witness 11 order and who is going to be on for tomorrow. 12 And we also determined that there was an 13 outstanding answer from Dr. Krishnamurthy to 14 one of Ms. Bones' questions, and that will be 15 provided another day on the record. And we 16 will be reconvening tomorrow at 10:00 a.m. 17 And thank you, everybody. We'll be off the record. 18 19 (Whereupon, at the hour of 3:57 p.m. this matter having been continued to 20 10:00 a.m. March 24, 2021. The Commission then adjourned.)] 21 22 23 24 25 26 27 28

1	BEFORE THE PUBLIC UTILITIES COMMISSION
2	OF THE
3	STATE OF CALIFORNIA
4	
5	
6	CERTIFICATION OF TRANSCRIPT OF PROCEEDING
7	I, ANDREA L. ROSS, CERTIFIED SHORTHAND REPORTER
8	NO. 7896, IN AND FOR THE STATE OF CALIFORNIA, DO
9	HEREBY CERTIFY THAT THE PAGES OF THIS TRANSCRIPT
10	PREPARED BY ME COMPRISE A FULL, TRUE, AND CORRECT
11	TRANSCRIPT OF THE TESTIMONY AND PROCEEDINGS HELD IN
12	THIS MATTER ON MARCH 23, 2021.
13	I FURTHER CERTIFY THAT I HAVE NO INTEREST IN THE
14	EVENTS OF THE MATTER OR THE OUTCOME OF THE PROCEEDING.
15	EXECUTED THIS MARCH 30, 2021.
16	
17	
18	
19	
20	Andrew Tors
21	ANDREA L. ROSS CSR NO. 7896
22	
23	
24	
25	
26	
27	
28	
	PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA

1	BEFORE THE PUBLIC UTILITIES COMMISSION
2	OF THE
3	STATE OF CALIFORNIA
4	
5	
6	CERTIFICATION OF TRANSCRIPT OF PROCEEDING
7	I, JASON STACEY, CERTIFIED SHORTHAND REPORTER
8	NO. 14092, IN AND FOR THE STATE OF CALIFORNIA DO
9	HEREBY CERTIFY THAT THE PAGES OF THIS TRANSCRIPT
10	PREPARED BY ME COMPRISE A FULL, TRUE, AND CORRECT
11	TRANSCRIPT OF THE TESTIMONY AND PROCEEDINGS HELD IN
12	THIS MATTER ON MARCH 23, 2021.
13	I FURTHER CERTIFY THAT I HAVE NO INTEREST IN THE
14	EVENTS OF THE MATTER OR THE OUTCOME OF THE PROCEEDING.
15	EXECUTED THIS MARCH 30, 2021.
16	
17	
18	
19	
20	
21	JASON A. STACEY CSR NO. 14092
22	CSR NO. 14092
23	
24	
25	
26	
27	
28	
	PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA
	I OPETC OITETITED CONTROLON, DIVIE OF CUTLOWITY

1	BEFORE THE PUBLIC UTILITIES COMMISSION
2	OF THE
3	STATE OF CALIFORNIA
4	
5	
6	CERTIFICATION OF TRANSCRIPT OF PROCEEDING
7	I, KARLY POWERS, CERTIFIED SHORTHAND REPORTER
8	NO. 13991, IN AND FOR THE STATE OF CALIFORNIA DO
9	HEREBY CERTIFY THAT THE PAGES OF THIS TRANSCRIPT
10	PREPARED BY ME COMPRISE A FULL, TRUE, AND CORRECT
11	TRANSCRIPT OF THE TESTIMONY AND PROCEEDINGS HELD IN
12	THIS MATTER ON MARCH 23, 2021.
13	I FURTHER CERTIFY THAT I HAVE NO INTEREST IN THE
14	EVENTS OF THE MATTER OR THE OUTCOME OF THE PROCEEDING.
15	EXECUTED THIS MARCH 30, 2021.
16	
17	
18	
19	JA
20	Attainers
21	KARLY POWERS CSR ND.#13991
22	
23	
24	
25	
26	
27	
28	
	PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA

SAN FRANCISCO, CALIFORNIA

March 23, 2021			
	1171 857:12	1997 931:2 934:12	2021 806:2,7
-	11:19 850:2	936:5	209 810:15
-25B 905:17	12 879:20	1998 970:2,9	215 867:7,27 868:7 882:25
	125 888:2	1:10 913:16	
0	126 877:23 888:3	1:15 881:6	217 863:1
0 963:20	127 888:3 903:21	1:18 881:7 882:1 	22 825:23 888:24 903:22 906:1 908:9
	12:06 881:7		910:20
1	13 962:21		221 858:16
1 840:21 842:16 863:27	145 963:23	 2 840:26 841:21 868:15 889:7 900:16,18 901:8, 13,27 902:14 948:5 965:25 2,000 907:26 930:10 955:19 	227 889:28
865:19,22,26 899:6,28	148 899:3		23 806:2 877:14 888:13
905:13	15 869:19 877:26 906:1		231 838:9,26 852:16
1,000th 955:16	913:8 955:18 956:11		853:23 879:21
1,500 823:19	15-minute 850:1		232 857:20
1.3 825:28	152 882:27	2.2 868:15	233 871:24 872:15 879:21
1.5 911:4	164 889:28 891:23 895:10 898:5	2.2.1(a) 868:27	234 836:1,6
10 844:28 872:14 933:20 956:10,11 964:9	17 862:24 867:16,18 868:11 905:8 955:15	20 847:5 964:9,22 970:1,6200 963:19,20	23rd 806:7 878:21 882:8
970:5			
10-minute 912:28	19 846:23 899:5	2000 845:26	24 878:5 888:18 889:2 895:22 898:14
935:10	19-06-016 806:9	2005 955:5,13	
1000 879:23 890:1 914:16	1953 808:22	2010 842:21 954:6 955:1,12,17,25,26	245 928:3,5
1001 914:16	197 832:18 971:11,23		25 846:24 917:8 918:4 930:16 931:28
1002 914:16	1970s 821:27 939:27,	2014 855:7,10,21 856:9 2015 829:7 834:3 837:27 841:26 854:25 870:28 871:6,11 874:14	25-A 917:8 947:4
1003 914:16	28 1973 957:9,11 971:16, 22		25-B 947:4
1004 835:7 914:16			25A 916:11 930:17
10:06 806:2	1976 972:23	875:9 877:2,14 878:5 888:13,19,24 895:22	25B 916:11 930:17
11 844:28 874:24,27	1977 809:4,24	903:23 908:9 910:20 931:2 934:12 936:5,14 953:17 954:3,4 960:8	295 868:9
875:11	1978 884:11		2:10 912:28
11-1 864:10	1979 972:24	2016 855:10,21,28	2:40 935:9
11-and-3/4-inch	1980s 843:19 844:7	894:22 905:13 906:1 928:19 960:8 961:2 970:2,10	2:48 933:21
883:6,9	1982 953:22		2:50 935:10
11-and-three-quarter 849:13	1988 843:26 845:4	2017 815:8 852:3,7	
11.17 862:14	846:5 847:8 848:1,16 849:1 851:3 852:2,10	2018 845:10 857:12	3
111 827:11 836:14	928:10,23 962:16 963:1	2019 810:11 811:21	3 840:27 841:21 897:23
838:15	1990 962:16	836:20 837:2 845:10 847:5 886:3 930:16	898:18 900:25
1120(c) 856:16	1990s 844:8	937:16,20 941:11	30 860:13 912:21
1121 856:16	1991 963:2	943:2,10 945:15,17 969:8	300 963:19,20
116 859:8			31 810:10

33 905:8	
330 846:23	
34-A 897:24 898:19	7 86
38-year 822:1	86 88
3:15 877:24 878:12	903
3:40 965:27	909
	7-in
4	73 9
4 835:6,19 852:16 853:6 857:1	76 9 77 9
4.6 832:18	79 8
40 818:6	97 ⁻
42 836:6	
5	8 86 93
5 815:18 816:19 857:18,	8,50
19 859:17 862:1,12 900:25 965:25	80 8
5-minute 965:26	88
5.6 810:15 815:24	80-
816:19	80s
50/50 822:9	840
500 823:18	85 8
54 928:7 929:10	892 923
580 823:18	
585 863:28 865:24 866:10 868:23 970:18, 22,27,28	9 84
5th 863:1	90 8
6	90- r 879
	90s
6 863:23,25 864:24 865:8 869:7 900:19	93
901:8,13,27 902:1,14	94 s
931:16 948:5	95 8
60s 844:13	35 0
65 928:13	
69 868:8	
6th 863:1	A.M

7 7 863:23,26 864:24 865:8 869:7 878:13 889:7 900:17 901:8,10 903:15,23 904:22,28 909:27 948:3 7-inch 883:8 892:16 73 951:8 957:19 76 971:21

77 951:8

79 884:11 885:12 971:22

8

8 869:10,28 928:10 931:10,12,13

8,500 923:2

80 847:26 865:18 885:14,25 963:23

80- 879:11

30s 814:16 845:8,17 846:9

85 815:18

892 892:12 907:25 923:20

9

9 844:28 868:16 870:13
90 865:18 878:23
90-million-a-day 879:11
90s 845:8 846:9 851:4
93 878:23
94 963:2
95 847:25 970:4

Α

A.M. 806:2 abilities 918:15 ability 935:21 948:21

absence 855:4

absolutely 830:12 844:24 849:4 863:11 865:4 868:22 880:3 909:28 911:9 919:21 957:5

abundance 930:18

accelerate 816:5

access 873:13,23 905:22 934:17 948:16

accord 942:24

account 902:4

accuracy 843:18 844:15 919:13

accurate 806:23 816:1 845:10 861:27 863:8 869:8,9 876:9,11 915:12,24 916:8 918:20 936:9 945:18,19 960:9 961:8

accurately 816:14 945:26

achievement 911:21

acknowledge 904:9

acknowledged 901:9

acknowledgements 915:6

acknowledges 897:16

acquire 929:8

act 893:28

action 863:15,18

actions 826:23

active 871:22

actively 862:13

activities 826:23 934:11 936:4

add 898:22 963:26

added 921:18

addition 812:4 813:11 944:3 968:20 971:22

additional 888:22 902:22,23 907:28 912:4 916:27 917:18 930:19 943:27 945:22 968:2 971:21 972:3,10

address 832:4 863:24 923:24,28 935:8

addressed 831:21 836:19,23 837:22 871:18 968:6

addresses 853:6 917:3

addressing 876:26 877:11

adds 964:5

adequate 845:12 846:10 956:12

adequately 866:1

adjacent 819:23

ADMINISTRATIVE 806:4

adopted 870:1

advised 834:18

Advocates 913:4,7,25 950:6

Advocates' 806:18

advocating 865:8

affect 813:1 967:7

affected 812:7,11,13, 21

afternoon 852:21 878:12 881:2 882:1,7, 19,20 913:20 914:4,5 937:10 950:3,4

afterward 809:26 880:20

age 822:16 823:2 858:3

agree 868:21,27 869:2 906:26 928:20,27 946:19 950:15

agreed 959:22

ahead 807:6 856:6 882:12 900:7 918:10,16 937:14 938:19 945:3 949:27

air 827:7 964:21

akin 930:5

al- 904:18

Aliso 806:9 812:5 816:13 817:21 819:28 820:11 821:26 829:14 831:17 833:10 841:10 858:4 859:9 870:6,7 871:8,14,22 876:23 885:24 897:19 898:1,25 921:4,9 927:28 928:1 963:19 964:1 967:17, 19,24

ALJ 806:6 807:6 818:23,25 837:17 846:25,28 849:28 850:5 866:28 867:19,28 868:2 880:25.28 882:4 884:19 885:3 904:1 909:2 912:1,15,23 913:5,9,11, 13,19 914:1 918:10,14 932:7,24 933:8,18,25 934:1,6,21,25 935:1,4, 14,18 937:6,13,25 938:12,17 941:23 942:1 945:1 949:14,20,27 953:25 954:16 960:13, 16,20 965:17,26 966:3 972:1,9,14

ALJS 806:28

alkalinity 811:5,26 813:28 814:1

alternative 899:7

altogether 910:24

amazing 911:23,24

American 866:8

amount 828:13 877:17 949:22 964:28

analogous 970:24

analyses 869:6

analysis 810:10 817:8, 20 818:14 821:16 822:4 824:20 825:25 826:7, 18,21 827:4 828:9,10, 21 830:8,22 832:22 834:20 849:24 852:13 853:20 856:21 860:18 863:26 864:1,11,14,15 870:12,21 884:5 898:16 902:9 904:8 915:13,18 916:15 922:24 923:8,26 924:9 927:27 934:19 942:12 943:1 948:12,25 955:12

analyze 919:4,22

analyzed 823:14 833:22 920:18

analyzing 917:21

and/or 910:3

Angeles 852:12

angle 846:12

announced 945:10

annual 841:11 860:25

annular 883:26,28 885:10,11,23 886:19 887:5

annuli 875:23 878:20

annulus 807:25 812:27 891:4,27 892:8 939:22 940:8

anomaly 828:15

answering 920:12,16

answers 946:21

anticipate 852:20

anticipated 957:22

anticipating 938:14

API 856:15 857:11 863:28 865:24 866:7 868:23 970:18,27,28

apologies 871:12 880:6 935:2

apologize 820:6 844:20 854:19 856:18 857:10 867:8 868:22 909:7 926:17 933:26 937:11 939:6 960:21

appeared 917:1,23

appears 806:14

applicable 839:6 866:12

application 885:20 911:21 applications 840:13 applied 884:14

applies 970:19 apply 843:25 874:21,22

971:3

approach 857:3 970:25 971:4

appropriately 860:14 866:1 873:10

approval 855:22,26

approximate 945:14

April 905:13

area 819:10,20 859:9 873:8,9 887:19 967:28

arrived 894:21,24

arrows 891:3

articulate 830:23,25 856:16 896:24 952:6

articulated 829:20 855:11 874:17 878:16 948:28 963:3

aspect 845:21 907:20

aspects 817:19

assess 918:25 925:28

assesses 853:17,18

assets 854:11

assigned 806:28

assisted 821:16

assume 812:7 836:19 859:24 895:20 900:13 908:16

assumed 901:13 949:1

assuming 926:8

assumption 902:9,19 948:27 967:23

atmosphere 887:24 906:18

attach 890:17 906:3,12

attachments 914:15, 19 934:20 943:2,10,19

attack 811:15

attacked 811:22

Index: akin..bacterial

attempt 888:17,18 889:1,4 899:6,12,28 900:15 902:27 903:15, 23,26 904:5 907:8 911:1 926:7

attempted 843:25 878:4 885:15 895:21 923:5 949:8

attempting 846:17 864:11 907:1 961:13

attempts 888:11,23 889:7 900:1,9,15,18 901:8,13,15,24,26 908:23

attend 941:2

attorney 966:11

audio 884:17 937:12

automatically 822:23 858:11

Avisha 937:3

avoid 906:24,25 909:2

aware 844:11 856:1 870:3 872:8,12 879:23 889:19 892:7 904:10 912:22 941:11,20 942:5,9,14

awe 946:20

В

back 818:21,25 825:19 829:1 843:11 846:28 849:11,25 850:5 853:5 880:28 882:4 883:24 884:19 885:7 903:20 913:1,21 931:5,16 932:5,12 933:5,21 935:7,18 937:9 941:23 943:23 945:1 946:27 954:14 955:10 956:15 957:17 960:20 965:27 966:3,5 972:17

back-and-forth 818:8

background 960:17

backward 827:12 828:24

bacterial 954:24

bad 895:13 907:12 bandwidth 933:19 bank 943:24 barrier 828:6,12 829:6, 19 870:14 871:2.3.9.15. 23 872:11 barriers 829:12 872:1 bars 906:7 908:19 **basalt** 820:15 **base** 911:5,6 967:22 **based** 853:7 857:2 861:15 885:6 901:1 902:15.16 925:20 927:1 967:23 972:10 **basic** 914:11 915:3 basically 812:26 827:8 828:10 835:2 838:28 853:15 855:20 866:17 869:4 870:18 875:21 876:2 890:7.16.18 892:19 901:26 905:22 **basis** 860:21,26 861:23 879:8 937:15 961:14 Bates 867:20,25 868:9 bear 950:9 began 807:18 808:2,9 809:23,25 908:11 beginning 831:28 882:7 boil 827:1 begins 863:2 **begun** 919:26 behalf 912:18 933:1 **behavior** 816:5 **belabor** 872:17 believed 971:8 **believes** 838:12 **big** 895:9,14,15 920:15 925:3 948:17 biochemical 813:21, 22

biofilm 813:26,27

bit 816:7 822:20 826:20 841:19 842:12,13

852:24,25 864:18 878:15 885:15 887:17 893:19 905:9 912:24 927:10 944:16 948:2 950:22 954:27 957:10 965:1 966:22

bits 917:9

Blade 807:16,22,28 808:7 810:24 816:20.26 817:4 838:12 844:5 845:1,24 850:18 852:11 854:15 862:1 863:9 865:26 868:27 869:17, 23 874:12 878:16 910:18 912:7,9,19 913:2,9 914:12,14,17, 18 921:19,25,27 922:1, 6,7 926:14,23 927:8,22, 24 931:7,24 932:4 933:1 934:17,18,27 937:17,19 938:3,4,6,7 941:6,7,10 942:11,28 943:7,8,17,18 945:10, 11,15,16,21,24 946:11, 22,25 948:16 949:16 966:12 969:4 970:25

Blade's 810:8 877:14 913:26 914:27 927:27 928:5 943:16 969:3

block 886:21

blunt 809:21

bluntly 873:16

boat 827:3

bone 875:19 877:9 913:3,6,12 949:21,24, 25 950:2,5 952:5 953:25,27 954:10 955:4 965:17 972:14,16,20

Boots 889:9,12 890:7 900:1,8,13,16,20 901:7, 12,20 902:12 903:8 904:4,10,13 908:9 909:11 947:11.21

BOP 968:17

bottom 815:25 816:18 841:25 852:17 853:23 863:2 864:7 867:20 877:1 891:3 892:4

911:12 928:14 929:14 957:14 958:16

bounce 966:21

bound 955:10,13,22

boundaries 955:23

breach 896:5,20

break 849:20,26 850:1, 8,18 874:25 880:19,24 881:5 882:6 912:10,17, 28 913:16,21 933:3,12, 13,16,20 935:10,28 945:7,8 965:22,27 966:4 971:7

breaking 912:23

bridge 905:19,23,24 957:14

briefing 860:25

briefly 808:19 836:21

bring 904:15 955:9

bringing 878:3

brother 905:16

bulk 814:1

burdensome 932:19

burst 870:24

business 817:24

С

cage 906:7 908:19

Cal 806:17 913:4,7 950:6

calculations 894:12

Cali 929:15

California 832:23 833:10,20 837:13 841:28 870:1 872:1,10 942:7 969:6

call 825:4,11 836:11 851:22 883:27,28 941:22 944:28 952:14. 26 955:21 959:5 963:17

called 813:15,26 817:24 825:3 836:22 838:26 843:26 844:2 850:24 851:18 853:25, 27 863:26 899:22 903:23 921:19 954:28

calling 918:7

camera 864:16

Canyon 806:9 812:5 816:13 817:22 819:28 820:11 821:26 829:14 831:18 833:10 841:10 858:4 859:9 870:6 871:9,15,22 897:19 898:1,25 921:4,9 927:28 928:1

cap 859:11

capable 900:3

carbon 808:2 809:2

careful 822:22 824:28 825:6 855:8 931:4,18 942:24 945:28 954:22 969:13

carefully 823:24 900:21 931:26

case 813:23 814:15 815:28 816:8.23 855:10,22 861:18 880:11 893:15,24 894:1,4 924:27 925:4 935:9 956:9

cases 873:12 927:4 930:17

casing 807:18 810:9, 26,28 811:8 819:8 820:22 823:7,10,27 825:3,9 828:14 838:27 839:3 841:16,20 842:10,18,22 844:7 845:3,25 847:10 848:18 849:7,16 857:21,27 858:9,11 862:2,11 863:3,14,25 864:8,10 865:11,16,17 866:21 868:18 869:6 870:24 873:13,20,25,26 874:7, 9 875:17 876:6 877:17 878:19,20 883:5,6,8,10, 13.14.17.19 886:22 887:12 891:5,18,28 892:9,11,16,18,24 893:11,16 894:5,23 895:4,9,16 897:2,5,6

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

921:9,11,18 922:3,10, characterize 822:23 12,14 923:15,25 924:7, 13 925:22 939:4,23 940:9,16 952:15,25,26 953:17 957:17,19 958:6,14,25 959:4,17, 24,25 960:12,26 961:22,27,28 962:5,7, 11 963:10,16,25,26 965:8 966:28 967:4,5,7, 9,10,11 968:1,3,10,17, 23,24 casings 820:21 850:19 874:28 categorization 827:25 cathodic 872:16.25 873:9 874:6.15 883:3. 15 cause-and-effect 828:5,20 causing 860:3,9 caution 930:19 cautious 823:1 cement 839:10 873:21. 22 **cemented** 838:27 839:5,28 840:17 874:28 cementing 875:16 963:25 central 820:26 **certainty** 816:27 847:26 858:3 cetera 811:28 812:1 817:28 818:1 827:12 860:21 challenge 846:13 886:28 904:27 946:17 964:11 challenges 887:16 904:20,24 963:25 challenging 816:10 887:9 909:14 943:25 chance 946:1

change 814:2,7,9,17 827:22 902:2,21 924:5 944:14,23 945:25 946:5

945:26 characterizing 851:10 chase 864:5 875:8 check 833:8 861:8 919:12 924:23 925:11 926:27 929:26 930:7 931:5,22 935:6 936:8 938:11 944:15 946:4,6, 28 947:7 checked 860:28 947:2 checking 916:9 checks 919:20,24,26 920:2 choose 849:7 **chron** 903:19 chronology 877:22 888:4,13,16 903:20 930:13 931:16 circa 844:7 845:4 circumstance 898:22 citation 833:26 cite 853:23 clar- 829:23 clarification 825:18 829:28 841:25 851:27 856:8 861:25 862:21 874:2 884:18 895:18 904:4 935:21 936:20 948:8 949:22 951:5 clarifications 882:22 958:4 961:18 966:18 clarified 815:17 967:14 971:24 clarify 815:13 821:20 825:12 842:12,17 852:4 903:17 924:2 927:12 932:18 936:20 950:21 951:3 957:6 960:1 967:2,12,27 968:4,7,21 969:7 970:20 971:15 clarifying 904:1 912:4, 20 clarity 903:24

Classic 853:19

clay 812:19 clear 815:13 828:2 832:4 833:21 836:27

848:12,14 851:25 852:9 854:1 865:6 867:14 873:18 874:4 901:21 902:2 909:11 927:18 934:21 940:4 950:8 969:18

climates 816:12

close 955:24 960:8

closed 877:25

CO2 956:21

coffee 911:7

cogent 854:8

collar 818:9 966:28 967:3,4,7,10

colleagues 914:27

column 836:10,22,28 837:5

comfortable 809:9 949:4,7

commensurate 865:2 879:10,12

comment 834:11,15 916:24

Commission 810:7 812:10 835:6 841:8 876:26 879:22 890:1 914:9 941:12 942:27

Commission's 914:15

common 822:21 830:21 852:6

commonly 885:18,22

communicating 948:18

communication 891:15 926:18

communications 861:4,5,9 926:14,22,28 927:14 companies 851:5

Company 942:7 comparable 854:11 **compare** 840:12

complete 833:19 916:15 917:1,23

completed 839:17

completely 877:19

Completion-dual 870:13

complex 872:28 878:28

complicated 872:27 908:6 951:20 952:21

component 915:17

components 971:1,3

comport 897:25 916:22

composition 811:6

compromised 865:16

compromises 922:13

computer 933:19

computers 970:8

con 944:7

concentrated 819:9

concern 907:4 932:10

concerned 902:11

concerns 906:22 908:13 938:2

conclude 817:5 899:5 925:25

concluded 819:27 901:5 925:25

concludes 965:13

conclusion 823:12,23 867:5 868:22 900:4 902:6 920:8,14 944:3, 15 949:3 961:16

conclusions 914:24 920:7 922:24 924:9 944:23

condition 811:3 816:3 822:26

conditions 812:12 815:28 816:1 904:23 925:10,11

Evidentiary Hearing

videntiary Heari arch 23, 2021	ng	Index: o	conductcrosstal
conduct 841:4 857:21 862:11 863:25 864:15	856:28 861:14 880:13 971:5	827:15 829:5 830:4,5, 17 831:6 832:7,26	5,6,7,10,13,16,25 815:1,5,9,14,15 816:21,
869:6	contingencies 896:18	835:27 837:14 839:5 840:5,6,14,24,25	24,27 817:10 820:10 821:21 822:16 823:7,
conducted 889:2,8	continue 807:4 818:27	841:18,28 842:1,3,4	15,27 824:5,9,10
conducting 842:10	837:18 847:2 850:8	843:9 844:3,8,16	847:17,27 848:23
onfer 806:22	868:3 892:1 904:20	847:18 848:25 849:2	851:7,14 857:21 858:9,
confidence 847:23,25	909:26 919:18 932:27 933:11 938:21 960:21	851:19,20 852:13 853:10,20 854:3 855:24	20,26 859:12,18 860:4, 20,26 862:2,11 873:4
970:4	963:7	856:26 857:5 858:22	883:17 925:23,26
confident 957:11	continued 904:13	859:22 860:22 861:2	952:12 953:16 954:2,6,
		862:8 864:10 865:4	12,14,24,25 955:15,18,
configuration 890:6 891:17	contractor 947:12	866:26 870:25 871:3,4, 21,26 874:10 875:3,4,	22 956:7,14,18,19 958:24 959:3 960:5
	contractors 878:3	13 877:16 878:7 883:20	963:24 964:24,27 970:5
configured 891:9	contributed 831:19	886:16 887:8,26 889:4,	corrosive 819:17
confirm 809:12 833:17	contributing 820:20	10 890:11,27 891:19	
857:8 934:14 936:17,24	821:3 969:11	892:13,25 893:6 894:16,27 895:6,16,23	counterintuitive 814:21
937:1 938:16,23 944:21 969:16 971:13	contributions 949:17	896:13 897:19,20,27	-
		898:11,15,27 899:17,24	couple 823:5 843:15
confirmation 938:19, 25	contributory 820:27	902:14,15 903:26	864:6 869:16 872:24 882:21 891:28 894:18
-	control 821:26 904:15,	904:15,16 905:18	943:11 944:20 968:6
confirming 849:22	18 915:27	906:19 907:23,28 908:3,7,24 909:27	court 884:18 885:6
conformance 806:27	controlled 815:27	910:16,21,22 911:1	912:25
connections 808:1	915:25	914:19 915:18,22,23	cousin 844:1
809:16	conventional 940:13	916:1 922:5 927:6,28	
consequence 853:19	conversations 902:16	929:21 934:26 940:2,27 941:14 942:13,20	covered 972:3
consequences 859:21	conversion 957:11	945:27 947:16,23	covers 838:5 968:28
865:3 910:10		950:10 953:3 959:28	CP 873:16,19 874:19,
conservative 956:11	conversions 971:16	960:24 961:23,24,28	21,22
	converted 809:3,24	962:7,8,12,14,18,19 963:12,13 966:14,19	crater 904:26 905:11,
considered 845:7	821:21,25 822:14	971:23 972:25	20
846:10 885:24 921:21 922:9	939:26	correctly 828:9 841:1	credits 915:5
	Coots 889:9,12 890:8	844:5 848:24 916:18	critical 895:24,25 896:2
consistent 806:19 811:12 831:27 855:19	900:2,14,16,20 901:7, 20 902:12 903:8	924:4 926:27 927:5	
875:15	904:10,13 908:10	939:15 950:27	critique 901:6,12
constant 952:24	909:11 947:12,21	correlating 823:1	critiques 901:7
	948:17	correlation 819:28	cross 806:14,16,17
constantly 876:4	Coots's 900:9 901:13	820:10 821:21 822:8,16	912:4 916:9 929:28
construction 939:19	904:5	823:6,26 824:3,4,10,17	949:23 972:10
940:5 968:14	copy 937:19,21	858:4	cross-exam 950:14
consult 912:11 932:4	cor- 955:14	correlations 818:13	cross-examination
contained 828:17		819:3,19	806:26 807:10 850:9
835:14 931:19	corner 867:21	corroded 810:28	881:3 882:10,17 913:8,
containment 967:6	correct 807:26 808:5,	814:17 828:15	22 914:2 926:13 950:1
968:18	10,15,24,25 811:24 813:3,7 814:14,20	corrosion 807:17	965:14
contesting 910:19,23	815:6,11 816:17 817:1,	808:8,21 809:23,25	crossing 807:2
context 811:7 845:6	26 819:11 821:23	810:2,16,25 811:15,21	crosstalk 829:24
JUILEAL 011./ 040.0	822:3,10,11 825:15	812:13 813:2,10 814:4,	839:21 844:18 846:15

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

crucial 916:4 944:3

curious 948:2

current 839:11 846:8 853:14 871:17 880:18

cut 864:5 875:1

cutting 875:8

CUZ 899:8

D

daily 917:11,12 934:10 936:3

damage 907:22 910:3

danger 840:11

dangerous 909:26 921:7

data 807:22,23 808:1 843:22 844:11 845:28 861:16 864:13 866:17 868:8 879:3,8 895:13 900:22,27 901:19,22 902:5.15 903:2 917:9. 22 919:3,4,17,27,28 920:3,6,13,18 927:2 929:13,14 930:14,16,21 931:17 932:1 934:27 936:13,16,18,21,26 937:17 942:7,15,16 943:27,28 944:2,5,11, 12,19,22,26 945:22,24 946:3,10,22,24,25 947:1,4,5 948:1 954:23 958:11

date 808:12 866:19 868:16 928:18,22 945:23 957:9 971:9

dated 810:10

dates 866:25 943:15 944:7 945:14,25 971:9, 13,24

day 806:7 878:23 898:9 903:7 953:22 966:27 967:8,19

days 827:11 836:14 838:15 917:11 966:17 deadline 943:5

deadlines 943:11 dealing 964:11,19

deaths 906:25

decade 824:15,16

December 888:24 903:22 906:1 908:9 910:20 937:16,20

decided 949:10

decision 910:8,11,14, 19,23

deem 819:7

deep 859:10 861:6 923:1 943:23 952:12 964:14

defer 938:4

define 814:8 815:4 825:1 826:26 879:1

defined 825:4 921:19 922:13 956:24

defining 825:2 826:11, 16 834:23

definition 923:23

delve 860:19

density 894:2,13 909:12

deoxygenate 964:19

Depend 956:12

depended 861:22

dependent 813:16,22 830:10,13

depending 813:5 815:3 820:25 823:17,20 864:16 885:19 890:22 917:7 954:25

depends 956:14 968:25

depicted 892:3 895:10 908:5 909:18

depicts 890:6

depleted 964:26

deposition 813:10,16 817:3 843:21 846:20 847:6 848:27 899:22 909:23 969:17

depth 823:7,9 824:5,6 873:28 894:22 896:4,19 952:27 968:23,24,27

depths 812:16 815:15, 22 823:17,20 894:26

derive 826:27

deriving 831:20

describe 865:25 969:19

description 853:22 855:3

design 857:28 901:24 939:24 940:10,11,15,18

designed 825:10 873:7,10

designing 895:26

desire 866:4

detail 834:21 875:27 922:22 961:11 968:2,5

detailed 833:21 843:23 860:6 861:23 869:11,20 909:9

details 853:13 856:2 902:3 966:23

detect 847:9,16,27 848:5,6,9,10,17,22

detectable 816:28

detected 878:12 953:16 954:2,5

deteriorated 904:23

determine 807:17 808:8 816:24

detour 843:11

develop 859:18

diagram 819:15 891:1 892:16 893:16

diagrams 827:12 828:25

diameter 847:10 848:18

diametric 815:3

Index: crucial..Doctor

died 907:1

difference 957:2 961:27

differences 819:25 898:18

differently 841:19 845:22 944:24

difficult 816:2 919:1

difficulties 937:8 945:8

DIMP 853:27 854:2

dioxide 809:2

dioxygens 808:3

direct 960:5

direction 887:3

directly 923:7

discovered 877:24

discrepancy 943:15 945:9

discuss 836:18 874:19 879:4,6 898:27 904:19

discussed 843:14 856:11 865:13 878:14 879:26 900:5 956:3

discussing 807:16 860:20 881:2 945:9

discussion 806:12 833:28 872:21 884:8 900:26 950:19 956:28 967:15

discussions 901:19

dissolve 964:23

distributed 806:16,20

distribution 853:26 854:11

dive 860:6 861:6

divided 819:16

Division 912:5 913:24 929:11 942:6

doable 938:10

Doctor 867:11 890:2

document 835:11 846:26 867:2,15 868:9 929:16	earlier 811:28 821:2 835:11,24 858:3 865 908:5 940:24 947:28 956:3 957:6,20
documentation 927:15 962:24 documented 811:16	early 815:20 845:8 846:9 852:21 930:15
866:20 868:17 970:14	early'90s 845:17
documents 860:28 861:22 929:8,19 930:28 931:1 934:9,23 936:2	easier 896:22 953:5 8,9
937:17	eastern 820:26
DOGGR 833:21 837:9, 12 841:11 860:25	easy 864:22 educated 954:21
861:6,10,17 872:4,5 886:15 916:3,10 926:14,18,22 927:1,3,	effect 831:5 836:13 838:14 916:19
13 929:11,19 930:12 934:9 936:2,21 969:9	effective 886:2 887
DOGGR's 928:9	effectively 893:4
downhole 952:25 970:13	effects 827:9,14 828 859:20
drafted 834:12	effort 835:13
drag 932:11	efforts 915:8
draw 828:25 971:3	elaborate 889:28
drill 920:11 968:18	electronic 930:16 943:28 944:7
drilled 808:23 822:1 839:16 910:28 911:3	element 896:2
drilling 807:24 811:28 968:15,18,26	elements 895:25,26 eliminate 821:7 859
drive 812:23 937:21	eliminated 858:20
938:11 dropped 921:11,12	elimination 858:23 925:27
941:22 944:28	embrace 867:13
druthers 933:15	emissions 843:1
dry 812:28	employees 860:20
dual 828:5 829:6,12,19 871:3,23 872:1	861:4,9 926:28 encourage 873:4
due 884:21 942:25 965:2	end 828:28 845:13 891:24 903:7 912:26
dug 859:10	endeavoring 836:2
dwell 869:15	ended 945:16
E	Enforcement 912:5 913:24 942:6
	engineer 878:18 95

811:28 821:28 955:8 959:21 962:22 24 858:3 865:7 engineers 969:23 10:24 947:28 enhance 814:25,27 968:7 52:21 930:15 enlarge 905:9 enlarged 904:26 96:22 953:5,7, ensure 874:28 952:1 entails 872:20 933:5 enter 830:22 entire 811:9 861:15 927:1 940:16 entitled 810:9,16 835:7,20 857:21 869:11 886:2 887:13 environment 813:27 822:26 925:22 envisioned 940:11,12 827:9,14 828:25 equipment 906:5 908:18 equivalent 851:3 err 885:4 establish 955:23 958:8 established 841:9,16 estimate 817:9 879:6 897:7,9 954:21 961:6 **s** 895:25,26 estimates 806:14 e 821:7 859:3 894:26 evaluation 852:5 ion 858:23,25 960:26 evening 880:14 event 827:28 922:17 930:14 events 826:8 888:4 923:24 everybody's 884:22 evidence 944:4 903:7 912:26 evidentiary 806:8 oring 836:27 evolve 844:21 evolved 885:21 ment 912:5 evolves 844:22.23 exact 810:25 811:21 **r** 878:18 950:9

878:24,25

examination 832:1 882:23 966:8

examined 818:2

examining 817:20

examples 928:28

excuse 818:20 829:26 844:19 846:16 871:2 886:27 906:2

execute 864:22

exercise 821:8 830:19 934:28

exhibit 835:7 867:7,27 868:7,26 879:23 890:1

Exhibit-1000 971:13

Exhibit-1002 810:7

Exhibit-158 846:21

exhibited 864:23

exhibits 806:27 914:16

exist 934:14

existed 865:27

existence 858:10

existent 954:15

existing 839:19,27 854:16 869:4.24 871:7

exists 938:16

expand 927:9

expanse 819:13

expect 822:19

expectation 852:26 965:4

expected 958:23 959:3 963:28

experience 822:24

experienced 945:7

experiences 898:23

experiencing 860:26

expert 818:7

expertise 889:16 914:28

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

816:21 827:28 848:9

e-mails 861:8

explain 809:5 812:10 facts 914:13,17,19 813:9,17 826:19 846:17 fail 858:12 952:13 861:13 925:2 927:9 960:1 failed 895:2 896:5 explained 832:2 explanations 886:6 **explicit** 970:28 explicitly 901:3 exponential 817:10 exposed 822:27 expressed 914:25,26 **extensive** 861:16 901:18.19 927:2 922:12 extent 812:15 846:1 852:10 874:6 899:14 954:18 966:22 **exterior** 807:17 external 952:24,25 963:24 902:7 extracted 815:7 extraction 892:10 947:18 939:21 940:7 fan 952:3 fashion 847:24 F feasibly 839:9 facilities 821:27 feat 911:18 837:14 860:27 865:9 876:14 facility 816:14 817:22 fed 809:1 819:10 820:11 833:10 841:11 859:11,13 898:25 931:15 870:2 fact 819:14.22 821:9 Fee 897:24 898:18 839:27 849:5 855:2,5, 25 858:5,15 862:25 feed 890:19 863:1 866:14 870:28 feeding 808:2 873:1 876:12 877:15,19 888:9 893:7,26 895:24 899:21 902:5 910:27 920:4 922:8 962:9 factor 860:4 922:16

factors 812:8,23 814:8 817:12 820:27 831:19 896:6 949:2

951:2 957:21

903:23 924:24 925:12 928:23 952:16

failure 810:10 820:14 825:5,11 831:20 853:18,19 863:25 864:11 865:11,16 869:6 895:15 899:15 908:2 921:20,22 922:10 923:8,16,20,27 925:3 958:18 962:3,10 970:19

failures 819:9 864:1,8, 20 866:21 868:19

fair 808:16 809:18,26, 27 821:22 826:15 833:23 834:26 837:11 845:4,5 856:7 857:11 863:12 870:9 875:9 876:24 894:7,28 895:20

familiar 872:13 885:17

February 894:22 944:5

federal 833:14,18,25 834:5 854:3 857:4,7

feel 878:9 966:24

feet 812:20 892:12 907:25,26 923:2 963:19,20

felt 865:28

Felts 940:23 941:5 Fernando 897:24

898:18

fewer 825:15

field 816:1 819:15 820:25 858:21 870:18 872:25 921:5 950:17,18

field-wide 817:21 961:14

fields 863:4

figure 826:20,22 882:27 889:28 890:6,15 891:23 892:4 895:10 898:5 905:8 919:6 923:5 933:4

file 915:21 916:14 917:4 918:2,5,20 919:13 927:17 928:15 929:4,23 930:10,23,24 934:11 936:4

filed 855:20

files 817:28 884:10 929:3,5,18

final 875:21 882:23 887:19

finale 825:20

finalization 945:23

finalize 943:16,18 945:10,15 946:12

finalizing 943:13,17

finally 971:6

find 807:28 817:4 821:20 823:26 824:3,4, 8.9 831:17 833:14 839:25 851:8 854:15 862:1 863:3 865:11 869:23 877:22 884:16 900:28 903:18.19 921:26 922:4,27 924:14 933:12 959:12 962:23 963:1,15

finding 851:7 898:10

findings 819:5 845:3

922:23 924:8 fine 868:25 937:12

finish 908:28

finite 964:28

fire 908:20

flagged 923:17

Index: explain..forgive

flex 953:2

floating 961:3

flopping 908:20

flow 879:6 883:26,28 886:19,21 887:5,23 891:17 894:6 897:9 904:25 906:17

flowed 911:13

flowing 878:22,23 887:2,4,5,6 893:23 894:5 897:5

fluid 807:24 811:7 849:14 890:16,19,24 891:1,23 892:17,28 893:1,27 894:13 898:4 906:15 907:9 911:14

fluids 811:28 911:11

flux 851:20 852:6

fly 852:12

focus 809:21 810:17 811:18 818:11 819:2 826:10 833:9 836:21 902:8 904:4 910:25

focused 808:17 832:22 967:9,20

focusing 845:20

folder 929:24

folks 834:11

follow 816:26 874:2 890:28 926:17

follow-up 880:7

foothills 819:14

footing 905:25

force 890:19

force-feeding 906:14

foreseeable 831:5,7, 12

forget 830:24 833:19 878:24 897:21 944:6

forgive 921:2

fit 886:5,6 917:20 919:5

form 814:5,12,24 functionality 922:13 833:20.22 854:8 944:7 functions 968:10 formal 844:6 845:2,24, future 870:22 27 859:24,26 861:1,22 865:20 G formally 864:9 formation 820:16,17, **gaps** 916:26 917:10 19.20.24.28 892:12 919:5 925:24,25 907:10 911:4 967:21 gas 809:4,6,8,15 818:1 formations 812:20 828:16 832:23 835:7.20 856:14 858:21 859:11 forms 944:13 865:9 866:21 868:19 forward 806:24 826:25 872:2 886:12,21 887:3, 829:13 830:4,9 839:4 7,23 891:17 893:3,22 841:2 843:5 870:19 894:5 904:25 906:17 881:4 930:3 964:27 907:14 911:22 928:9 929:12 930:22 934:10 forward-looking 936:3 939:22,27 940:8, 826:18 13,14 942:7 951:1 found 807:23 818:13 969:5 970:19,23 971:2 819:3,8,23,28 820:9 gathering 934:28 822:15 823:6 865:28 892:9 916:14 921:1,3 gave 845:11 885:7 957:9 958:15 962:3 944:16 946:1 962:27 963:9 965:8 general 855:9,22 foundational 914:11 861:18 897:18 927:4 950:18 fourth 883:2 generally 890:8 926:19 fracture 907:9,15 930:1 943:7 frame 970:11 generate 969:8 frankly 814:25 946:20 generations 844:14 Frazier 912:7.16.18 geologist 821:15 913:26 914:8 932:25,28 933:1 935:6 937:19 geology 820:1,10 938:12,13 965:19,21 963:18 964:2 966:5,9,11 969:15 geotechnical 821:6 971:25 972:4,11 Geothermal 929:12 Frazier's 938:24 give 808:12 833:26 free 966:24 845:6.17 861:14 872:18 frequency 956:23 919:15 932:27 961:5 971:5 972:17 fresh 968:11 giving 915:28 951:1 Frew 897:23 898:18 Glad 820:8 850:15 front 835:3 902:3 goal 947:27 full-blown 865:10 goals 826:6 fully 854:24 good 806:6,25 807:12, function 817:11 825:4 14 817:18 828:5 830:6 921:19

831:15 833:7,26 837:7 846:8 849:5,19,28 850:7 851:6,9,12 857:27 878:14 879:17 880:24 882:19,20 899:1,22 909:13 910:5, 13 914:4,5 934:6 936:11 948:4 950:3.4 959:9 960:4,24 970:28 grand 825:19 granted 948:16 great 829:6 885:3 greater 893:2 gross 876:9 grounds 953:19 954:8 groundwater 807:24 812:27 968:11 growing 956:20 growth 970:8 Gruen 837:15 852:19. 23 853:2 903:11,21,24, 28 908:27 912:8 913:27,28 914:3 918:8, 10,11,16,17,22 920:6 922:28 926:16 927:10 929:25 930:12 932:13, 14,22 933:10,14 934:8, 16,24,26 935:2,23,26 936:12 937:22,25,26 938:21,22 941:25,26,27 942:2 943:5,26 945:3,5 946:14 949:15,20 972:9,12 Gruen's 934:5 guess 809:21 844:26 850:16 880:5,8 884:2 894:8 901:9 918:13 930:7 932:9 933:2 953:23 955:3 guessing 808:12

guided 949:2 guidelines 833:1 guy 911:20 guys 912:22 Index: form..Hey

н

half 846:3 859:10 940:28

hand 912:9 937:8

handful 887:28

handle 940:16 960:4

hap 904:28

happen 941:4

happened 820:15 829:13 856:2 894:11 918:26 923:6 942:10 957:12 964:18

happening 926:1,2

hard 937:21 949:17

harder 961:15

harm 910:2

hate 969:22

head 808:27 887:24 890:18 905:22 906:4

header 877:25

hear 850:20 896:2 908:28 909:3 910:17 912:15 941:4,9,27

heard 889:12 940:23 956:27

hearing 806:1,8 938:20

hearings 882:8

heart 829:28

HECHT 882:4 884:19 885:3 904:1 909:2 912:1,15,23 913:5,11, 13,19 914:1 918:10,14 932:7,24 933:8,18,25 934:1,6,21,25 935:1,4, 14,18 937:6

helpful 850:12 867:3, 22 894:17 898:25 938:5 965:22

helps 852:21

Hey 858:19 925:28 955:17

high 845:16 893:23 894:6

high-pressure 939:22 940:7

higher 954:27

highlight 810:17 815:26 825:27 846:23 883:1 889:28

highlighted 841:21

highly 885:21 964:3

highly-corrosive

Hilary 821:17

821:3

historical 922:12

history 928:9,15,28 929:5,7,18,24 930:5,22, 27 931:1 934:8,9 936:1, 2 959:12

hit 911:6

hits 891:24

hold 944:6

hole 877:18 895:9 925:18 953:12 958:16

holes 893:10

honestly 823:2

Honor 807:5 837:15 850:15 867:5,23 880:23 882:13 903:11,17 908:27 911:28 912:8,19 913:3,28 918:6,8,11 932:3,10,14,28 933:14, 22 934:27 935:26 937:3,26 938:22 949:12,26 953:18 954:8,10 972:5,13,16

Honors 849:19 912:10

hooked 908:10

hope 890:25 906:15

hopeful 935:6

hose 908:20

hour 853:1 861:21 881:7 940:28

hours 861:21

Houston 843:16 846:3

HRVRT 842:23 844:2 849:10 850:24 852:7 970:1

hydrocarbons 838:15

hydrochemical 812:18

hypothesis 808:14,20 809:1,14,23 811:22 820:3,12 926:5 954:28

hypothetical 922:19, 26 924:5

hypothetically 922:7

I

I.19-06-016. 882:9

i.e. 863:14

idea 850:1 867:12 881:4 891:16 892:27 899:9 910:5 933:9 934:6

ideal 952:21

identified 818:5 836:7, 12 879:22 914:17 921:26 922:2,7,8 923:22 956:16 960:27

identify 810:6 824:20 826:7 827:13 829:2 830:19 835:4 856:22 869:17 871:24 874:12 887:17 958:22 960:11

II 810:8

ilk 863:24

illustrative 929:17

imagery 909:17,19

imagine 878:15 931:27

imaging 953:1

immediately 878:21 879:2 898:9,24

impact 806:13 877:10 920:13 922:23 923:4,19 924:8,19 947:7

impacted 812:17 923:7

impacts 920:6

implement 829:12 834:18 843:25 855:23 872:16 903:10 953:8

implementation 854:17

implemented 840:23 853:9 879:24,28 880:2 904:11

implementing 876:13 879:25 902:13

implicitly 901:4

implied 847:25 848:1,4 860:7

implies 815:19 827:28 831:13 923:13

imply 812:24

important 823:25 828:21 829:27 865:17 875:28 878:17 894:1 922:16 923:6 924:10 943:28 958:11 960:2 968:12 969:21

impossible 908:6

impracticability 886:11

impression 935:3 961:21

improve 844:14

improvement 844:24

in-person 861:19

inaccuracy 918:28

inaccurate 918:1,5 920:1,3,4

inappropriately 873:6

inaudible 923:2 944:8

inch 849:13 955:16

incident 826:24 827:9, 23,24 829:21 831:12, 18,22 866:19 868:17 869:25 870:23 876:15 877:2 888:5 941:16 962:12

incidents 921:11,12 923:27 include 915:20 939:20 940:6

included 837:24 884:3 921:20 927:4,14

including 806:16 834:5 865:9 872:10 874:16

incomplete 917:4

incorrect 902:19 971:9

indecipherable 813:24 968:28

indication 884:15 896:11 922:20 924:6 959:11 961:13

indications 845:18 909:23,24 924:14

indicative 845:9

indicator 952:15 959:9

indicators 959:6

indulge 912:10

industry 829:9 830:15 840:3,5,7,15 842:2 856:14 862:3,5,10 866:11,20 868:17 871:1 887:22 911:22

infeasibility 886:11

inform 926:14,23 944:24 956:19

informal 860:21

information 811:2 896:19,26,28 901:5 902:23,24 915:16,20, 25,28 916:1,4,9,21,26, 27,28 917:5,9,15,18,21 918:1,4,19,25 919:12, 22,23 920:20 925:20 930:5,20 931:18,23 934:17 936:28 937:23 938:1,7,16 941:6 946:7 948:4,23 949:9,10

informative 815:27

informed 956:24

initial 868:9 939:28 945:14

initially 939:15 943:21 945:10 964:18

March 23, 2021			
injecting 828:11 887:7	internal 818:1 840:18 842:8,16,17,28 862:25	951:20 954:28 956:5,21 959:21 961:20 965:15	Kitson's 880:10
injection 809:4 870:19 877:25 887:14 939:21	925:22		knew 846:7 880:17 902:12
940:7 injured 907:1	interpret 845:13 858:18	J	knock 838:23
•	interpretation 809:18,	January 944:6	knowing 917:6 920:1
injuries 906:25	19 815:6 844:23 846:13 923:20	job 817:18 851:12	knowledge 914:20 918:12 947:11
inside 813:26 820:22 874:8 883:9 926:2	interpretations	joint 895:8	
957:28	914:25	judge 806:4 831:3,4	Krishnamurthy 806:17 807:2,7,12
insights 876:7	interrupting 960:22	879:16 880:6 933:28 937:9	810:12,21 819:1 826:3 836:4 837:22 846:20
inspect 850:19	interruption 884:17	judgement 910:9	847:4 849:21 850:10,17
inspection 841:17,20 842:22 844:7 845:4,25	ion 841:17,20 intrigued 812:2 914:27	852:16 853:5 856:20 863:6 868:6,14 872:9	
849:7,16 920:9 952:9	intuitive 873:2	ve 873:2 Judicatory 806:10 87	874:27 879:19 880:9
953:13 955:28 962:4,11 965:10 969:28	investigate 876:21	jumping 917:26	882:11,14,19 883:11 884:23,25 886:10 904:3
inspections 823:14 841:5,27 842:11,19	investigated 819:3 864:9	К	905:10 913:23 914:4,6 916:12 917:25 920:27
843:6 862:26 962:16	investigating 860:24	key 888:4	922:18 924:1 927:20 930:26 932:12,15,19
installed 876:18,22,23 884:10 885:12	861:28 investigation 806:9	kill 878:4 887:20,21 888:11,18 889:4,7	933:4 934:14 935:12,27 939:1,4 940:22 942:3,
instance 918:2 923:25	834:8 839:26 860:18,23 864:27 865:1 866:21	890:8,15,19 891:1,23	21,23 945:6 948:15 949:16 950:3 954:11,17
instances 862:1	868:18 937:18 941:13	892:17,28 893:4,9,11, 17,26,27 894:10,14	956:26 959:13 960:17,
Institute 866:8	942:4 970:20	895:14,21,27 896:7	22 963:5 965:7,23 966:6,10 971:26 972:6,
Instituting 941:13 942:4	involved 865:3 889:23 969:4,9	899:6,12 900:3,15,18 901:7,10,13,24,25 902:26 903:9,15,22,23,	21
instructed 806:22	involvement 969:3	26 904:5,22 906:1,14	L
instructions 806:27	involving 910:2,9	907:2,8,13 908:5,12,17, 23 909:27 910:20	lab 815:27,28 816:9,15
integrity 832:23 841:12	isolate 887:13 968:10	911:1,11 948:3 951:22,	laid 845:2
853:7,24,26 854:25 855:6,13 857:3 865:16,	isolation 873:22	26	land 885:19 967:22
17 921:9,12 923:25	issuance 941:11	killed 889:20 898:4,8 900:3 911:15	language 883:1
952:2 967:1,8	issue 818:7 846:13 858:27 863:13 873:21	killing 889:17,24	large 851:9,10 898:24
intelligence 919:2	879:1 895:8 912:26	893:21 898:24 906:23	919:1
intended 839:16 939:20 940:6 942:28	920:23 923:13,14,18 946:5 951:21 961:4	kills 897:15 902:13 910:24 948:5,11	larger 851:14
intending 943:9	962:5	kind 808:27 815:9	largest 963:24
946:12	issued 942:11 946:25	824:15,20 825:12	lasted 836:14
intent 821:8 839:13 860:2 864:24 879:2	issues 822:6 832:5 845:9 884:11 885:13	827:5,24 838:21 839:24 840:27 845:12 860:17 861:26 864:4 878:8	late 843:19 844:7 845:8, 17 846:9 939:27,28
932:15 940:1,18 943:16 948:6,14	919:16 items 809:13	890:18 896:21 906:5	latest 837:24
intercepted 911:5	it's 830:9,13 835:7	955:12 959:15 964:4	launched 855:6 856:9
interject 937:4	836:7 883:15 890:5 891:28 906:5,13,21	Kitson 876:25 880:16	law 806:4 830:11

938:7

March 23, 2021			
lawyers 843:16	likewise 831:2 860:23	lot 812:17 822:27	862:23 871:24 877:23
lay 838:11 864:26	limit 955:18,19	824:22 840:10 842:21 843:13,14 850:22	879:21 882:25 888:3,9 889:27 899:3 905:8
layer 814:24	limited 811:2	875:27 896:28 903:2	915:7 926:23 927:8,22,
lead 937:8	linear 817:6,9,10,13	907:19 918:22,23,24	24 928:5 941:7 943:1,9,
leak 827:10 828:18 836:13 840:24 841:3	lines 810:18 822:13 846:23 909:15,16	919:3 930:16,21 931:17 936:13 948:4 961:15 963:21	19 945:11,12 946:12 953:23 971:12
843:8 847:11 848:19	liquids 821:3	Lotterman 807:2,3,5,	mains 967:16
855:27 856:24,26 863:14 870:24 871:1	list 898:23	11 818:27,28 820:6	maintain 906:23
876:8 877:12,14,24	listed 828:26	829:25 830:24 831:14 837:19 839:22 846:19	maintenance 817:25
878:11 879:9,11 888:11		847:2,3,19 850:10,11,	make 836:26 840:20,21
890:8 893:4 896:4,5,20 897:8 898:10 907:5,25	listened 940:26	15,23 852:19,24,26 853:4 854:19 857:9	845:22 859:16 861:13 867:24 874:4 878:1
922:20 924:7,18 925:19	listing 828:25	861:14 862:17 866:6,26	899:2 907:5,21 908:4
958:6,14,17 959:7,11 966:28 967:3,6	literature 844:10 954:23	867:1,4,10,19,23 868:3, 4 876:16 878:16 880:1,	910:8,14 912:22 933:13 944:1,9,12,14 946:2,4,6
leakage 851:21 852:6	loading 809:16	22,23 882:11,13,18	950:26 958:4 966:17 967:14,26 968:21,28
953:2	local 814:15	884:26 886:8,26 887:10 901:18 903:16,27 904:2	971:23
leaks 818:5,9 824:22, 26,27 825:7 863:3	localized 814:16	909:6,18 911:27 914:8	makes 832:22 833:9
897:19 898:24 907:28	location 815:18,19,20,	915:4 916:13 918:6 920:28 921:13 922:22	872:27 896:21 932:22
921:4,17 924:3 958:22 960:12	21 819:10 823:10 909:13	926:20 927:25 932:9 933:22 934:1,3,13	963:21 964:4 making 823:22 954:21
learned 908:16	log 851:11,12 864:14,	939:3,26 946:19	manage 858:28
leaseholder 967:23	15 894:25 896:14 919:16 959:2	947:10,28 950:14,20 951:24 953:18 954:7	managed 858:5 901:21
leave 868:26	logging 843:18	957:7 958:2 959:14 967:13 969:2 971:8,20	management 853:8, 13,17,24,26 854:18,25
leaves 875:18	logically 816:26	972:2,5	855:6,13 857:3 860:2
leaving 828:12 led 836:12	logs 841:12 924:11 925:4,5,17,18 936:15	Lotterman's 912:13 926:12	management-related 832:5
left 807:1,15 882:10		low 954:25	mapping 851:13
884:28 885:2 935:2	long 816:8 857:28 858:6 861:21 875:20	lower 824:27 921:17	957:27
let's 834:28 836:1	878:1 882:26 899:2	954:27 955:9,22	Marcelo 806:6
837:17 838:9 886:18	954:14 964:7,8 965:5 966:16	lunch 852:27,28 874:26	March 806:2,7 882:8
887:27 900:7,8 902:26 903:18 953:22 960:20	longer 956:12	879:18 880:20,24 881:5 882:5 913:7	943:2,5,12,13,16,25,27 945:15,23 946:13
965:26	looked 824:19 832:13		market 961:1
level 809:17 812:18 834:5 847:23 863:27	857:9 894:25 901:25 902:22 954:23 961:2	M	Mary 912:18 933:1
865:19,22,26		made 888:18,23 902:6	936:16 966:10
levels 865:23	loose 908:20	920:8 948:27	mass 815:2
life 811:9 824:12	Los 852:12	magnetic 849:16	massive 917:18 958:14
lifeline 833:5	lose 907:9	850:24 851:1,2,3,6,20 852:6 953:2	match 920:20
lift 809:6,8	loss 845:18 848:5,6,9, 10 960:25 961:6 965:1		matches 938:23
light 808:27 859:23	lost 818:19 820:6	main 819:23 825:23 826:5 830:9 832:18	material 923:4,19
886:10 904:3 912:12		834:1 835:15,25 836:2, 6 838:26 857:20 861:17	materially 944:22

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

6 838:26 857:20 861:17

matter 878:11 897:18 914:10

meaning 858:25 910:18

means 831:8 847:20,22 848:2 960:10 968:14

meant 813:17 852:8 870:5,6,7 950:26 951:3

measure 959:16,23,25

measured 954:26 962:6

measurement 851:1 879:14 897:5,6 960:6, 25

measurements 876:3 877:6 897:3,7 936:27

measures 829:3 841:2 859:19 880:18

measuring 813:6

mechanical 841:12 952:2

mechanism 813:20 956:14,18,25 965:2

mechanisms 964:13, 26

mediation 866:4

meet 948:10

meeting 965:15

meetings 861:20

memory 832:27 833:4, 7,17 921:7 943:24 946:20 962:26

mention 883:23 912:20 928:23

mentioned 812:9 821:15 832:10 865:6 936:16 939:25,26 946:11 947:2,27 957:20 968:20

metallogens 954:24

methanogens 808:3 809:1 813:24 816:3

methods 826:11,16

MFL 851:18,20

microbiological 813:19 956:20 microbiology 965:3 mid 851:4 939:28

mid-morning 850:8

middle 857:20 872:15 882:26 884:23 905:23 943:25,26

mile 859:9,10

miles 911:4

million 878:23

mills 955:16

mils 955:15,18

mind 849:21 859:4 880:7 888:6 902:21 908:13 909:19 932:13 951:9

minimal 828:13

minimum 857:12

minus 970:5

minute 829:8 833:25 836:17 837:28 838:8 843:11 853:15 862:28 887:28 888:7 899:26 903:18

minutes 877:26 912:21 913:8 933:20 965:25

misread 848:13

missed 827:3 885:6

missing 916:25 917:12 944:2,9

misspoke 958:2 967:8

misstated 921:2

misstating 947:16

mistaken 835:18 898:17 938:3

Mister 949:14

MIT 863:2

mitigate 826:24 840:23 841:3 843:7 858:28 859:20 860:10,12 926:7

mitigated 838:13 863:18 mitigation 838:12 858:24 860:14 864:21, 22 879:20 883:24 884:4 953:9

mitigative 831:10 841:2

Mm-hm 836:15

mode 908:2

model 896:17 903:8 919:22

modeled 908:12

modeling 890:23 896:21,25,27 900:14, 19,22,27 901:10,14,23 902:1,13,28 904:9,12 917:14 948:1 949:1

models 900:23

modify 944:23

moment 910:7 932:25

monitor 860:10 876:5 958:22

monitored 925:17

monitoring 863:3 876:14

months 887:7 943:20

morning 806:6 807:12 817:18 818:12 826:10 850:7 877:13 878:5,13, 21 926:20

Moshfegh 810:3,14 825:26 836:1 846:19 862:27 867:6,16,26 868:11 882:24 889:27 905:7

mountain 819:14

move 817:15 852:17 861:27 862:22 863:22 867:17 933:15 938:20

moving 806:24 881:4 909:16,20,25 910:4,9 920:27 930:3 938:26

MSL 953:16 954:2 955:28

mud 900:10 901:27 903:6 multiple 900:22 960:12 968:19

mute 850:21 939:5,6 941:26

Ν

names 883:14 967:23

narrative 857:26 narratives 864:26 nature 815:4 816:6 nearby 873:5

necessarily 822:6 885:25

needed 886:2 910:8 916:21

neglected 968:6

nerds 969:22

newer 822:7,15

newly-drilled 821:22

night 878:2

noise 925:17 958:19 959:2 960:18

nondestructive 852:5

nonfactual 808:15

normal 920:19

note 833:28 883:25 888:16

notes 849:12

noticing 943:15

noting 820:8

notwithstanding 829:10 843:4 854:9 855:4

November 847:5

number 818:5 821:25 824:25,26 825:6 847:19 848:3 867:20,25 868:9 878:25,27 889:4 897:21 899:6,28 900:15 903:15,23 904:22 921:10,11,17 931:10,12 948:3 964:22

numbers 878:24

0

O&m 817:25 818:3 819:4

object 918:7 953:19 954:8

objected 847:12

objection 837:15 903:13 937:5,16 938:18 953:18,23 954:16

objections 932:7

objective 830:18,28 831:1

objectives 968:19

observe 855:3

observed 819:22

observes 820:9

obstruction 891:25

obtained 861:16 927:2 929:14

obvious 917:10

occasionally 909:7 917:7

occur 858:27 870:25 891:9

occurred 818:6 855:27 870:24 877:2,15

occurring 824:22

occurs 859:19

October 855:27 869:19 874:14 875:9 877:2,14 878:5 888:13,18 889:2 895:22 898:14 934:12 936:5

OD 811:8

Office 913:25

offshore 885:19

OII 806:10

oil 809:7,10 884:13 885:18 887:1 911:20,22 928:9 929:12 930:22 934:9 936:2 939:15,20, 25 940:1,5,12,13,20 older 822:7,14,23 onerous 938:9 ongoing 879:8 open 957:25 opened 941:12

operate 858:1,6 951:1

operated 809:10

operates 871:14

operating 860:27 871:8 872:13 950:17

operation 809:7 887:9 893:5 894:14

operations 809:11,15 817:25 866:22 868:19 920:19

operator 831:6 841:4

operators 829:11,17 830:2 842:26 857:2 872:9,26

opinion 952:5 955:27

opinions 914:24

opportunity 919:11 932:27

option 892:6 953:6 961:16

options 891:28 953:4,5

order 826:20,21 909:9 912:12 926:23 941:13 942:4,5

ordered 941:12

orders 881:3

organized 864:19

organizes 864:18

original 808:22 939:19, 24 940:5

originally 942:26

outer 847:9 848:17

outermost 873:20 outlet 904:26 outline 852:28 over-the-average

950:16

overcome 906:16

overpressure 907:7

overrule 938:18

overruled 837:17 954:16

overwhelm 893:27 894:4

overwhelming 893:28

oxygen 964:20,21,22, 25,27,28

Р

P-50A 928:15

p.m. 877:24 881:7,8 882:1

packer 870:13 922:21, 25 923:12,13,28 924:7, 11,12,19

pad 894:21 905:16 908:10 910:7

pages 879:21 888:2 930:11

paragraph 810:17 815:25 825:27 882:27

parameters 821:6 822:28 831:19 896:15

paramount 906:22 907:4 908:13

Pardon 939:12

parens 863:28 875:23

part 830:23 839:15 841:12 844:10 852:1,13 856:20 857:14 860:6 872:3,5 879:26 886:5 896:3 921:16 927:14,17 944:1,19 945:24,28 960:3,27 967:5,11

parted 877:19 892:11, 15,24 893:16 894:5,23 895:9,16 925:3,6 parties 806:22,25

parting 828:16

partings 893:11

parts 910:9

Index: numbers..permeable

pass 899:23

past 817:20 848:10 897:22 898:23

patch 884:13 885:18 911:20

Patel 937:3,4,13,15

pathway 812:20

patience 884:22

patient 905:5

pattern 864:20,21

patterns 818:12 819:2

pause 909:7 932:24

peel 941:1

people 816:4 907:1

per- 960:28

percent 813:23 815:18, 19 847:25,26 865:18 964:22 970:4,6

perforations 891:10, 26

perform 825:4,9 844:5 845:24 921:19 951:11 962:3,10,15,20

performed 845:2 911:1 951:7 956:1 971:10 972:23

performing 825:10 849:6

period 822:1 824:26 885:26 921:1,3,8,10,17 934:12 936:5 953:21

periodic 841:5,27 842:10 952:9

periods 824:11,12,21 825:13,14 858:1

permeability 963:21

permeable 821:2 964:3

855:21

814:1

969:9

920:21

picky 878:9

pits 851:7

843:7 854:12 855:1

person 900:26 968:26 856:17,23 857:12 869:18 872:1 874:13 personally 889:25 865:14 882:25 877:3 886:13,14 956:25 persons 910:3 959:7 portions 957:18 plan 853:17 854:18 perspective 865:26 portray 836:28 860:13 869:12 879:1 pertained 838:1 890:22 903:10 904:11 **position** 910:14 pertaining 832:11 906:13 planned 908:12 Petrizzo 821:17 planning 817:8 852:22 possibly 896:9 Petroleum 866:8 895:26 PG&E 872:10 plans 853:13 869:20 play 822:28 ph 811:4,25 813:28 **pleasure** 965:15 phase 824:25 plow 857:19 phenomenon 956:8 plug 957:14 884:3 **PHMSA** 833:1 857:4 pods 836:11 point 808:28 815:23 phrase 813:18 848:11 825:9 828:15 832:28 904:19 953:5 891:14 900:21 902:10 850:13 854:5.9 856:25 920:5 947:25 859:16 878:17 892:7,27 physical 944:4 895:3 896:11,27 903:15 906:16 909:21 910:6,24 pick 875:19 877:9 911:10 912:3 913:15 practiced 914:9 882:9 884:27 885:1,2 924:21 925:8 926:11 890:23,24 913:1,21 934:28 938:13 949:5 953:10,11 954:7 955:25 871:17 957:25 958:11 962:25 picked 920:24 958:7 964:1 points 912:20 968:6 pre-gas 809:10 **picture** 905:6,12 **Poirier** 806:4.7 807:6 pre-leak 832:13 **pictures** 877:18 818:23,25 837:17 846:25,28 849:28 850:5 piece 826:16 869:4 16 963:22 866:28 867:19,28 868:2 906:5 908:18 879:17 880:25,28 913:9 pieces 919:27,28 920:3 937:9,13,25 938:12,17 941:23 942:1 945:1 pinhole 895:8,15 949:14,20,27 953:25 pioneering 856:14 954:16 960:13,16,20 816:20 965:17,26 966:3 972:1, pipe 814:13,25 815:8,9 9,14 887:2 954:15 policies 818:1 840:18 pipeline 952:23 842:9 pipelines 970:24 953:1 **policy** 842:16,17,28 pipes 891:15 862:25 poor 932:12 place 818:19 833:19 pore 952:26

portion 809:14 810:4 preparing 902:13 826:5 830:27 838:10 possession 937:22 possibility 873:2,3 post-1997 936:14,18 post-2010 842:21 post-leak 832:13 potential 827:13 828:26 829:3 859:19 878:20 957:16 potentially 878:22 practical 858:26 859:6 practice 829:9 830:21 840:15 842:5,25 866:9, 10 871:1 914:10 970:18 24 practices 817:21 818:3 819:4 831:11 840:8 pre-2015 842:20 precipitation 812:15, precision 852:25 829:4 predated 856:15 predict 813:6,12 predicted 811:1,23 predictions 814:2 968:9 prefer 883:28 933:16 preliminary 936:6 preparation 901:15 934:18

present 964:7 press 808:11 pressing 867:12 pressure 828:13,14 875:22 876:3,14 877:5 878:18,19 879:3,7,13 893:2 897:3,4,6 906:17 936:27 940:17 950:15, 16,17,28 951:6,12,15, 18,27 952:1,4,7,11,18, 20,24,26,27 953:8,11 956:28 957:1,3,8,12,16, 18,21,22,24,27,28 958:7,9,10,16,18,23,27 967:6 971:1,10,14,17, 18,21 972:22,27 pressures 876:6

pretty 807:14 817:18 833:26 834:7 838:23 839:1 858:17 872:5 889:15 895:14 910:1 911:17 920:18

prevailing 829:9 830:25 840:7,15 842:5,

prevalent 824:2

prevent 826:24 829:13 830:4 831:21 840:24 841:3 843:8 952:17

prevented 827:22,23, 28 829:21 831:11,12 838:13 951:15

preventing 826:12,17

prevents 952:17

previous 842:13

previously 812:8

primary 837:12 838:13

principle 852:5

principles 894:9

prior 806:11 847:10 848:18 876:21 940:24 943:10 945:23 959:10

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

privy 897:1

proactive 855:12 856:9,10

probability 853:18

problem 864:16,23 885:28 907:15 923:16 937:12 956:13

problems 825:14 826:8 884:21 933:19 967:9

proceed 913:27 945:4 949:24 965:20 966:7

proceeding 806:13 932:13 941:17,21 942:18 949:18 950:7 966:13

process 813:16 826:25,26 827:4 865:20 876:13 879:24 910:28 924:24 925:27

procured 916:1

produce 809:7 934:15, 22 940:15 942:28

produced 943:20 945:12

producing 938:15 941:7

product 814:6,11

production 807:18 810:27 820:22 823:27 828:12,14 838:27 839:3 870:23 873:25 874:9 876:5 878:18 883:19 886:22 887:1 891:5,18, 27 892:8,10,18 895:4 939:16 940:16 958:25 959:4,25 961:22,28 962:5,11 967:5

professional 914:27

program 853:24,26 855:12,15,23,27 856:8, 13 860:2 879:27

programs 854:2

project 889:13 944:1

projected 943:21

prompted 834:9

properly 858:5 propose 862:12 968:27

proposed 857:1

proposes 968:23

proposing 865:21

propriety 851:21

prospectively 864:8

protect 814:26 883:18 968:11

protected 883:16

protection 872:16,25 873:9 874:6,15 883:3,5, 16

protective 814:24

prove 901:2

provide 876:7 938:4,8 946:9 966:23 968:2,13

provided 883:4,7 915:26 917:4,28 919:23 930:18,20 931:24 937:19 938:2 942:16 944:13 946:24 970:17

providing 915:16

Public 913:25

publicly 916:3

publish 943:9

publishing 945:16

pull 838:7 841:22 846:14,20 862:28 866:15 867:6,15 868:12 882:24 893:12 905:6 906:2 926:8 927:8,21 951:17,26 960:26

pulled 897:2 920:2

pulling 836:3 893:21 924:25 925:12,14,15

pulses 971:16

pump 890:17,18,24 894:2,12 900:11 902:2 904:21 906:2,3,12 908:11 909:15

pumped 911:11

pumping 898:4 904:13,

Index: privy..RCA

967:13 972:6

questioning 937:5 938:27 942:22 963:6 966:26

questions 843:15,16, 17 869:17 888:1 903:25 905:4 911:27 912:14 914:12 933:11 939:2 947:22,26 948:17 951:24 969:3 971:8,26

quick 938:10

quickly 817:16 838:20, 24 852:18 890:14 897:14

quiet 824:20 921:1,3

quote 853:6 858:8 866:18 868:12 878:24

R

rain 963:10

rainfall 816:13

rainwater 963:15 964:6,21,23

rainy 812:26

raised 972:11

raising 912:9

ran 924:11 925:5 961:8

rate 810:2,16,25 811:21 812:13 813:2,10 814:7 815:1,5,15 816:21,25 817:5 855:9,22 861:18 890:25 893:23 894:3,6 895:14 896:9 897:7,9 900:10 901:27 902:2 927:4 954:25 955:15, 18,22 956:7,19

rates 815:9,21 879:6 894:12 900:10,11

rationale 962:24,27,28

RAVI 807:7 882:14

RCA 826:26 832:2 849:6 850:18 851:14 852:1,3 897:1 960:3,27 961:12

purpose 939:8

purposes 817:8 823:26 845:12 846:11 852:22 876:1 941:7 968:3

pursue 808:18 846:12

pursued 864:28

20 909:12,15

pursuing 820:4

pushing 893:3

put 809:20 810:4 830:9 843:7 848:14 857:12 861:24 865:7 871:28 873:15 874:6,8 875:23 879:14 892:28 905:21 967:10 968:17 970:25 972:17

putting 872:25 876:2 957:13

Q

QC 920:17

qualified 834:15 967:25

qualitative 961:6

quality 919:12,20,23,25 920:2

quantified 969:27

quantitative 847:19,24 848:3

quantity 812:22

question 820:5,11 825:16 831:15,16 838:16 839:8 842:14 845:21 847:7 848:7,15 850:12,16 854:20 868:12,15 878:9,14 879:16 880:7 884:2,27 892:22 895:12 896:3 901:11 903:14 909:1 917:8,26 918:28 919:9, 10 920:12,16 922:26 925:15 932:6,17,20,21, 23 934:8,16 935:22,24 936:7 937:11 940:4 941:9 948:7 955:15

958:3 961:18 966:24

RCAS 865:10

re-plow 870:18

reaction 813:21,22 814:5 879:10,12

reactions 812:18

reactive 855:15

read 810:20 826:4 840:28 847:12 848:24 864:6 867:20,24 880:9, 12,14 909:8 921:8

reader 858:19

reading 809:9 827:6 930:11

ready 807:3 846:26 913:27 949:24 965:20

real 816:7 838:20

realistically 839:10

reality 817:9

realtime 876:3,13 877:5 910:8

reason 815:17 824:23 879:14 904:17 908:23 921:5 945:25,28 948:9 952:10

reasonable 899:13

reasons 845:6 926:6

recall 822:9 823:11,22 833:3 843:21 849:11, 14,15 862:13 868:23 876:16 879:5 880:13,21 915:4,9 916:13,18 920:27 921:22,23 922:1 924:21,22 926:11,19,24 929:6,26 930:4,27 931:1,3 935:28 936:1 939:1,9,17 940:22 942:25 943:7 944:26 946:13,14,15,18,26,27 947:13 950:19,21

receive 880:12

received 945:22 946:23 947:6

recent 912:13

recess 881:7 935:17

recognized 970:22

recognizing 855:12 864:12

recollect 962:28

recollection 837:6 867:14 877:16 878:6 897:26 916:23 930:2

recommend 952:7,8 970:18

recommendation 840:20,22

recommended 866:9 875:10 962:22

record 806:5,11 810:6 818:23,24,26 835:11,13 836:26 846:25,27 847:1,13 848:14 850:3, 4,6,13 865:7 867:17,22, 28 868:1,2 880:26,27, 28 881:1,6 882:5 884:20 885:8 903:13, 17,25 913:17,18,19 917:3,28 932:6 933:24, 26 934:4 935:16,19,20 936:1 938:6 941:24 945:2 960:19,21 962:23 965:28 966:1,2,3 969:18 972:7

records 817:27 822:4 861:17 927:3 928:28 929:5,7 963:1

recross 972:3

RECROSS-EXAMINATION 972:19

redirect 912:6 913:2,25 949:13 966:5,8

reduce 814:28

reduction 824:25

refer 862:19

reference 928:9,13 930:11 931:10,12 970:24 971:5

references 812:15 867:2 928:7,18 930:9 931:8,22,25

referencing 855:16 921:13 946:10,23 971:19 referred 915:5 referring 814:11

835:24,25 927:26

reflect 835:13 948:12

refreshes 930:2

regime 856:23

regions 814:15

regular 842:27

regulation 830:11,21, 22,26 836:23 837:3,23 838:1 854:3,12,28 857:4,15,16 862:3 871:7 875:16

regulations 830:26 832:11,17,24,28 833:1, 14,18,21,25 834:2,24 835:1,8,20 837:10,24 839:27 853:15 854:16, 23 857:7 862:5,15 863:27 869:5,18,24 871:11,28 872:4,6 874:13,18 877:3,7 886:13,16 969:4,5,11

regulator 837:13 861:6 866:3

regulators 834:18 870:2 969:10

regulatory 841:26 855:22,26 856:23 968:27

related 866:20 868:18 873:27 915:8 917:27

relates 966:27 967:2 970:21

relating 903:25

release 838:14 927:28

relevant 833:14 923:15

reliability 844:6 845:3, 20,25 847:18,20,21,22 848:2,3 960:15 961:4, 10 969:16,20,23 970:6, 15

reliable 807:22,23,28 846:4,7 847:16,24 848:8,22 849:1,4 969:25,26 970:10,12 relief 910:25,27 911:3, 12,19

remarkable 911:18

remediated 863:5

remember 807:19 820:15 843:13,19,20,21 849:10,17 856:12,18 862:16 866:25 867:9 872:6 876:17 898:12 900:15 916:16,17 921:8 924:13 943:3,4,22,26 959:18

remind 954:10

reminding 913:14

remove 956:4 959:24 961:22

removed 863:21 884:12 885:14

removing 858:25

render 960:26

repaired 863:5

repeat 854:20 870:5 884:26 896:1 926:16 934:7

repeatability 961:10

rephrase 901:11 932:21

replaced 807:24

replicate 816:15

report 810:8,9 813:9 817:5 818:19 819:23 820:9 822:9 823:24 825:19,24 826:5 827:6 829:1 830:9,24,27 832:18 833:6 834:1 835:5,10,14,15,19,26 836:2,6 838:10,26 839:15 844:27 845:1 853:6 856:12.17.21 857:20 858:16 861:1, 15,24 862:23 863:10 865:14 866:15 870:5 871:18,25 874:17 877:24 878:26 879:4,21 882:25 884:8 886:4 888:3,10 889:27 897:10,16 898:28 899:4 900:5,12,13 909:28

914:12,14,18 915:7 921:25,27 922:2,11 926:15,24 927:1,8,22, 24 928:5 931:7 933:5 958:9,10 941:7,10 943:1,9,19 945:11,12,24 946:12 949:1,4,7,9 950:26 957:10 962:2 963:3 969:8 971:12 reporter 884:18 885:7 939:14 933:24,28 941:22 944:28 reporters 912:25 reports 810:5 844:5 909:9,10 914:23 917:11,12 941:8 representatives 889:8 representing 950:6 rest 937:9 request 843:22 844:11 845:28 868:8 932:8 938:25 946:28 948:14 requested 900:22 901:2 913:7 937:17 962:25 **requests** 900:25 901:19,20 942:8,17 882:15.17 946:25 947:1 require 857:1 862:16 863:27 865:19 872:1 required 829:8 830:10, 13,14 837:1,3 841:11 842:18 854:2 860:5 862:2,4,11 869:5,19 874:14 877:4,8 886:14 920:9 requirement 842:28 843:1 874:20 requirements 841:26 946:3 843:1 854:10 855:5 requires 841:22 requiring 843:6 862:6 research 809:9 850:17 937:24

researched 885:14 971:4

reservations 832:14

reservoir 887:23 892:2,25 893:27 894:4 906:16 957:15,25,26

resolution 845:16

Resources 929:12

respect 942:24

responded 845:28

responding 826:11,17 829:3 937:10

response 884:24 899:13 921:15,16 942:16 946:24

responses 866:17 868:8 942:15

restate 850:11 854:22 918:18 941:25 953:26

restating 885:5

result 952:23 964:4

results 948:1

resumed 807:8,10

retrievable 957:14

retroactively 839:10

return 935:11

returning 850:7

reveal 958:24 959:3

revealed 972:27

review 835:8,21 844:6, 9 845:2,24 857:14 888:11 922:26 942:15

reviewed 871:17 921:24 926:21 929:23 937:18 961:11

reviewing 930:6

revising 969:4

revision 969:5

right-hand 867:21 rightfully 901:14

rightly 901:17

risk 822:24 853:7,13, 17,20 854:18 857:2 860:2 865:2

robust 872:21

rock 859:11 907:9,16 963:20 964:2

role 825:10 829:16,17 831:9,13,16

roles 968:13

rolling 915:5

root 817:20 821:16 825:24 826:6,8,21,22, 28 827:4 828:9,21 829:18,20 830:20 831:10,17,21 834:19 836:7 849:24 852:13 860:18 870:12,21 884:4 885:28 886:5 915:13,17 922:24 923:21,22,23,26 924:9 927:27 934:19 942:12,28 948:24 952:6 956:15 962:12,13

roughly 826:6 885:2 897:25 911:6

round 827:5 830:7 870:11

routine 893:17 894:9

row 837:22

RP 863:28 865:24 866:9

rule 809:22

run 864:16 896:14 925:4 960:11 970:1

running 854:25 872:11 957:27 958:5,12

runs 970:3

rupture 958:14

ruptured 839:4 925:2

S

safe 869:22 871:5 886:9

safely 858:1,6

safety 883:26,27 884:1 885:11,12,23 886:12 906:23 912:4 913:24 942:6 951:2 957:21

satisfied 903:8

scale 815:2,3,4 817:11

scales 814:12,23,28

scenarios 907:19

schedule 806:12,15, 19,24

Schlumberger 851:22, 24

scientist 955:8

scientists 969:23

scope 825:24 860:17 966:24

screen 855:17 904:25 927:21 928:14

season 812:5,11,14,21, 28

seasons 812:26

section 810:15 815:24 816:19 832:18 868:15, 27 921:10 922:12 968:15

sector 819:17

sectors 819:16

SED 867:7,26 868:7 913:1,12 921:25 937:16,20 941:21 943:8 972:12

SED's 868:8 942:16

SED_SUR-REPLY_ 00295 868:10

seeking 855:22

seep 808:2

seeping 809:17

seeps 812:19

selected 967:17,19

self-explanatory 839:1

sense 832:22 833:9 838:22 853:16 864:6

932:22 933:13 954:14 963:22

sensor 844:22

sentence 811:18 812:3 825:28 826:1 873:21 899:10

sentences 810:18

separate 844:27 845:1 859:26 923:16

separating 957:15

September 928:10

serve 806:26

service 806:14 939:21 940:6

Sesnon 967:20

session 882:1,8

set 821:24 825:21,23 832:17 834:19 836:4 837:4 838:21,25 841:7 856:21 865:23 869:7 877:21 879:20 887:27 888:2 929:13,14 932:1 944:22

seven-inch 810:26 811:8 824:1 964:15,17

seventh 902:26

shaking 909:25

shallow 873:26,27 963:18 964:2,4,14

shallower 923:3 963:19

share 927:21

shared 903:2,3

shelf 852:11

shift 883:13 958:16 965:2

shoe 818:9 823:7,10, 15,16,20 964:17

short 875:2 877:16 878:2 899:2 912:10,17 913:20 949:22 963:6 965:21 966:4 970:16

show 892:16 893:16 900:27 931:7,13 941:14

898:17 924:15 954:25 **showing** 903:22 shown 872:14 908:18 shows 904:12 shutting 897:6 sic 808:3 832:14 883:8 946:28 side 814:12 885:4 sight 970:4 **signed** 913:6 significant 834:2 898:17 961:21,25 similar 893:28 894:1 917:14 923:24 967:24 **SIMP** 855:11 simple 952:22 simplistic 817:8 961:19 **simulate** 816:2 simulating 816:9 single 871:2,9,15,22 872:11 sir 833:4 835:10 838:11 839:8 844:5 847:13 852:21 853:3 856:7 857:11 864:7 869:16 877:10 878:6 880:15

942:5

showed 819:15,24

906:21 sites 851:14

sitting 852:11 862:9 899:27

887:19 890:5 905:4

situation 806:21 873:24 893:19,24 907:6,21 910:2 958:17, 18

size 823:27 824:2 896:5,20 911:7

sizes 883:14

sketch 872:19 skip 900:7 slightly 924:6 slow 954:13 **slowing** 896:10 **slowly** 909:6 small 851:7.8 918:28 920:15 958:6 smaller 919:28 920:2 Socal 839:28 861:9,10 866:3 909:9 944:8 **Socalgas** 806:18 809:3 817:21 819:4 821:15,25 828:10 829:12 830:2 836:19 839:26 842:9, 10,18,20,21,25 843:25 854:15,23 855:5,11,20, 25 856:9 860:20,25 861:5,16,20 863:13 869:6,23 871:6,13 874:15 875:10,16 876:12,25 877:25 878:2 879:23,27 880:19 886:14 889:2 890:7 895:21 897:18 898:13, 23 899:4,28 900:16 904:11 905:21 908:9 910:7,13,19 911:10 915:12,15,25 916:2,5,9 917:3,28 918:4 925:10, 11 926:18,22,28 927:3, 16 928:15 929:15,20 930:20 934:10 936:3,22 937:4 938:1 941:5 942:16,17,26 943:8 945:22 946:9 951:15

Socalgas' 818:1

962:15,27

Socalgas's 840:18 915:8 926:13 962:3,9

Socalgas-158 846:22

software 844:22

solid 910:11

solution 837:4 838:2, 25 839:1,13,14 840:21, 22,26 841:21 843:3,5 852:15 853:6 857:1,18, 19 859:17 860:8 861:26,28 862:12 863:24,26 869:10,28 870:9,13 872:14,18 874:24,27 875:11,19,21 878:17 879:15 883:26 884:4 885:28 886:2 887:17

solutions 826:27 834:19 836:7,16 838:12 839:25 841:1 843:12 863:23 865:8 869:7 870:6 879:20 883:24 886:7 952:7 956:15

sort 819:5 821:24 825:27 828:4 836:4 840:27 845:20 862:21 863:24 864:26 872:19, 23 874:2 883:13 887:2, 22 890:13 892:19 893:9,17 906:7 908:18

sorts 923:26

sounds 814:21 856:3 952:28

source 929:15 963:11 964:24

sources 916:8 929:18

Southern 929:14 942:7

speak 909:6

SPEAKER 969:13

special 918:24

specialists 873:8

specific 819:10,20 820:23 823:12 825:1 837:9 838:11 839:15 864:27 865:13 867:2 869:11 896:4 897:15 903:14,26 929:25

specifically 850:25 895:2 921:27 926:21

speculating 965:6

speculation 918:7 954:8 955:1,24

speculative 954:20

spent 876:23 878:10

spoke 844:20

spot 825:8 827:18,20, 27 911:7 921:21,26 922:4,8,14 spots 897:17 922:2 square 859:9 **SS** 918:4 953:17 SS-25 807:18 808:1 810:9 811:22 815:8 816:22,28 820:14 831:18 839:4,28 840:17,24 841:4 843:8 870:23 874:5,16 875:5, 11 876:4 877:12 883:17 888:4,12 890:9 894:21 898:14,19,26 899:15 911:5,13 915:21,26 916:7,14 918:2,20,21, 26 919:13 921:28 922:3,5,9,21 923:6,24 924:8,23 925:1,2 928:1 929:22 930:4,10,13,23, 24 931:2,18 934:11 936:4.16 939:3.20 940:5 950:15 951:12 954:3 958:24 959:3,11 960:3,27 963:10 965:9 971:14 SS-25's 953:17 **SS-25-A** 967:3 SS-25A 905:17 916:8 SS-34 897:21 stage 818:9 821:24 825:21 887:27 966:28 967:2,4,7,10 stand 807:8 866:7 882:15 standard 830:15 842:2 862:3.5.14 865:28 866:12 868:18 871:7 894:10 967:20 standards 840:4,6 854:17,24 855:5 865:27 866:20 869:5,18,25 871:10 874:13,19 877:3 start 808:21 809:17 811:14 827:8 890:14 906:14 **started** 809:3,15

815:20,21 816:25 888:12 908:19 971:7,16

starting 913:23

starts 814:13

state 815:16 857:11 858:8 919:2 943:6 969:6

stated 918:12

statement 855:16 858:18 863:8 868:28 945:14 950:22

states 868:16

stating 963:2

statistical 969:24

status 880:18

stay 818:18

step 964:26

stepping 817:16

stick 854:7 929:7

sticking 906:6 918:21

sticks 951:9

stood 908:10

stop 827:11 893:4 897:13,18 899:25 906:17 909:21 910:24

stopped 892:19 963:2

stopping 887:22 904:14 908:23

storage 809:10,15 829:11 832:12,23 835:7,20 837:14 854:12 855:7,14 856:14 857:2, 27 858:21 859:11 862:10 865:9 866:12,22 868:19 872:2 886:12 887:3 892:2 940:14 951:1 969:5 970:19,23 971:2

story 878:2 899:2 919:4,5

straightforward 873:11

strange 963:14,17

strength 967:11 strengths 961:7

structural 968:13

structures 822:25

struggling 868:24

studied 859:18 884:6 887:16

studies 815:27 862:11

study 832:10 843:23 845:27 857:22 859:25, 27 861:1 862:2

stuff 818:10 896:21 900:11 903:6 917:22 949:8

sub-reports 872:22 888:10

subject 833:8

submission 855:10 932:11

submitted 880:11

subset 931:13

substantial 936:26

subsurface 883:27 885:11,17

successful 893:17 911:25

successfully 863:5 884:14 897:22 898:4 907:13 911:4

suggest 933:2

suggesting 865:15 880:15

suggestion 866:5

summarize 819:5

summarized 835:15

summary 854:5,7 876:10,11 930:13 931:17

supplemental 810:5 835:14,19 884:7

supplementary 810:9 835:5,26

support 968:13

supporting 914:15,18 934:19 941:8 943:2,10, 19 **supposed** 885:16 950:28

surface 820:21 823:7,9 838:28 839:5,11 840:1, 17 873:13,20,26 874:7, 28 875:1,16,17,22 876:6 877:5 878:20 883:17 885:10 897:4 959:16,23 961:27 962:7 963:10,15,24,26 965:8 968:1,3,10,16,23,24

surprised 823:2,4

surprising 963:14

surveillance 875:22 877:4

survey 957:4,24 958:1, 7,8,18,23,27 959:2

surveys 918:23,24 957:1

suspect 822:13

suspend 910:20

suspicions 895:4

system 853:8 854:25 855:6 863:3 870:14 871:23 876:18 883:4,16 884:8 885:23

systematic 864:19

systemic 820:24

systems 857:3 876:14 883:27 884:1 885:10 886:12,19

Т

table 818:10 836:4,6 841:7 899:5,11

tables 902:4

takes 816:7

talk 810:1 819:6 827:16 830:8 836:16,17 853:14 865:22 880:20 887:20 894:18 897:9,14,15 900:8 901:20 904:24 905:2 931:26 947:21 965:24

talked 811:12,17,27

21 971:14 972:22 tested 950:16,28 testifv 880:16 team 931:27 thin 827:7 948:11 955:7

testified 807:8 825:22 882:15 954:12 963:9

testifying 932:16 940:23,24 941:17

testimony 808:13 826:4 835:12 848:27 855:21 880:10 966:18 969:18 970:17,21

testing 820:12 841:13 951:15 962:26

tests 956:28 959:15 971:10,17,21 972:27

Theoretically 860:1

thickness 823:14 841:5,17,27 842:19 843:6,18 845:16 850:19,26 851:1,13 862:26 920:9,10 952:9, 17 959:16,23,26 960:25 962:4,6,10,16

thing 818:2 858:17 862:20 876:8 883:22 907:12 920:11 938:14

things 894:3,19 895:19 909:24 916:25 917:20 919:19 926:9 930:3 936:15 941:2 944:17.20 946:6 951:23,25 958:15 964:12 965:3,6

thinking 821:4 824:14 858:23 862:23 943:12

thinning 847:9 848:17

thought 874:3

thoughts 872:24

thousand 812:20 823:19

three-and-a-half 810:18

throw 920:7,14

thumbnail 872:19

tight 825:8 921:21,26 922:2,4,8,14

tighten 944:16,20

time 813:12,16 814:3,9, 17,28 816:7,8 817:6 822:1 824:10,12 826:10 833:15 835:2 844:15, 21,25 849:19 856:24,25 858:6 860:11 865:11,19 874:13,14 876:23 877:17 878:10 879:17 880:24 892:28 906:13 909:13 910:7 911:23 921:10 935:14 944:16 949:12 951:10,12,16 952:15 953:21 958:10 964:7,8 965:5 971:18, 27 972:28

timeframe 843:26 952:10 953:24

timeline 951:9 960:8

times 864:6 900:23 901:3 969:17 970:1

timing 806:12 881:2

TIMP 853:25 854:2

titled 929:24 930:8,23

today 811:20 838:2 844:1 847:28 849:2,4 860:12 862:10 870:2 871:21 899:27 938:20 960:9 966:13 970:13,15

told 807:21 831:28 899:21 909:22 942:26

tolerance 847:27 848:6

tolerances 844:15 845:11

tomorrow 936:9,17 938:8

tonight 880:14 937:24

tool 845:10.16 846:10 847:23 849:6,7,9,12,16, 22,23 850:18,24 851:21,23,24 953:16 954:2 969:28

tools 842:22,23 843:18 844:7,14 845:4,7,26 846:8 848:1 850:22,26 851:6 953:1,2 958:20,

21 960:9 961:8 970:14

top 813:25 814:4 890:15 892:19,25 894:6 900:3 908:4 910:20,24 928:22

topic 859:28 861:2 882:23 900:25 901:3

topics 823:6 970:17

total 873:28

tougher 840:9

Traci 913:3 950:5

tracking 930:25

trailing 952:14 959:6

transducer 957:27

transferred 815:2

transient 901:23 902:28

transmission 853:24 854:10

transpired 906:2

trend 919:17,18

trends 818:12 819:2 917:22 924:14

trial 969:17

trip 827:5 830:7 870:11

truck 890:17 906:3,12 908:11

true 811:20 813:13 814:22 817:22 818:3 819:20,21,25,26 820:2 822:25 823:8 828:22,23 829:15 830:16 832:6,25 834:6 838:17,18 841:5, 13,14 843:8,9 854:12 855:7,28 857:13 858:6, 7 859:13,21,26 860:21, 27 866:23,24 873:5,15 876:15 887:25 888:14 889:3 895:28 899:18 901:16 908:6 909:26 910:3,10 911:15 914:19 942:19,20

tubing 828:11,17 841:22 857:28 870:13, 21 875:23 876:5 878:19 886:21 887:4,11 890:19

PUBLIC UTILITIES COMMISSION, STATE OF CALIFORNIA SAN FRANCISCO, CALIFORNIA

813:20 821:27 858:2 870:10,27 917:15

talking 823:21 839:7 850:25 859:24,28 870:11 873:8,19,24,25, 26 886:19 893:20 905:11 924:2 930:28 939:13 940:14 952:4 953:21 964:13,14

tangential 827:18,21

target 943:22

task 938:9

teams 861:20

tease 872:23

technical 832:2 860:17 884:21 937:7 945:7 952:4

technically 874:8

technologies 844:12 850:28 851:18 884:16 961:9

technology 843:24,26 844:23 846:4 847:8 848:16 849:1 884:13 885:21 886:1 911:22 960:28 961:3 970:8

telephone 884:21

telling 895:13

tells 919:3,4 931:16

temp 841:11 919:14

temperature 811:5,26 812:22 817:12 894:25 896:14 918:23 919:16 925:17 958:19 959:2,8

template 838:21 839:23

tendency 822:21

term 921:2,20 927:24, 25 969:19,22,24

terms 969:10

terrain 819:18

test 951:6,12,18,27 952:1,4,8,11,18,20 953:8,11 957:3,8,12,16,

891:2,4,5,10,18,24,26, 904:8 905:28 924:3 violation 869:26 V 27 892:9,18 893:12,21 927:5,26 934:4 936:6 875:14 897:4 898:5 906:15 941:18 947:23 948:10 **VIRTUAL** 806:1 923:13,14,16 924:3,25 955:13,14 956:7,17,22 vagueness 903:13 958:9,26 966:13,17 visa 837:13 886:28 925:5,13,14,16 926:8 953:20 939:3,9,15,23 940:8,15 972:22,26 **visible** 965:10.12 valve 877:26 878:22 951:17,20,26 956:4 understandable 885:11 886:20 957:28 958:6,13 960:11 vision 859:27 870:8 904:28 valves 883:28 885:12, turn 810:15 812:12 visit 933:3 968:1 understandably 914:7 17 813:1 818:19,21 829:1 volume 810:8 818:16, 838:9 846:22 852:15 understanding variable 815:9,14,15 17 835:6,19 846:21 872:14 882:22 889:27 806:23,25 859:18 847:5 variations 901:28 899:3 902:26 911:13 864:19 871:27 877:13, 915:3 927:21 942:22 20 889:1 890:5,10 volunteered 969:12 varies 823:20 965:18 906:21 908:21 911:8 voracity 812:22 vary 813:1,12 815:28 914:21 927:7 935:5 turning 888:6 924:21 823:17 937:27 938:23 940:4 926:10 928:3 929:22 969:1 varying 816:12 two-range 904:26 understands 841:8 versa 891:19 wait 895:12 type 818:2 864:27 understood 826:3 versus 824:15,16 865:1 876:8 886:12 waiting 855:26 831:23,25 851:26 909:12 923:27 Vertilog 843:27 846:4 852:23 853:2 860:16 walk 819:6 838:19 847:8 848:16,28 849:12 types 896:5 874:1 895:17 903:28 839:24 890:13 850:23 851:2 852:1,2,7, 904:22 909:19 913:9 typically 887:2 11 962:21 wall 823:13 841:5,17,27 916:6 926:26 927:19 842:18 843:6,18 929:6 930:25 931:6 Vertilog-sort-of-845:15,18 847:9 848:5, U 932:2 939:14 940:21 variation 849:23 944:25 945:13.20 948:4 6,9,10,17 850:19,26 851:1,13 862:26 920:8, 949:11 959:20 Vertilogged 962:17 **U-S-I-T** 851:19 10 952:8,16 959:16,23, undertake 865:10 vi 837:14 886:28 **U.S.** 840:11 25 961:6 962:4,6,10,15 undertaking 961:22,25 viability 885:26 965:1 ultrasonic 850:25.27 851:2,12,23,24 953:1 wanted 808:18 821:7, viable 885:25 undertook 824:19 19 829:23 835:10,12 unable 807:28 808:8 UNIDENTIFIED vibrating 908:22 912:22 934:3 938:13 816:20.24 909:15,20,25 969:13 944:15,20 947:20 **uncommon** 858:9 948:9,23 950:8 959:22 vice 891:18 unique 911:21 960:3 961:12 967:12, uncontrolled 838:14 **unknown** 899:16 Victoria's 867:11 14,26 968:4,21 971:5, 894:15 23 unsafe 858:12 video 937:12 underground 829:11 wanting 948:10 update 885:6 **view** 814:19,20,23 832:12 837:14 855:14 827:3 828:19 829:10 857:1 862:10 897:20 warranted 864:28 updated 844:1 846:2 874:5 877:14 907:18 water 812:18 820:28 911:18 953:10 **upper** 955:10,13,22 underneath 899:5 821:1,4 873:13,23 **USIT** 849:9.15 851:11. vintage 852:2,10 963:9,11 964:12,13,19, underoperation 18,21,23 953:15 954:1 20,25 965:1,7 969:1 violate 840:18 854:27 952:18 955:28 970:1 871:7 water-containing understand 808:26 utilities 865:10 821:2 violated 839:26 842:9 811:25 827:2 828:8 utility 951:11 854:16,23 869:24 832:21 838:10 844:4 ways 951:19 845:19,23 848:26 violating 875:10 weak 832:27 833:4 858:19 860:3,16 864:12 865:18 885:15 891:8,22

w

weathered 963:20 964:3	949:17 961:15
964.3 website 927:15	worked 834:17 878:2 931:28
websites 916:3	workover 841:18,22
weekly 936:27	893:8,13,22 894:11 918:26
weight 890:24 893:1,2 902:2 925:16	world 816:7 889:16,21 907:2
weights 903:6	worry 883:23
well-control 869:12,20	worse 907:5,6,21
878:28 879:1	would've 827:23
well-kill 911:14 947:12 well-specific 869:19	wrap 823:5 861:26
well-thickness 953:13	869:3 871:5 874:11
wellbore 812:26 893:1	write 909:28 949:4,9
907:7,22 908:17 911:5,	writing 949:7
7,13,14 952:22 957:23	written 861:22 932:11
wellhead 908:11 909:14 910:4	wrongly 901:14,17
wells 819:24 821:22,26	wrote 811:20 835:4 855:19 886:4 950:25
822:1,7,14,15,24 823:13 839:7,16,19	
840:10,13 855:14	Υ
857:27 858:5 859:8 863:4,14 864:23 866:12 871:3,8,14 872:2,11,26	year 846:3 955:16,19 956:5
873:5,17 874:16 875:1, 2 876:4 885:19 886:12	years 818:6 860:13 956:5,10,11 964:9
887:1 889:17,20 897:28 898:3,8 905:16 907:2	yesterday 807:1,15
911:19 934:10 936:3	825:22 826:4 841:10 922:22 939:2 954:11
962:17,21 967:22 970:19 971:3	922:22 939:2 954:11 963:8
west 820:26	
wha- 955:8	Z
whatsoever 828:13	zone 821:2 969:1
withdrawal 870:20 887:15	zones 820:26
withdrawing 828:11	
witnesses 806:18	
wondering 820:18	
word 822:22,23 827:20 859:3 954:20 969:22	
work 816:4 830:19 831:1 860:7 861:15,24 873:16 905:1 946:1	